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Many body QCD @ RHIC

If QCD is the “perfect theory”, a serious study of its many body
features is of fundamental interest. Many body QED constitutes a
large part of present day physics

RHIC has ushered in a new era of studies of many body QCD: jet
quenching, perfect fluidity, gluon saturation... unanticipated
connections to other sub-fields in physics

A quantitative understanding demands ultimately no less than
understanding the high energy (many body) structure of hadrons

A lot can be learned from Drell-Yan and other hadron-hadron final
states. Isolating universal structure and precision studies of final
states will require a high luminosity polarized electron-ion collider



The big picture

How do the fundamental constituents of the theory form matter (hadrons) ?
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Absolutely essential but also far from the full story...how can one connect this
to light front dynamics of high energy scattering ?



The hadron as a many body system

How do these many body quark and gluon fluctuations constitute the
Mass, Spin, Flavor of the hadron ?

The additive quark model describes hadron spectroscopy but fails spectacularly
for spin (Jaffe)

Also, is this picture invariant under boosts ?



The big picture

Taking snapshots of the hadron at short “time scales” helps “tease out” the

underlying QCD dynamics H1 and ZEUS
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These configurations are no less “the proton”...
-they are the relevant configurations for high energy hadron/nuclear scattering

Can this approach to hadron structure provide more detailed insight into its many
body, non-perturbative dynamics and help us ultimately construct a “boost invariant
picture?



Gluon saturation: the Regge-Gribov limit

Gribov,Levin,Ryskin
Mueller,Qiu

Large x - bremsstrahlung
linear evolution (DGLAP/BFKL)
-0 In(Q?) / ag In(x) resummation

Small x -gluon recombination

non-linear evolution
(BK/JIMWLK)

Saturation scale Qg(x) - dynamical scale below which
non-linear (“higher twist”) QCD dynamics is dominant

In IMF, occupation # f = 1/ag => hadron is a dense,
many body system




EFT for the Regge-Gribov limit
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What are the right degrees of freedom: classical fields+color sources,
Dipoles+Multipoles, Pomerons+Reggeons, .... are these universal ?

What are their correlations- is there “long range order” ? Are there novel
fixed points in the evolution ?

How does the weak coupling non-pert. dynamics of saturation match onto
intrinsically non-pert. dynamics (Chiral symmetry breaking, Confinement)

| will address a small sub-set of these issues in the Color Glass
Condensate framework of classical fields and color sources



Effective Field Theory on Light Front

Susskind
Bardacki-Halpern

<€ > Galilean sub-group
of 2D Quantum Mechanics
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Large x (P*) modes: static LF (color) sources p?

Small x (k* <<P*) modes: dynamical fields A%
H McLerran, RV

Eg., LF dispersion relation

Mass

CGC: Coarse grained many body EFT on LF
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non-pert. gauge invariant “density matrix”
Wa+[Pl  defined at initial scale A,

RG equations describe evolution of W with x
JIMWLK, BK



Classical field of a large nucleus
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JIMWLK RG evolution for a single nucleus:

A+
= In (_) H OLo (keeping leading log divergences)
Gelis,Lappi,RV (2008)
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JIMWLK eqn.

Jalilian-Marian,lancu,McLerran,Weigert,Leonidov,Kovner 10



Wee parton correlations

Olpl)y = / dp|O[] Wy [p]

Fokker Planck egn: Brownian motion in «diffusion coefficient”
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Inclusive DIS: dipole evolution
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Inclusive DIS: dipole evolution

K

B-JIMWLK eqn. for dipole correlator
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Dipole factorization:
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Resulting closed form eqn. is the Balitsky-Kovchegov eqgn.
Widely used in phenomenological applications



Semi-inclusive DIS: quadrupole evolution
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Dominguez,Marquet,Xiao,Yuan (2011)
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Cannot be further simplified a priori
even in the large N_ limit

(See talks by Mueller, Xiao, Jalilian-Marian)



Universality: Di-jets in p/d-A collisions
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Fundamental ingredients are the universal dipoles and quadrupoles



CGC phenomenology

“State of the art”: running coupling BK eqn
Albacete,Marquet (2010)
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Parameters constrained by i) fits to HERA F2 data
ii) fits to NMC nuclear F2 data

Albacete,Armesto,Milhano,Salgado
Dusling,Gelis,Lappi,RV

In the JIMWLK framework, relies on “dipole factorization”
Is this OK ?



CGC phenomenology

Albacete,Marquet (2010)

d+A: di-hadron data P
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This assumes both Dipole and Quadrupole factorization:

The latter is a no-no (see Dumitru-Jalilian-Marian ; Dominguez et al.)

(] Need to do better for this and other exclusive final states

(Talk by Bowen Xiao)
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Solving the B-JIMWLK hierarchy
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Solving the B-JIMWLK hierarchy

J JIMWLK includes all multiple scattering and leading log evolution in x

] Expectation values of Wilson line correlators at small x
satisfy a Fokker-Planck egn. in functional space Weigert (2000)

J This translates into a hierarchy of equations for n-point
Wilson line correlators

J As is generally the case, Fokker-Planck equations can be
re-expressed as Langevin equations — in this case for Wilson lines

Blaizot,lancu,Weigert
Rummukainen,Weigert

First numerical solutions exist: | will report on recent developments



B-JIMWLK hierarchy: Langevin realization

Numerical evaluation of Wilson line correlators on 2+1-D lattices:

(o). = /D[U] Wy [U] O[] — % S o]
UeW

Langevin egn: Gaussian random variable
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“square root” of JIMWLK kernel “drag”

[ Initial conditions for V’s from the MV model

(] Daughter dipole prescription for running coupling



Numerical results-|
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» Gaussian (MV) initial condition with g2u=0.5 GeV
» Parameters: running coupling frozen at scale p, — results are rather insensitive

> Noep ™ 100 MeV
» Overall normalization ~ 25 mb (consistent with other studies)



Numerical results-Il

JIMWLK evolution —
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Gaussian (MV) initial condition with g2u=0.5 GeV

Parameters: running coupling frozen at scale p, — results are rather insensitive
Naco ™ 100 MeV

Overall normalization ~ 25 mb (consistent with other studies)



Numerical results-IlI

Lappi,Schenke,RV
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Dipole factorization quite a good approximation in line with Rummukainen-Weigert
result for fixed coupling



Numerical results-1V

Lappi,Schenke,RV

How about the quantity S, containing quadrupoles that appear
in di-hadron correlations ?

0.4 . . . | —
035 | Sg — | initial —_—
63 i Factorized =~ - &£ 08 |[Ay=45 —
' Difference — =
0.25 | 3 o6
0.2 | PRELIMINARY { &
015 WKLY S 04
01 | \ 3
0.05 | / & 0.2
0 0
-0.05 - - - - ——
0 1 2 3 4 5 0 02 04 06 08 1 12 14
2 2
g ur g ur

Violations large for large r and for large Y
(i.e., when saturation effects are important) — confirming analytical estimates



Outlook - |

** The JIMWLK hierarchy contains non-trivial “many body” correlations
-these are now being explored using numerical and analytical techniques

** It is likely that they could be inferred (given sufficient precision) from
experiments thereby providing key insight into QCD many body dynamics
in the Regge-Gribov limit

¢ There are many open questions that hopefully will be resolved in the
next decade, such as i) NLL corrections, ii) matching to OPE based analyses
at larger x and Q2



Outlook - Il

¢ A particularly compelling open issue is the treatment of impact parameter
dependence in the EFT

** It provides the interface between non-perturbative weak coupling
dynamics and fundamental features of the theory such as chiral symmetry
breaking and confinement...eg., a dynamical understanding of the Froissart

bound

** An EIC is powerful machine to address these issues by looking at a range
of exclusive final states



