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The article describes in detail two relativistic concepts which have important appli-
cations in high energy physics: rapidity and invariant cross sections. Simple derivations
and applications are shown, which could be used in introducing these topics to students in

courses on special relativity or high energy physics.
INTRODUCTION

Rapidity and invariant cross sections are frequently used by high energy physicists in
describing the production of particles in nuclear reactions. Both of these concepts are
quite simple and easy to understand, but they are usually ignored in common textbooks
dealing with special relativity(1’273) or high energy physics.(4) Lack of familiarity with these
concepts may become an obstacle in understanding theoretical and experimental results in
high energy research. Perhaps it is time to add rapidity and invariant cross sections to the
list of traditional topics which are taught in courses on special relativity or high energy
physics.

This paper is an attempt to provide a simple and systematic explanation of both rapidity
and invariant cross sections. Some of the formulations were based on references (5) and (6),
while others were influenced by lectures at the Physics Department of Brookhaven National
Laboratory, (7,8). It is assumed that the reader is familiar with basic equations of special
relativity, which are reviewed in Table 1; simple derivations of these can be found elsewhere,
for example, in reference (9).

For convenience, ordinary units are often disregarded in the high energy community and
the so called “natural” system of units is used instead. In this system ¢ is dimensionless
and equal to one. Quantities such as P and My then have units of energy, but are often
still referred to as linear momentum and rest mass, respectively. This may lead to confusion
for those unaccustomed to the “natural” system of units. In order to help clear up this
ambiguity, P and My (in natural units) are distinguished in Table 1 and throughout this
paper from p and mg (in standard units). Practical energy units, MeV or Gev, are used in
the literature instead of the SI units.
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ADDING ONE-DIMENSIONAL VELOCITIES

Rapidity, as its name implies, is related to velocity. It is a dimensionless variable, y,
describing the rate at which a particle is moving with respect to a chosen reference point
situated on the line of motion. Mathematically, it is defined as

1+
e o

where 8 = v/c and v is the velocity. The equivalence of hyperbolic and logarithmic forms is
demonstrated in Appendix 1. The dependence of rapidity on the velocity ratio is graphically
illustrated in Figure 1.

y=tanh—1ﬂ=%1n

It is often convenient to express the rapidity of a particle in terms of its total energy
and momentum. To do so one may replace # in the above equation by P/E (see Table 1)
and obtain P 1 P+E
IE'—:EIHP—E (2).

As a simple illustration, consider the following question. What is the rapidity of a proton
whose total energy, E, is 2000 MeV? The rest mass energy of a proton is 938 MeV and,

according to the last relation of Table 1,

y = tanh™

P = /(20002 — 9382) = 1766.4 MeV

Thus, according to equation (2) the rapidity is equal to 1.39. Alternatively, the velocity
of the proton could be calculated (3 = P/E =.8832), and equation (1) could be used to
obtain the same result. Note that positive and negative rapidities correspond to positive
and negative velocities with respect to a chosen axis. Also note that due to the logarithmic
dependence of y on E the magnitudes of rapidity are rather small, even for the most energetic
particles. In principle, however, the range of rapidities is unlimited.

What is the advantage of using rapidity instead of other kinematic quantities, such as
v or B ? To answer this question consider two frames of reference: S, which is at rest in a
laboratory, and S’, which moves with respect to S at a constant speed v, as illustrated in
Figure 2. Suppose that a particle has a velocity v’ with respect to S/ and that we want to
find its velocity, v, with respect to S. The well known relativistic solution of this problem is-
given by the Lorentz transformation:

v + vg - (3)

T+ (vov'/c?)

In the nonrelativistic limit (that is, when v'vy << ¢?) this becomes

v=1v 4 (4)

Thus velocities are additive only when they are very small in comparison with the speed
of light. In general they are not additive. This can be contrasted with rapidities, which
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are always additive, even when v and vg are approaching the speed of light. That is, the

relation

v=9+ (5)
is correct at all velocities. To demonstrate this we will show that equation (5) leads directly
to equation (3). Let us first write equation (5) in terms of § by using equation (1):

lnl_ﬂ_llnﬂ+llnl+ﬂ0
T2 1-p8 2 1-p

1

2 1—f8 2
(- (6
1= 1—f I \I—g

This equation, in turn, leads to

(6)

OT as

_ B +5o
1+ fB'Bo
which becomes equation (3) after multiplying both sides by ¢. The fact that equation (5)

B

leads directly to equation (3) shows the additivity of rapidity under Lorentz transforma-
tions, and that the rapidity formulation simply and naturally incorporates the properties
of the velocity transformation. This can be further illustrated with the following numerical
example: find v when vy = 0.9¢ and v’ = 0.5¢c. According to equation (3) v = 0.965¢. The
same result can be obtained by using rapidities:

1. (1+09
=-1 = 1472
L n(l—O.Q) s
1, (1405
y=—In(12) = 0.549
2 '\1-05

y =1y + yo = 0.549 + 1.472 = 2.021

so that
B = tanh y = tanh(2.021) = 0.965

An immediate consequence of equation (5) is that differences in rapidities are invariant.
This can be shown, for example, by applying equation (5) to two different particles so that:

v2 =v5+ %0
y1 =91+ v
Side by side subtraction shows
Y- Y=Y -1 (8)

This equation says that, for example, if the difference in the rapidities of two particles is
1.5 in one frame of refrence, it will be 1.5 in all other frames. Equation (8) also applies
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to the differential element of rapidity dy; the invariance of dy will be important later in
understanding invariant cross sections.

The following analogy may be useful to emphasize the difference between additive and
non-additive quantities. Consider two coordinate systems, z1,y1, and z2,y2, shown in Figure
3. There are two ways of describing their mutual inclination: by the angle, c, and by the
slope of the yy axis with respect to y; (tangent of ). Each description is adequate, but
angles are more convenient for many problems because they are additive while their tangents
are not. Two rotations by 10 degrees are equivalent to one rotation by 20 degrees, but two
rotations by tan(10) are not equivalent to one rotation by tan(20).

GENERALIZATION TO THREE DIMENSIONS

The one-dimensional definition of rapidity can now be generalized to describe motions of
particles in the real multi-dimensional world. This is important in high energy physics where
many particles may be produced from a collision of two particles. For example, more than
200 particles are emitted when a stationary lead nucleus is struck by an oxygen projectile of
3200 GeV (19) at a small impact parameter. The velocity vectors of these emitted particles
are of course not all parallel to each other and equation (3) applies only to components of
velocity parallel to the z axis, which is normally chosen along the direction of the relative
motion of the colliding particles. The components perpendicular to that axis remain the
same in all longitudinal frames of reference, i.e., those parallel to the z axis.

The rapidity of a particle in three-dimensional space is defined as:

1+ﬁz:1]nE+Pz (9)
1-8, 2 E-P;

where 8, and P, are the componehts of the velocity ratio and momentum variable parallel
to the z axis. This is consistent with the preliminary, one-dimensional definition of rapidity
of equation (2) except that 8, and P, are now used instead of § and P. In fact, equation
(9) is a formal definition of rapidity while equation (2), which is a particular case of that
general definition, is a convenient pedagogical device to introduce the new concept. It is
important to emphasize that unlike velocity, rapidity is not a vector; it is a scalar quantity

1
y= tanh ™! 8, = 5 In

associated with the z axis.

It turns out that £ and P, can separately be expressed as functions of rapidity. To
demonstrate this we can write the last equation from Table 1 as:

E? = P? + M = M? + P} (10)

where
P? = Pt P? + P}

and
M? =M +P:+P] (11)
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Note that M;, known as the “transverse mass”, is a Lorentz invariant quantity because both
Py and Py are perpendicular to the z axis, while My is a constant. The quantity (Pf+P3)1/2
is the invariant transverse momentum variable, usually denoted as F;. Equation (10) can

(&)~

By comparing with a familiar relation between hyperbolic functions,

now be written as

cosh? y— sinh?y =1

we can tentatively assign
E = M;coshy (13)

and
P, = M; sinhy (14)

The validity of these important relations can be confirmed by showing that they are consis-
tent with the definition of rapidity. Dividing equation (14) with equation (13), we have:

P,
2, tanh
g
which is the same as the defining equation (9) because P,/E = f, (see Table 1).

Note that we now have a simple relation between the derivative of P, with respect to
rapidity vy for fixed M; (or fixed P;) and the energy:

dP.
( z) = M;coshy =F (15)
dy M,

Also note that the invariant variable, M;, can be explicitly introduced into the definition of
rapidity by modifying equation (9) as follows:
1. E+P, 1, (E+P)(E+F) —1nE+P"’

:—1 — S —
y=3hg—p "3 E_R)E+ P M,

(16)

It is important to keep in mind that rapidity of a particle depends not only on the magnitude
of its velocity but also on the polar angle, #, with respect to the beam axis. Specifically,

equation (9) can be written as
1. 1+ fBcosd

yzilnl—ﬁcosﬂ (17)

PSEUDORAPIDITIES

Observe that for ultrarelativistic particles the value of rapidity (according to equation
(17)) is determined only by the angles of emission, f,because for these particles 3 is one or
very nearly so. For example, any ultrarelativistic particle emitted at an angle, 8 , equal to
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60 degrees will have rapidity, y = 1.5. This leads to the formal definition of pseudorapidity,

denoted by 7:
= ) fig 1+ cosf
2 1—cosf
Note that in the limit as @ goes to zero, the pseudorapidity of a particle approaches infinity.
Except at angles near 0° and 180°, rapidities and pseudorapidities are numerically indistin-
guishable when velocities are very close to c¢. Naturally the pseudorapidity defined by the
above equation can also be calculated for slower particles but in that case y and 7 are no
longer nearly identical. Note that zero-mass particles, such as photons and neutrinos, are

ultrarelativistic (v = c) at all energies and consequently their pseudorapidities and rapidities

=Incot /2 (18)

are always ezactly equal.

Experimentally, pseudorapidity is an easy quantity to measure; all that is required is
knowledge of the polar angles of emission of the produced particles. Rapidity, however,
requires knowledge of both the polar angles of emission and the velocities of the particles.
Many experiments are not designed to extract the quantities necessary for complete rapidity
measurements; those that are can usually only make such measurements in limited angular
regions. Therefore, particle density distributions are often given in terms of d/N/dn instead
of dN/dy; however, for high energy particles the two distributions will be almost identical,
except at angles near 0 and 180 degrees.

The dependence of n on @ is plotted in Figure 4; it shows that pseudorapidities, like
rapidities, are always positive for particles emitted into the forward hemisphere and negative
for those emitted into the backward hemisphere. It also shows how the slope of the n versus

# curve depends on the angle:
d 1
i N — (19)
do sin /2
Thus a narrow range of angles close to 0 degrees or 180 degrees is always associated with
a broad range of pseudorapidities. This is important when spatial distributions of emitted

particles are described in terms of pseudorapidities rather than in terms of angles, as is often
done in high energy publications, such as reference (11).

REACTION CROSS SECTIONS

Probabilities of nuclear reactions can be expressed by “effective areas”, called cross
sections. An elementary tutorial on that subject is found, for example, in reference (12).
Cross sections (o, measured in barns or millibarns) are used to describe total yields of
reactions regardless of energies of emitted particles or of their spatial distributions. On
the other hand, differential cross sections, such as do/dE (in mb/MeV) and do/d# (in
mb /radian), are used in studies of energy and spatial distributions of the emitted particles.

Angular (spatial) distributions can also be described in terms of do/d1, where {1 stands
for the solid angle expressed in steradians (str). For example, do/d{l might be equal to
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10 mb/str at 30 degrees and 3 mb/str at 45 degrees. Double differential cross sections,
d20/dEd# (mb/MeV-rad) and d%o/dEdS (mb/MeV-str) are also used frequently in order
to display energy spectra at specific angles or angular distributions for specific energies. In
practice the determination of the double differential cross section, dza/ d0dE, at a given E
and 0, is performed by measuring the number of particles, d?N, emitted into the angular
interval between 8 and 8 + df, and whose energies are between E and E + dE. Once the
number d2N is known a differential cross section can be calculated from it with knowledge
of the incident beam intensity and the number of atoms per unit area in the target.

A more detailed description of reaction products may involve triple differential cross
sections, such as d3a/dP,;dPysz. The way of subdividing a reaction cross section into
smaller parts (differential cross sections) depends on what is to be learned or emphasized in
a given study. The same can be said about the choice of independent variables, such as v, E,
P;, 0, y, etc. against which the cross sections may be plotted in order to uncover important
information about the reactions. No matter which kinematic variables are chosen, however,
the sum of all the parts (integration of the differential cross sections) must be equal to the
total number of millibarns associated with the probability of a given reaction.

A total reaction cross section, o, is an invariant quantity; its value does not change when
expressed in different frames of reference. Differential cross sections, on the other hand, may
or may not be invariant. For example, neither do/dE nor do/d(l are invariant. Transfor-
mations of common differential cross sections from one frame of reference to another are
described in many textbooks, such as references (13), (9) and (14). These transformations
are often difficult and cumbersome. Furthermore, they are impossible to perform when
information about the velocity of a particular frame is not known, which is a common sit-
uation in practical research. It is thus desirable to use specific types of differential cross

sections which remain the same in all frames of reference.

INVARIANT CROSS SECTIONS

In general, the existence of invariant quantities is very important; it demonstrates that
the relatavistically subjective reality can be described in objective terms. This aspect of
special relativity has not been sufficiently emphasized in most textbooks. In fact, many
misconceptions about the theory (15) would perhaps be avoided if it were named the “in-
variance theory”, as preferred by Einstein. (16,17) The important idea is that it is possible
to construct invariant quantities by using appropriate combinations of quatities which by
themselves are non-invariant. For example, it is well known that the total energy, E, and
linear momentum, p, of a particle, taken separately, are not invariant but a combination
of them can be used to construct an invariant quantity called the energy-momentum four-
vector. The length of this four-vector in any frame is equal to the rest mass of the particle.
Likewise, the half-life At of a muon and the distance Az traveled in that time depend on
the frame of reference, while the square of the time-space interval, Az?—(cAt)?, is the same

.



for all inertial observers.

When P is used as a kinematic variable, the triple differential cross section can be written
as d3a/ dP;dPydP,. The last quantity is often denoted as d3o } dP3, with an understanding
that dP3 is the elementary “volume” in P space, as illustrated in Figure 5. It turns out that
the product of d3o/ dP3 and E is also an invariant quantity. This happens (see Appendix 2)
because changes in E associated with transformations from one Lorentz frame to another
are inversely proportional to changes in the d3o / dP3. The product

d3o

Fi (20)

Tiny = E
is called the invariant differential cross section. Since both E and P have units of energy,
O;np is usually expressed in (mb/GeV?). Sometimes dp (rather than dP) is used in the
definition of the invariant cross section; in that case the units are (mb-c3/GeV?), as in

Figure 6.

Actually, there are several other kinds of differential cross sections which also happen
to be invariant. For example, consider do/dy, where y is rapidity defined by equation
(9). This quantity is invariant because, as was shown by equation (8), the differential
element of rapidity dy is invariant. The same is true for the pseudorﬁpidity distributions of
ultrarelativistic particles, formulated in terms of do/dn. Azimuthal distributions, do/d¢ or
dza/ dédn are also invariant because azimuthal angles are confined to planes perpendicular
to the z axis. The term “invariant differential cross section”, however, usually refers to the
combination of non-invariant quantities defined in equation(20).

Note that the invariant cross section can also be used at non-relativistic energies, where
it can be reduced to the partially integrated quantity (see Appendix 2)

; 1 d%
ol

v = P aTdn (21)

In this equation T" stands for the kinetic energy and Q1 for the solid angle, thus the units
of ¢! . are (mb/ GeV2-str). A good illustration for the use of the above equation at low
energies can be found, for example, in a study of alpha particles and protons emitted from
the Ar + Al reaction at 190 MeV (18), This study revealed that the velocity of the source
of these particles coincided with the velocity of an equilibfated composite system, and not,
for example, with velocities of fission-like fragments. This in turn lead to a discovery that

highly excited composite systems may be unusually large in comparison with stable nuclei.

Returning to equation (20), which can be used at all energies, and combining it with
equation (15), gives
d3o d3o
%inv = 4P,dPydP,[E  dPydPydy




In polar coordinates of the Pz, Py plane this can be written as

d3c
%inv = P dP,dyd
For an azimuthally isotropic system, integration over ¢ angles leads to another partially
integrated quantity
o d*o

Y on Pod Pdy
which has units of (mb/GeV?).

Rapidity first came to be used by particle phyicists approximately twenty years ago,
and has since become increasingly important, as illustrated in Figure 6. This figure displays
the distribution of rapidities of positive kaons produced in proton-proton collisions in the
Intersecting Storage Rings at CERN. Note that by plotting the invariant cross sections as
a function of the difference between the maximum rapidity (essentially, the beam rapidity)
and the rapidity of the detected kaons, y, the data are automatically transformed into the
rest frame of the incident protons. The remarkable overlapping of data points (diamonds,
circles, etc), collected at total beam energies differing by more than a factor of two, would
not be seen if the data were plotted as a function of y in the laboratory frame of reference.
The fact that all points lie on one smooth curve indicates that, at least in the range covered,
the rapidity distribution of the kaons is independent of the total available energy. Rapidity
distributions of other particles, such as pions and anti-protons, also summarized in Reference
(19), follow the same trend.

The authors gratefully acknowledge constructive comments by C. Chasman and R.M.
Sternheimer. This work was supported in part by the U.S. Department of Energy under
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APPENDIX 1: Equivalence of Hyperbolic and Logarithmic Forms of Rapidity

The hyperbolic functions of any variable y are defined as

ey o c_y
sinhy = ———
4 2

ey - e_y
coshy= ——
2
sinh
tanhy = 2
coshy

The definition of rapidity given in equation (9) of the text is equivalent to

sinhy = B2z

because the hyperbolic sine can be expressed by the hyperbolic tangent as

. tanh
sinhy = Z T = Be T = B2z
(1 —tenh?y)z (1 p2)2

Likewise,

coshy = 72
because the hyperbolic cosine can be expressed by the hyperbolic tangent as

B 1 1
coshy = =

(1—tenh®y)?  (1-p2)F

Tz

(1d)

In order to prove the equivalence of the hyperbolic and logarithmic forms of the rapidity

definition, we can add (1d) to (1le) and obtain

coshy + sinhy = v,(1 + B2)

which leads to

= 'YZ(]- & ﬁz)

and consequently to

= i Athe 1, (145
y=In (’72(1+ﬁz)) _ln((l—ﬁg]%) = 2ln(1_ﬁz)
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Note that only positive sign solution was retained in (1f) so that the sign of y is the
same as that of 8,. Also note that in the nonrelativistic approximation y is equal to 3,
because the limit of In(1+ ;) —In(1— 3;) is 28, when B, approaches zero. This is illustrated
in Figure 1.

APPENDIX 2: Invariance of E (g—;’g) and Partially Integrated Cross Sections

The invariance of equation (20) of the text can be shown most easily by writing the
expression completely in terms of invariant quantities. In cylindrical coordinates, (see Figure
5), the “volume element”, dP3 can be expressed as

dP® = P,dP,dP,d¢ (2a)

where

P,=(PZ+ PHY? (2b)

Clearly, P; and d¢ are Lorentz invariant with respect to longitudinal transformations because
they are defined in a plane perpendicular to z axis. Therefore, in cylindrical coordinates we

B ( d3c ) B d3o
dP3)  PidP;d¢dP./E

can write

Note that dP, in the volume element is taken with P; fixed (again see Figure 5). Bj using
equation (15) of the text, we have dP;/E = dy, so thadt

d3c do
E —
(dP3) P,dP,d¢dy (2¢)

As mentioned previously, P;,dP; and d¢ are invariant; dy is invariant by equation (8) of the
text. The invariance of the right side of the above equation demonstrates that the left side
is also invariant under a Lorentz transformation.

Naturally, dP? can also be expressed in spherical coordinates, P, #, and ¢ as shown in
the lower part of Figure 5. In that case

dP® = PdPsin0dod¢

For azimuthally symmetric distributions the above can be integrated over all angles ¢ yield-
ing
dP? = 27 PdP sin 0df
so that in terms of the remaining variables, P and @, one has
' Ed%o
o- —
v 2xPdPsin0do
9 1




This can be further simplified for nonrelativistic particles for which £ = My + T,
where T is the kinetic energy (equal to P%/2Mj) and where T' << Mp:

o Myds  Myd’s

inv ~ 9 PdPsinfdd  PdPdQ

Note that dfl = 27 sinfd@ is the elementary solid angle covering polar angles from 6 to
8 + df. Replacing PdP with MydT leads to Equation (21) of the text,
' d*c
a- —_—
M PdATdL

which is a useful form of the invariant cross section for axially isotropic reactions at low

energies.
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Figure Captions

Figure 1

Dependence of rapidity y and (y — 1) on v/ec.

Figure 2

Frame S’ moving with respect to frame S at velocity vg

Figure 3

Angles are additive but their tangents are not.

Figure 4

Pseudorapidity versus polar angle.

Figure 5

P - space volume elements in rectangular (left), cylindrical (right), and spherical (below)

coordinates.
Figure 6

Invariant production cross sections for positive kaons measured at the ISR for a fixed p; of
0.4 GeV/c, plotted as a function of the rapidity shift in the frame of the incident protons.
The data were summarized from different experiments in Reference 19. The diamonds
correspond to a total energy of the two colliding beams of 23 GeV; squares, 31 GeV;
circles, 45 GeV; and triangles, 53 GeV.
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B=vfc velocity ratio (dimensionless)

~y=(1- )_1/ 2 gamma factor (dimensionless)
mo rest mass (GeV/c?)
My = mgc? ' rest mass energy (GeV)
m = ymy relatavistic mass (GeV/c2)
E =mc? = yMy total energy (GeV)
T=E—My=(y—1)Mp kinetic energy (GeV)
p = ymqv linear momentum (GeV/c)
P =c¢p=pBE = pyMy linear momentum variable (GeV)
PP — B2 - M}

Table 1

Basic Relatavistic Quantities and Relations



