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Transverse Momentum Dependent parton distributions
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@ As compared to Feynman PDFs, TMDs contain extra degrees of freedom (k. ).
@ Unintegrated Gluon Distributions (UGDs) at small-x also depend on k| .

@ However, TMDs were mainly used in large-x region and often in spin physics.
e TMDs (Sudakov type logarithms) and UGDs (Small-x logarithms) evolve differently,




Introduction to TMDs and Saturation Physics

High density QCD

Saturation Phenomenon (Color Glass Condensate)
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Gluon Recombination
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@ Resummation of the oy In % = BFKL equation. (In DIS, x;; = QZ)

@ When too many gluons squeezed in a confined hadron, gluons start to overlap and
recombine = Non-linear dynamics = BK equation

e Introduce the saturation momentum Q, (x) to separate the saturated dense regime x < 10->
from the dilute regime.
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Gluon TMDs at small-x

A Tale of Two Gluon Distributions!

In small-x physics, two gluon distributions are widely used:[Kharzeev, Kovchegov, Tuchin; 03]
I. Weizsacker Williams gluon distribution([Kovchegov, Mueller, 98] and MV model):

S.N =1 [ dry e—hire {1 A%
e

G k = T
X WW(X, J.) 7T2045 N, (27.()2 ri
IL. Color Dipole gluon distributions:
SiNe s [ dre ., A | ;
k = k 1Ty T L [ 0 ]
xGop(x, k1) 22, L/(zﬂye e = N U(r ) )U(01)

Atdleof two gluon distributions

XG(xa.)

00 05 10 15 20 25 30
o

3

'As far as know, the title is due to Y. Kovchegov and C. Dickens.



Gluon TMDs at small-x

A Tale of Two Gluon Distributions

In terms of operators (known from TMD physics [Bomhof, Mulders and Pijlman, 06]),
two gauge invariant gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
1. Weizsacker Williams gluon distribution:

2Gww (x, k1) =2 / glzgﬂfﬁie’”’“ TPl e)UTTTET U P).

II. Color Dipole gluon distributions:

XGDP(X, kl) = 2/ gﬂ)iﬁi ezxp+§ —iky &1 Tr<P|F+i(€77gL)u[*]TFH(O)u[H |P>

Ul Ut
Remarks:
@ The WW gluon distribution is the conventional gluon distributions.
@ The dipole gluon distribution has no such interpretation.

@ Two topologically different gauge invariant definitions.




Gluon TMDs at small-x

A Tale of Two Gluon Distributions

[F. Dominguez, C. Marquet, Xiao and F. Yuan, 11]
I. Weizsacker Williams gluon distribution
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IL. Color Dipole gluon distribution:
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@ Quadrupole = Weizsacker Williams gluon distribution;

xGDp (x, kL =

@ Dipole = Color Dipole gluon distribution;

@ Generalized universality in the large N, limit in ep and pA collisions
= Effective dilute dense factorization.




Gluon TMDs at small-x

A Tale of Two Gluon Distributions

In terms of operators, we find these two gluon distributions can be defined as follows:
I. Weizsacker Williams gluon distribution:  II. Color Dipole gluon distributions:

k=0 kA0

Questions:

@ Modified Universality for Gluon Distributions:

Inclusive | Single Inc | DIS dijet | v +jet | g+jet
xGww X X Vv X Vv
xGpp v v X v v

x = Do Not Appear. v/ = Apppear.

@ Two fundamental gluon distributions which are related to the quadrupole and dipole
amplitudes, respectively.




Gluon TMDs at small-x

Dijet production in DIS

[L. Zheng, E. Aschenauer, J. H. Lee and BX, 14]
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Remarks:
@ For back-to-back correlation |k 1 | =~ ka1 | > g1 = ki + koo

o Unique golden measurement for the Weizsacker Williams gluon distributions.

e EIC will provide us perfect machines to study gluon fields inside protons/nuclei.
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DY correlations in pA collisions

[Stasto, BX, Zaslavsky, 12]
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M =0.5,4GeV, Y = 2.5 at RHIC dAu.
@ Partonic cross section vanishes at 7 = Dip at 7.

o Sudakov factorization may change the double peak structure.

@ Prompt photon calculation [J. Jalilian-Marian, A. Rezaeian, 12].
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Gluon TMDs at small-x

Dihadron correlations in dAu collisions
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Comparing to STAR and PHENIX data

@ Physics predicted by [C. Marquet, 09].
@ Further calculated in [Marquet, Albacete, 10; Stasto, BX, Yuan, 11]

@ Physical picture: de-correlation of dijets due to dense gluonic matter.




TMD evolution and small-x evolution

Evolutions: TMDs vs UGDs

Evolutions are effectively resumming large logarithms:

@ TMDs evolve with the CSS equation which resums Sudakov logarithms

aCr 2 0*]" . 2 2
|:27|' IHE + with Q>>/<L

@ UGDs follow the small-x evolution equations, such as BK or IMWLK which resums

n 2
{ach n 1} 7 0

with x= =<1
2 s

® Question: What happens when s > Q% > k3 ?




TMD evolution and small-x evolution

Gedanken experiment: Higgs production in pA collisions

[A. Mueller, BX and F. Yuan, 12, 13] The effective Lagrangian:

1
;Cgﬁ = —Zg¢q)FZVFaHV

- — =

Multiple gluon
exchanges

M= e () S (e, XL )
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@ Only initial state interaction is present. = WW gluon distribution.
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TMD evolution and small-x evolution

Some Technical Details

[A. Mueller, BX and F. Yuan, 12, 13] Typical diagrams:

@ High energy limit s — oo and M> > k% .  Use dimensional regularization.

. . . PP K>
@ Power counting analysis: take the leading power contribution in terms of 7.




TMD evolution and small-x evolution

Some Technical Details

[A. Mueller, BX and F. Yuan, 12, 13]

The phase space (I*,17,1, ) of the radiated gluon can be divided into three regions:
@ (a) gluon is collinear to the incoming proton. = DGLAP evolution.
Subtraction of the collinear divergence and choose > = ]%
e ey )P (6) ®xg DY) i e- L
. X1,Y1)Fge % X8 xRz 7P+

€L

@ (b) gluon is collinear to the incoming nucleus. = Small-x evolution.
Subtraction of the rapidity divergence: = non-linear small-x evolution equation

1
xgp(x)/o %/KDMMX(@SWW(M_JL)

@ (c) gluon is soft. = Sudakov logarithms.



TMD evolution and small-x evolution

Separation of the small-x logarithm and Sudakov logarithms
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@ Consider the kinematic constraint for real emission before taking s — oo, and note that
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o Now we can take s — oo and x; — 0, but keep x,x,s = M>.

@ The Sudakov contribution gives
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TMD evolution and small-x evolution

Sudakov factor

Final results:
@ Atone-loop order: Ry =x; — x|
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where the Sudakov form factor contains all order resummation

M? 2 2
Ssud(Mz,Ri):/ dz {Al %JFB}
L‘%/R2 12 /'L

0 A=3AD (2 wefind AV = N, and BV = — N

i=1



TMD evolution and small-x evolution

Sudakov resummation in saturation formalism

One-loop Calculation for Higgs, Heavy-Quarkonium and Dijet processes = Sudakov factor in
saturation physics. [A. Mueller, BX and F. Yuan, 13; P. Sun, J. Qiu, BX, F. Yuan, 13]

evolution
equation

In @2

non-perturbative region ag~1

In x

e Multiple scales problem. k% < Q% ~ M* < .

. n . - , > 021" .
o Joint Small-x [%2 In 1]" resummation and Sudakov factor {”2# In? AQ—} resummation.

o [Balitsky, Tarasov, 14] Starting from the same operator definition, xGww:

TMD (moderate x ~ QT_Z) and W.W. (small-x, high energy with fixed Q?).
Unified description of the TMD and small-x UGD.

@ [Marzani, 15] Qr resummation and small-x resummation.

@ Evolution depends on the necessity.
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3D Tomo

3D Tomography of Proton

The bigger picture:
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Impact parameter b | dependent UGDs <> gluon Wigner distributions? [Ji, 03]

£=0
H (I,O,;) t = =
t=-A generalized parton
distributions (GPDs)
exclusive processes
\ |
f-ix f dxx"!
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elastic scattering factors

lattice calculations

In small-x physics (color glass condensate), we use different objects: dipole, quadrupole.
Dipole, quadrupole = Unintegrated Gluon Distributions (UGDs) at small-x.

Can we measure the gluon Wigner distribution at small-x? Yes, we can!
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3D Tomography

The exact connection between dipole amplitude and Wigner distribution

[Hatta, Xiao, Yuan, 16] Definition of gluon Wigner distribution:

R de=d*¢) [ dPAL _ppte—_ig, .
W (x,G1;b1) = /7(277)3P+/(27T)26 PreT Lty
Ay vifz €N i € AL
X <P+ F (m+2 FP'{bi—3)|P==),

Let us choose proper gauge link and define GTMD [Meissner, A. Metz and M. Schlegel, 09]

xG(x,q1, A1) = /dzble_iA'beW;(x,Ej'J_;EJ_).

@ With one choice of gauge link (dipole like) and b, = 3 (R, + R’ ), we demonstrate
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xGDp(x,qL,AL =

X

) fdzAJ_xGDp(x, qu1, AJ_) = TMD; fdqu_)CGDP()C7 q., AJ_) = GPD at small-x.



Angular correlations

IS

N(r,b,0;Y)

Y=2.0
02f =20

05 . = ol . .
10 1 10 b 10 1 10 b

[Golec-Biernat, Stasto, 03] b = % (R +Ry)andr=R| — R,

@ Solving BK equation with impact parameter. (Need to improve our saturation models)
o Non-trivial angular correlation between b and r.

o In Wigner distribution, Non-trivial angular correlation between A and g .
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Probing 3D Tomography of Proton at small-x

Diffractive back-to-back dijet productions:

Measure final state proton recoil A | as well as dijet momentum k; and k5 .

We can obtain xGpp (x, g1, A1) directly since g1 ~ P, = §(kor —kiL) > AL

WW Wigner (WWW) distribution can be also defined and measured.

°
°
@ By measuring (cos2 (¢p, — ¢, )), we can learn more about the low-x dynamics.
°
o Linearly polarized Wigner distribution, etc. This is only the beginning.




Summary
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lattice calculations
@ Towards unification of TMD physics and small-x physics (Definition and Evolution).
@ Wigner distributions at small-x can be computed and measured.

@ Gluon saturation could be the next interesting discovery in the near future.
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