
Gluon TMDs at Small x

Bo-Wen Xiao

Institute of Particle Physics, Central China Normal University

February 9th, 2016
Emerging Spin and Transverse Momentum Effects in p+p and p+A Collisions

1 / 23



Outline

1 Introduction to TMDs and Saturation Physics

2 Gluon TMDs at small-x

3 TMD evolution and small-x evolution

4 3D Tomography

5 Summary and Outlook

2 / 23



Introduction to TMDs and Saturation Physics

Transverse Momentum Dependent parton distributions

As compared to Feynman PDFs, TMDs contain extra degrees of freedom (k⊥).

Unintegrated Gluon Distributions (UGDs) at small-x also depend on k⊥.

However, TMDs were mainly used in large-x region and often in spin physics.

TMDs (Sudakov type logarithms) and UGDs (Small-x logarithms) evolve differently.

3 / 23



Introduction to TMDs and Saturation Physics

High density QCD

Saturation Phenomenon (Color Glass Condensate)

Gluon Splitting

Gluon Recombination

Resummation of the αs ln 1
x ⇒ BFKL equation. (In DIS, xbj = Q2

s )

When too many gluons squeezed in a confined hadron, gluons start to overlap and
recombine⇒ Non-linear dynamics⇒ BK equation

Introduce the saturation momentum Qs(x) to separate the saturated dense regime x < 10−2

from the dilute regime.
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Gluon TMDs at small-x

A Tale of Two Gluon Distributions1

In small-x physics, two gluon distributions are widely used:[Kharzeev, Kovchegov, Tuchin; 03]
I. Weizsäcker Williams gluon distribution([Kovchegov, Mueller, 98] and MV model):

xGWW(x, k⊥) =
S⊥
π2αs

N2
c − 1
Nc

∫
d2r⊥
(2π)2

e−ik⊥·r⊥

r2
⊥

[
1− e−

r2
⊥Q2

sg
4

]
II. Color Dipole gluon distributions:

xGDP(x, k⊥) =
S⊥Nc

2π2αs
k2
⊥

∫
d2r⊥
(2π)2 e−ik⊥·r⊥e−

r2
⊥Q2

sq
4 ⇐ 1

Nc
Tr
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A tale of two gluon distributions

1As far as I know, the title is due to Y. Kovchegov and C. Dickens.
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Gluon TMDs at small-x

A Tale of Two Gluon Distributions

In terms of operators (known from TMD physics [Bomhof, Mulders and Pijlman, 06]),
two gauge invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsäcker Williams gluon distribution:

xGWW(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions:

xGDP(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

ξ
−

ξT

ξ
−

ξT

U [−] U [+]

Remarks:
The WW gluon distribution is the conventional gluon distributions.
The dipole gluon distribution has no such interpretation.
Two topologically different gauge invariant definitions.
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Gluon TMDs at small-x

A Tale of Two Gluon Distributions

[F. Dominguez, C. Marquet, Xiao and F. Yuan, 11]
I. Weizsäcker Williams gluon distribution

xGWW(x, k⊥) =
2Nc

αS

∫
d2R⊥
(2π)2

d2R′⊥
(2π)2 eiq⊥·(R⊥−R′⊥)

× 1
Nc

〈
Tr [i∂iU(R⊥)] U†(R′⊥)

[
i∂iU(R′⊥)

]
U†(R⊥)

〉
x
.

II. Color Dipole gluon distribution:

xGDP(x, k⊥) =
2Nc

αs

∫
d2R⊥d2R′⊥

(2π)4 eiq⊥·(R⊥−R′⊥)

(
∇R⊥ · ∇R′⊥

) 1
Nc

〈
Tr
[
U (R⊥) U†

(
R′⊥
)]〉

x
,

Quadrupole⇒Weizsäcker Williams gluon distribution;

Dipole⇒ Color Dipole gluon distribution;

Generalized universality in the large Nc limit in ep and pA collisions
⇒ Effective dilute dense factorization.
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Gluon TMDs at small-x

A Tale of Two Gluon Distributions

In terms of operators, we find these two gluon distributions can be defined as follows:
I. Weizsäcker Williams gluon distribution: II. Color Dipole gluon distributions:

k⊥ = 0 k⊥ 6= 0

Questions:

Modified Universality for Gluon Distributions:

Inclusive Single Inc DIS dijet γ +jet g+jet
xGWW × ×

√
×

√

xGDP
√ √

×
√ √

×⇒ Do Not Appear.
√
⇒ Apppear.

Two fundamental gluon distributions which are related to the quadrupole and dipole
amplitudes, respectively.
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Gluon TMDs at small-x

Dijet production in DIS

[L. Zheng, E. Aschenauer, J. H. Lee and BX, 14]
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Remarks:

For back-to-back correlation |k1⊥| ' |k2⊥| � q⊥ = k1⊥ + k2⊥.

Unique golden measurement for the Weizsäcker Williams gluon distributions.

EIC will provide us perfect machines to study gluon fields inside protons/nuclei.
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Gluon TMDs at small-x

DY correlations in pA collisions

[Stasto, BX, Zaslavsky, 12]
2
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`
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FIG. 1: The Drell-Yan scattering process, with several of the momentum variables used in our calculation labeled. pp and
pA are respectively the momenta of the proton and the nucleus from which the gluon was emitted. p� is the momentum of
the virtual photon as reconstructed from the lepton pair, and p⇡ is the measured momentum of the pion. xp and xg are the
longitudinal momentum fractions of the quark relative to the proton and the gluon relative to the nucleon, z = p+

� /q+ is the
fraction of total momentum taken by the photon, and z2 = p+

⇡ /k+
q is the fraction of the momentum of the quark jet that is

carried by the pion.

be written in the color dipole model as a convolution of the photon wave function and the dipole-proton scattering

amplitude. In the GBW model, the dipole scattering amplitude is parametrized as S
(2)
GBW(r?) = exp

h
� r2

?Q2
s

4

i
with

r? being the transverse size of the qq̄ dipole. The geometrical scaling property means that if one writes Q2
s(x) =

Q2
s0(x/x0)

�� with Qs0 = 1 GeV, x0 = 3.04 ⇥ 10�3 and � = 0.288 [22], the DIS total cross section only depends

on one single variable ⌧ = Q2

Q2
s(x) , instead of the variables x and Q2 separately. Although the geometric scaling was

originally found in DIS on proton targets, it can be generalized to pA collisions as well [23]. One can write the

saturation momentum scale QsA for target nuclei with mass number A as Q2
sA(x) = Q2

s0A
1
3 c(b)(x/x0)

��, where c(b)
is the profile function which depends on the impact parameter b. This profile function is related to the centrality of
the pA (or dA) collisions. Central collisions give large values of c(b), while the peripheral collisions correspond to
small values of the profile function.

In the second approach, we numerically solve the small-x evolution equation for the dipole amplitude, namely the
Balitsky-Kovchegov (BK) equation [24, 25], using both fixed and running couplings. From these numerical solutions
we then obtain the dipole gluon distribution in each case. We will discuss the implementation of this approach later
in more detail.

Comparing to the dihadron (or dijet) correlations in pA processes, the Drell-Yan type correlation contains a unique
feature on the away side. This correlation has a double-peak structure in the away side while other correlation functions
exhibit a single peak structure. This di↵erence comes from the fact that the dipole gluon distribution and the cross
section both vanish when the transverse momentum of the gluon goes to zero. This leads to a vanishing partonic cross
section when the produced virtual photon and quark are completely back-to-back. With the fragmentation e↵ect
which turns the quark into a pion (⇡0), this e↵ect gets smeared a little bit and becomes less visible. Nevertheless,
taking into account the fragmentation, we find that the correlation has a minimum at �� = ⇡ and possesses a
two-peak structure.

The rest of the paper is organized as follows. In Sec. II, we discuss the cross section of the Drell-Yan process with
associated hadron in pA collisions and define the correlation function by dividing the single inclusive cross section
of the DY process. We discuss the parametrization of the dipole gluon distributions in terms of di↵erent models in
Sec. III. The numerical results and further discussions on the future experiments are given in Sec. IV. In Sec. V, we
conclude and summarize.

II. DRELL-YAN LEPTON PAIR - HADRON CORRELATIONS

In the small-x regime, the Drell-Yan lepton pair production processes is dominated by the qg ! q�⇤ channel at the
partonic level. Here the gluon g, in fact, can be regarded as a group of soft gluons from the dense nucleus target. The
virtual photon then decays into a lepton pair and the quark fragments into a cluster of hadrons. We are interested
in the correlation between the lepton pair and the hadron, say ⇡0, which is a product of the fragmentation from the
quark in the process pA ! `¯̀⇡0X. It is shown schematically in figure 1.

The cross section d�pA!�⇤⇡0X

dP.S. , which measures the probability of producing a virtual photon with an invariant
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M = 0.5, 4GeV, Y = 2.5 at RHIC dAu.

Partonic cross section vanishes at π⇒ Dip at π.

Sudakov factorization may change the double peak structure.

Prompt photon calculation [J. Jalilian-Marian, A. Rezaeian, 12].
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Gluon TMDs at small-x

Dihadron correlations in dAu collisions

C(∆φ) =

∫
|p1⊥|,|p2⊥|

dσpA→h1h2

dy1dy2d2p1⊥d2p2⊥∫
|p1⊥|

dσpA→h1

dy1d2p1⊥

JdA =
1
〈Ncoll〉

σpair
dA /σdA

σpair
pp /σpp

Forward di-hadron angular correlations in RHIC dAu data
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Quadrupole operator

CGC calculation by C. Marquet (Nucl.Phys. A796 (2007)):

d⇥

d2kTd2qTdyqdyk
⇥ xq(x , µ2)

⇤
d2x

(2�)2
d2x ⇤

(2�)2
d2b

(2�)2
d2b⇤

(2�)2
e ikT (x ��x)e iqT (b��b)

|⇤q⇥qg (x � b, x ⇤ � b⇤)|2
⌅

S (6) � S (3) � S (3) + S (2)
⇧

Dihadron production cross section depends on six-point function

S (6)(b, x , x ⇤, b⇤) = Q(b, b⇤, x ⇤, x)S(x , x ⇤) + O
�

1

N2
c

⇥
,

where Q is a correlator of 4 Wilson lines

Q(b, b⇤, x ⇤, x) =
1

N2
c

⇤Tr U(b)U†(b⇤)U(x ⇤)U†(x)⌅

Heikki Mäntysaari (JYFL) Azimuthal angle correlations 31.5.2012 6 / 15

Quadrupole operator

Comparison with full JIMWLK evolution (see talk by T. Lappi)
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T. Lappi et al. 1108.4764

Gaussian approximation is accurate, Naive Large-Nc is not.
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Quadrupole operator

Comparison with full JIMWLK evolution (see talk by T. Lappi)
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Results: Coincidence probability

Preliminary numerical results
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Gaussian large-Nc approximation

IC: MV� , Q2
s = 0.33 GeV2, data: PHENIX [1105.5112]
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Preliminary results by 

T Lappi and H. Mantysaari 

Hard Probes ’12

21
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dAuJ

Comparing to STAR and PHENIX data

Physics predicted by [C. Marquet, 09].

Further calculated in [Marquet, Albacete, 10; Stasto, BX, Yuan, 11]

Physical picture: de-correlation of dijets due to dense gluonic matter.
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TMD evolution and small-x evolution

Evolutions: TMDs vs UGDs

Evolutions are effectively resumming large logarithms:

TMDs evolve with the CSS equation which resums Sudakov logarithms[
αsCR

2π
ln2 Q2

k2
⊥

]n

+ · · · , with Q2 � k2
⊥

UGDs follow the small-x evolution equations, such as BK or JIMWLK which resums[
αsNc

2π
ln

1
x

]n

, with x =
Q2

s
� 1

Question: What happens when s� Q2 � k2
⊥?
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TMD evolution and small-x evolution

Gedanken experiment: Higgs production in pA collisions

[A. Mueller, BX and F. Yuan, 12, 13] The effective Lagrangian:

Leff = −1
4

gφΦFa
µνFaµν

· · ·

dσ(LO)

dyd2k⊥
= σ0

∫
d2x⊥d2x′⊥

(2π)2 eik⊥·(x⊥−x′⊥)xgp(x)SWW
Y (x⊥, x

′
⊥) ,

SWW
Y (x⊥, y⊥) = −

〈
Tr
[
∂β⊥U(x⊥)U†(y⊥)∂β⊥U(y⊥)U†(x⊥)

]〉
Y

Only initial state interaction is present. ⇒WW gluon distribution.
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TMD evolution and small-x evolution

Some Technical Details

[A. Mueller, BX and F. Yuan, 12, 13] Typical diagrams:

(a) (b1) (b2)

x⊥

b⊥ x⊥x⊥

b⊥b⊥
v⊥ v⊥

High energy limit s→∞ and M2 � k2
⊥. Use dimensional regularization.

Power counting analysis: take the leading power contribution in terms of k2
⊥

M2 .
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TMD evolution and small-x evolution

Some Technical Details

[A. Mueller, BX and F. Yuan, 12, 13]

(a) (b1) (b2)

x⊥

b⊥ x⊥x⊥

b⊥b⊥
v⊥ v⊥

The phase space (l+, l−, l⊥) of the radiated gluon can be divided into three regions:
(a) gluon is collinear to the incoming proton. ⇒ DGLAP evolution.

Subtraction of the collinear divergence and choose µ2 =
c2

0
R2
⊥

:

−1
ε

SWW(x⊥, y⊥)Pgg(ξ)⊗ xg
(

x,
c2

0

R2
⊥

)
with ξ =

l+

p+

(b) gluon is collinear to the incoming nucleus. ⇒ Small-x evolution.
Subtraction of the rapidity divergence: ⇒ non-linear small-x evolution equation

xgp(x)

∫ 1

0

dξ
ξ

∫
KDMMX ⊗ SWW(x⊥, y⊥)

(c) gluon is soft. ⇒ Sudakov logarithms.
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TMD evolution and small-x evolution

Separation of the small-x logarithm and Sudakov logarithms

(a) (b1) (b2)

x⊥

b⊥ x⊥x⊥

b⊥b⊥
v⊥ v⊥

Consider the kinematic constraint for real emission before taking s→∞, and note that
xgxps = M2 ∫ 1

l2⊥
xps

dξ
ξ

= ln
(

xps
l2
⊥

)
= ln

1
xg

+ ln
M2

l2
⊥
.

Now we can take s→∞ and xg → 0, but keep xgxps = M2.

The Sudakov contribution gives

µ2ε
∫

d2−2εl⊥
(2π)2−2ε e−il⊥·R⊥ 1

l2
⊥

ln
M2

l2
⊥

=
1

4π

[
1
ε2 −

1
ε

ln
M2

µ2 +
1
2

(
ln

M2

µ2

)2

− 1
2

(
ln

M2R2
⊥

c2
0

)2

− π2

12

]
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TMD evolution and small-x evolution

Sudakov factor

Final results:
At one-loop order: R⊥ ≡ x⊥ − x′⊥

dσ(1-Loop)

σ0dyd2k⊥
=

∫
d2x⊥d2x′⊥

(2π)2 eik⊥·R⊥xgp(x, µ2 = c2
0/R2
⊥)SWW

Y=ln 1/xg (x⊥, x
′
⊥)

×
[

1 +
αs

π
Nc

(
−1

2
ln2 M2R2

⊥
c2

0
+ β0 ln

M2R2
⊥

c2
0

+
π2

2

)]
.

Collins-Soper-Sterman evolution:

dσ(resum)

dyd2k⊥
|k⊥�M = σ0

∫
d2x⊥d2x′⊥

(2π)2 eik⊥·R⊥e−Ssud(M2,R2
⊥)SWW

Y=ln 1/xg (x⊥, x
′
⊥)

×xpgp(xp, µ
2 =

c2
0

R2
⊥

)

[
1 +

αs

π

π2

2
Nc

]
,

where the Sudakov form factor contains all order resummation

Ssud(M2,R2
⊥) =

∫ M2

c2
0/R2
⊥

dµ2

µ2

[
A ln

M2

µ2 + B
]
.

A =
∞∑
i=1

A(i) (αs
π

)i, we find A(1) = Nc and B(1) = −β0Nc.
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TMD evolution and small-x evolution

Sudakov resummation in saturation formalism

One-loop Calculation for Higgs, Heavy-Quarkonium and Dijet processes⇒ Sudakov factor in
saturation physics. [A. Mueller, BX and F. Yuan, 13; P. Sun, J. Qiu, BX, F. Yuan, 13]

Multiple scales problem. k2
⊥ � Q2 ∼ M2 � s.

Joint Small-x
[
αsNc

2π ln 1
x

]n resummation and Sudakov factor
[
αsCR

2π ln2 Q2

k2
⊥

]n
resummation.

[Balitsky, Tarasov, 14] Starting from the same operator definition, xGWW:
TMD (moderate x ∼ Q2

s ) and W.W. (small-x, high energy with fixed Q2).
Unified description of the TMD and small-x UGD.

[Marzani, 15] QT resummation and small-x resummation.

Evolution depends on the necessity.
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3D Tomography

3D Tomography of Proton

The bigger picture:

Figure 2.2: Connections between di↵erent quantities describing the distribution of partons
inside the proton. The functions given here are for unpolarized partons in an unpolarized proton;
analogous relations hold for polarized quantities.

tum, and specific TMDs and GPDs quan-
tify the orbital angular momentum carried
by partons in di↵erent ways.

The theoretical framework we have
sketched is valid over a wide range of mo-
mentum fractions x, connecting in particular
the region of valence quarks with the one of
gluons and the quark sea. While the present
chapter is focused on the nucleon, the con-
cept of parton distributions is well adapted
to study the dynamics of partons in nuclei, as
we will see in Sec. 3.3. For the regime of small
x, which is probed in collisions at the highest
energies, a di↵erent theoretical description is
at our disposal. Rather than parton distribu-
tions, a basic quantity in this approach is the
amplitude for the scattering of a color dipole
on a proton or a nucleus. The joint distri-
bution of gluons in x and in kT or bT can
be derived from this dipole amplitude. This
high-energy approach is essential for address-
ing the physics of high parton densities and
of parton saturation, as discussed in Sec. 3.2.
On the other hand, in a regime of moder-
ate x, around 10�3 for the proton and higher

for heavy nuclei, the theoretical descriptions
based on either parton distributions or color
dipoles are both applicable and can be re-
lated to each other. This will provide us with
valuable flexibility for interpreting data in a
wide kinematic regime.

The following sections highlight the
physics opportunities in measuring PDFs,
TMDs and GPDs to map out the quark-
gluon structure of the proton at the EIC.
An essential feature throughout will be the
broad reach of the EIC in the kinematic
plane of the Bjorken variable x (see the Side-
bar on page 18) and the invariant momentum
transfer Q2 to the electron. While x deter-
mines the momentum fraction of the partons
probed, Q2 specifies the scale at which the
partons are resolved. Wide coverage in x
is hence essential for going from the valence
quark regime deep into the region of gluons
and sea quarks, whereas a large lever arm in
Q2 is the key for unraveling the information
contained in the scale evolution of parton dis-
tributions.

17

In small-x physics (color glass condensate), we use different objects: dipole, quadrupole.
Dipole, quadrupole⇒ Unintegrated Gluon Distributions (UGDs) at small-x.
Impact parameter b⊥ dependent UGDs⇔ gluon Wigner distributions? [Ji, 03]
Can we measure the gluon Wigner distribution at small-x? Yes, we can!
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The exact connection between dipole amplitude and Wigner distribution

[Hatta, Xiao, Yuan, 16] Definition of gluon Wigner distribution:

xWT
g (x,~q⊥;~b⊥) =

∫
dξ−d2ξ⊥
(2π)3P+

∫
d2∆⊥
(2π)2 e−ixP+ξ−−iq⊥·ξ⊥

×
〈

P +
∆⊥

2

∣∣∣∣F+i
(
~b⊥ +

ξ

2

)
F+i

(
~b⊥ −

ξ

2

)∣∣∣∣P− ∆⊥
2

〉
,

Let us choose proper gauge link and define GTMD [Meissner, A. Metz and M. Schlegel, 09]

xG(x, q⊥,∆⊥) ≡
∫

d2b⊥e−i∆·b⊥xWT
g (x,~q⊥;~b⊥).

With one choice of gauge link (dipole like) and b⊥ = 1
2 (R⊥ + R′⊥), we demonstrate

xGDP(x, q⊥,∆⊥) =
2Nc

αs

∫
d2R⊥d2R′⊥

(2π)4 eiq⊥·(R⊥−R′⊥)+i
∆⊥

2 ·(R⊥+R′⊥)

×
(
∇R⊥ · ∇R′⊥

) 1
Nc

〈
Tr
[
U (R⊥) U†

(
R′⊥
)]〉

x
.

∫
d2∆⊥xGDP(x, q⊥,∆⊥)⇒ TMD;

∫
d2q⊥xGDP(x, q⊥,∆⊥)⇒ GPD at small-x.
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Angular correlations

N = 1− 1
Nc

〈
Tr
[
U (R⊥) U†

(
R′⊥
)]〉
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Figure 8: The amplitude N(r, b, θ;Y ) as a function of impact parameter b for two rapidities:
Y = 2 (left) and Y = 8 (right). The dipole size is fixed to r = 20. The solid blue line
corresponds to the case r ||b, and for the dashed blue line r ⊥ b. The red-dotted line is
the input distribution (14) with (15).

In Fig. 8 we plot N(r, b, θ;Y ) as a function of b for a large dipole with r = 20. Two
rapidities were considered. In both cases we have compared calculation with r ||b, solid
line, and r ⊥ b, dashed line (together with the input distribution, dotted line). The
calculation with parallel orientation shows a characteristic peak at b = r

2 . This corresponds
to the situation when one end of the dipole, x, is situated in the center of the target where
the field is strong ⟨U(x)⟩ ≈ 0 and the other end, y, is located in the area where the field
is very weak U(y) ≈ 1. Thus the amplitude N =

〈
1 − U †(x)U(y)

〉
/Nc ≃ 1. On the other

hand the large dipole perpendicular to the impact parameter axis has both ends in the
region where the field is not so strong and therefore N(x,y)⊥ < N(x,y)||.

5.3 Black disc radius and unitarity bound

The black disc radius RBD(r, Y ) defines the region in the impact parameter space where
the amplitude N saturates (for a given dipole size r and rapidity Y ). It is defined as the
solution of the equation

⟨ N(r, b = RBD, θ, Y ) ⟩θ = κ , (24)

with respect to the impact parameter b. As before in Sec. 4.1 in our analysis we choose
κ = 1/2 and average over the angle θ. Thus the black disc radius is a function of the
dipole size and rapidity.

The expansion of the black disc area with increasing Y is very important for the
behaviour of the total dipole-nucleus cross section with energy s ∼ s0e

Y ,

σ(r, Y ) = 2

∫
d2bN(r,b, Y ) . (25)

15

[Golec-Biernat, Stasto, 03] b = 1
2 (R′⊥ + R⊥) and r = R′⊥ − R⊥

Solving BK equation with impact parameter. (Need to improve our saturation models).

Non-trivial angular correlation between b and r.

In Wigner distribution, Non-trivial angular correlation between ∆⊥ and q⊥.
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Probing 3D Tomography of Proton at small-x

Diffractive back-to-back dijet productions:

−q⊥ − ∆⊥
2q⊥ − ∆⊥

2

p p′

k1

k2

k1

k2

p

p′

−q⊥ + ∆⊥q⊥

k3

k4

Measure final state proton recoil ∆⊥ as well as dijet momentum k1⊥ and k2⊥.

We can obtain xGDP(x, q⊥,∆⊥) directly since q⊥ ' P⊥ ≡ 1
2 (k2⊥ − k1⊥)� ∆⊥.

By measuring 〈cos 2 (φP⊥ − φ∆⊥)〉, we can learn more about the low-x dynamics.

WW Wigner (WWW) distribution can be also defined and measured.

Linearly polarized Wigner distribution, etc. This is only the beginning.
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Summary

Figure 2.2: Connections between di↵erent quantities describing the distribution of partons
inside the proton. The functions given here are for unpolarized partons in an unpolarized proton;
analogous relations hold for polarized quantities.

tum, and specific TMDs and GPDs quan-
tify the orbital angular momentum carried
by partons in di↵erent ways.

The theoretical framework we have
sketched is valid over a wide range of mo-
mentum fractions x, connecting in particular
the region of valence quarks with the one of
gluons and the quark sea. While the present
chapter is focused on the nucleon, the con-
cept of parton distributions is well adapted
to study the dynamics of partons in nuclei, as
we will see in Sec. 3.3. For the regime of small
x, which is probed in collisions at the highest
energies, a di↵erent theoretical description is
at our disposal. Rather than parton distribu-
tions, a basic quantity in this approach is the
amplitude for the scattering of a color dipole
on a proton or a nucleus. The joint distri-
bution of gluons in x and in kT or bT can
be derived from this dipole amplitude. This
high-energy approach is essential for address-
ing the physics of high parton densities and
of parton saturation, as discussed in Sec. 3.2.
On the other hand, in a regime of moder-
ate x, around 10�3 for the proton and higher

for heavy nuclei, the theoretical descriptions
based on either parton distributions or color
dipoles are both applicable and can be re-
lated to each other. This will provide us with
valuable flexibility for interpreting data in a
wide kinematic regime.

The following sections highlight the
physics opportunities in measuring PDFs,
TMDs and GPDs to map out the quark-
gluon structure of the proton at the EIC.
An essential feature throughout will be the
broad reach of the EIC in the kinematic
plane of the Bjorken variable x (see the Side-
bar on page 18) and the invariant momentum
transfer Q2 to the electron. While x deter-
mines the momentum fraction of the partons
probed, Q2 specifies the scale at which the
partons are resolved. Wide coverage in x
is hence essential for going from the valence
quark regime deep into the region of gluons
and sea quarks, whereas a large lever arm in
Q2 is the key for unraveling the information
contained in the scale evolution of parton dis-
tributions.

17

Towards unification of TMD physics and small-x physics (Definition and Evolution).

Wigner distributions at small-x can be computed and measured.

Gluon saturation could be the next interesting discovery in the near future.
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