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Abstract. Physics and programming aspects are discussed for a Fortran
77 Monte Carlo program to simulate complete events in deep inelastic lepton-
nucleon scattering. The parton level interaction is based on the standard
model electroweak cross sections, which are fully implemented in leading or-
der for any lepton of arbitrary polarization, and different parametrizations
of parton density functions can be used. First order QCD matrix elements
for gluon radiation and boson-gluon fusion are implemented and higher order
QCD radiation is treated using parton showers. Hadronization is performed
using the Lund string model, implemented in JETSET/PYTHIA. Rapidity gap
events are generated through a model based on soft colour interactions.

1 Introduction

Deep inelastic lepton-nucleon scattering [1] has played an important role for probing the
structure of the proton and understanding the fundamental electromagnetic, weak and
strong interactions at the level of quarks and leptons. With the order of magnitude
increase in the centre-of-mass energy now available through ep collisions in HERA, this
line of research will continue to be at the forefront.

The basic lepton-quark scattering processes have well-defined cross section formulae
within the electroweak standard model [2]. With the inclusion of parton density distri-
butions and perturbative QCD corrections the problem of practical evaluations become
quite complex and analytical calculations are only possible in simplified cases or through
approximations. Normal numerical methods are in many cases possible, but Monte Carlo
simulation is often preferable because of its generality and applicability to complex prob-
lems. In the case of the multiparticle hadronic final state, the only viable alternative is,
in fact, the Monte Carlo method.

The present program, LEPTO, is a general and flexible Monte Carlo (MC) to simulate
complete lepton-nucleon scattering events and integrate cross sections. It is based on
the leading order electroweak cross sections for the underlying parton level scattering
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processes. Thus, electroweak radiative corrections are not included, but can be simulated
using the interface DJANGO [3] between LEPTO and HERACLES [4]. The main emphasis
of LEPTO is rather on the hadronic part of the event. QCD corrections are therefore
included using exact first order matrix elements and higher orders in the leading log Q?
parton cascade approach. The fragmentation of produced partons into observable hadrons
is performed with the Lund string hadronization model [5]. An arbitrary configuration
of a lepton and a nucleon can be defined with constraints on the scattering kinematics
and the generated events can be transformed to different frames. The present version is
the latest development in a series of earlier versions [6, 7] that have developed in stages
and profitted greatly by feed-back from extensive comparisons with experimental data on
the hadronic final state in leptoproduction. This has given valuable insights concerning
the QCD processes of gluon radiation and boson-gluon fusion as well as the confinement
induced hadronization of colour charged partons. The generally good agreement between
data, in particular from the European Muon Collaboration and the neutrino experiments
WA21 and WA25 at CERN, and the Monte Carlo shows the validity of the models and
procedures used in the program. This can be illustrated by the results on longitudinal
momentum spectra of different identified hadrons [8], transverse momentum properties,
energy flows and jet structure [9]. The much higher energies available in ep collisions at
HERA provides both qualitative and quantitative new information on QCD effects, such
that detailed tests of MC models are now being performed [10, 11].

In the following a comprehensive description is given of the theoretical framework built
into the program (section 2) as well as the various program components (section 3) and
their usage (section 4).

2 Physics and MC implementation

2.1 Kinematics

The main kinematic relations given here are for the case of electron-proton scattering,
e +p — ¢+ H where ? is the scattered lepton and H the final hadron system, but are
of course equally valid for any lepton beam or a neutron target. Let p., ps be the four-
vectors of the incoming and scattered lepton, respectively, and P that of the incoming
proton. Some basic kinematic relations are then (cf. [12, 13])
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where the ‘>’ sign means that the lepton and nucleon masses are neglected, an approx-
imation which is usually acceptable already at fixed target energies. Nevertheless, exact
formulae are used in the program to avoid unnecessary approximations. Here, /s is the
total invariant mass and W the invariant mass of the hadronic system H. The exchanged
vector boson, v/Z° for neutral current interactions and W= for charged current interac-
tions, carries the momentum transfer Q% and the variable v is the energy of this current in
the target rest frame. Finally, Bjorken-z and y are the convenient dimensionless scaling
variables in the range [0, 1].

For the overall event kinematics there are only two independent variables and hence by
measuring, e.g., the energy (Ey) and angle () of the scattered lepton (here defined with
respect to the incoming electron direction), all other global variables can be calculated.
For theoretical purposes, cross section formulae etc, the variables (z,y) or (z,Q?) are
usually used as the independent ones. No assumption has here been made about the
structure of the proton, or about the final hadronic state. By assuming the quark-parton
model, where the current couples to a quark with four-vector p; = £(E,,0,0, E,) and
assuming the initial and final quark to be massless one finds & = x. The Bjorken-z
variable can then be interpreted as the momentum fraction of the proton which is carried
by the struck quark. However, taking QCD corrections into account this relation no longer
holds [14].

For ep colliders like HERA where the proton beam energy is much larger than the
electron beam energy, the phase space is somewhat special and quite elongated in the
proton beam direction (see Fig. 2 in [12]). Although the events are certainly not evenly
distributed in the available phase space, they are in general very asymmetric, with most
of the final state hadrons in the ‘forward’ direction along the incoming proton.

For most analyses the event kinematics need to be reconstructed. The differential
cross sections, which are the basis of most analyses, are usually needed as functions
of, e.g., v and Q?. The event kinematics can be straightforwardly obtained from the
formulae above if the scattered lepton can be well measured. However, this is not always
the case due to instrumental effects or because it is a neutrino. These problems are
accentuated at ep colliders where the acceptance is limited by the beam pipes and where
charged current interactions give an undetectable neutrino as scattered lepton. This
implies the importance of being able to use the hadronic part of the event to reconstruct
the kinematical variables. In the naive quark-parton model (QPM) the scattered quark
gives the necessary information, but in reality a number of smearing effects enter (QCD
processes, fragmentation, mass effects, jet reconstruction). Considering the hadronic final
state as a single system, whose internal structure is of no importance, and applying energy
momentum conservation between this system and the scattered lepton leads to methods
such as ‘Jacquet-Blondel’ [15, 16], ‘double angle’ [17] and ‘¥’ [18]. These are particularly
suited to ep colliders, since they minimize the effects of particles lost in the beam pipe.

2.2 Electroweak cross sections

In leading order electroweak theory [2] the differential neutral current (NC) cross section
for the scattering of a charged lepton is (neglecting masses) given by

2

PoFin @)+ 0= @)% (- ) aRie @] 0

dQO'Nc(e:F) . 47TOé2

de d@Q?  zQ*




in terms of the nucleon structure functions F}, F,, F5. Two of these are related through
the Callan-Gross relation, 2xF} = F,, which holds for spin 1/2 quarks when neglecting
masses, intrinsic transverse momenta and order a, QCD effects. These effects are usually
negligibly small, except at small-z [19, 20], but can optionally be included (cf. section
2.3). More important for the structure of the electroweak theory is to take the lepton
beam polarization into account. For a left- (L) and right-handed (R) electron one has the
differential cross section
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The structure functions are in the standard parton model given by

Fy(a,q?) = > [za(w, @) + 2q(x, Q"] AP*(@Q) (9)

vF i, q?) = b [zq(x, Q) — xq(x,Q*)] BLF(Q?) (10)

where the sum is over all quark flavours and ¢(g) denote the quark (antiquark) density
distributions in the nucleon (cf. section 2.4). The coefficients are given by

AqL’R(QQ) = eg — 2e4(ve £ ae)vy Py + (ve £ ae)Q(Ug + ag)Pg (11)
BPFHQ*) = F 2e4(ve £ ac)agPy £ 2(ve £ a.)’vga, Py (12)
With f = e, ¢ for any fundamental fermion, e; is here the electric charge (e, = —1),
vy = (Ts;—2e; sin” Oyy) / sin 20y, and a; = Ty / sin 20y are the NC vector and axial vector
couplings expressed in terms of the third component of the weak isospin (73, = —%) and

the Weinberg angle y,. Py is the ratio of the Z and v propagators Py = Q?/(Q* + M2).
The corresponding cross sections for positrons, eJLry r» are obtained from the above electron
formulae, eqs. (8)-(12), by the replacements
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i.e. aleft(right)-handed electron corresponds to a right(left)-handed positron and an addi-
tional sign change in xF3. The cross section for an arbitrarily polarized electron/positron
beam is simply obtained as a linear combination of these pure left- and right-handed cross
sections (cf. [19]).

The pure 7 exchange term, i.e. the one without a P; dependence in eq. (11), dominates
completely at low 9, and the cross section then takes the familiar form measured in fixed
target electron and muon beam experiments

d?o,(ep) 2ma?
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where the electromagnetic structure function is given by

F5™(2, Q%) = Y 2 [vq(x, Q) + 2q(x, Q)] (15)

With increasing Q? first the v/Z° interference term (linear in Pz) and then the pure weak
term (quadratic in Pz) become important and finally dominate the cross section at large
Q?, see e.g. Fig. 3 in [12].



The differential cross sections for charged current (CC) ep interactions are given by
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where V4, are elements of the Kobayashi-Maskawa matrix, u; and d; denote the parton
density functions for the up-type and down-type quark flavours, respectively, and 7, j are
family indices. The e* beam polarization is denoted by A (&1 for a right/left-handed
state). Considering only four massless quark flavours (u,d, s, ¢) and using the unitarity
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Here, G = ma/(v/2sin? Oy, M2,) is the Fermi coupling constant, My, the WW-boson mass
and u denotes the u-quark density u(z, Q?) etc.

The above formulae apply equally well to muon scattering, whereas for neutrino scat-
tering some rearrangements are required. For charged current scattering, eq. (16) apply
for a 7 with A = —1 and eq. (17) for a v with A = +1, giving the results in eq. (18).
For neutral current neutrino scattering a similar correspondence applies, but the electron
electroweak couplings must also be changed to the neutrino ones. Hence, only the pure

Z° contribution remains in eqs. (11,12) with v — Z° vector and axial vector couplings, v,
and a, [21].

When simulating the kinematic variables according to the above differential cross
sections one may choose the two independent variables depending on the process. The
choice z, Q? for NC and z,y for CC is suitable and adopted in the program, but this can
be changed (see LST(1) in common LEPTOU) to other combinations that may improve
effiency, e.g., by better reflecting strong kinematic cuts. The two variables are first chosen
according to a function that can be directly generated without any rejections, i.e. its
primitive function can be obtained and inverted analytically. By chosing this function
to represent the strongest variation of the cross section formulae, the remaining part can
be taken into account by a simple rejection technique whose efficiency will be higher the
smaller the variation in this remaining function. Formally, a function
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is introduced for each variable v = x,y, Q% W? and the cross section is rewritten in the
form (using variables x, Q? as a definite example)

(20)
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where the random variables can be chosen exactly according to the expression in the first
bracket and the remaining factor is used for the weighting procedure. The latter simply
means that the chosen z, Q? point is rejected if it results in a value for the second factor



which is smaller than a random number (uniformly chosen between zero and unity) times
the maximum of that factor with respect to the two variables (z, Q* in this case). Actually,
any estimate larger than the maximum will do, but efficiency improves the closer to the
true maximum it is. This estimate is, however, a constant for any fixed interaction and
kinematic region and can therefore be obtained in the initialization phase of the Monte
Carlo program, see subroutine LINIT. Thus new points are generated using the first factor
until accepted by weighting with the second factor and hence the resulting events, or phase
space points, will have no weight associated with them (or more correctly, they all have
unit weight).

The parameters a; in the functions h, are in the program represented by OPTw(7) in
common LOPTIM and are given process dependent default values in subroutine LINIT
to optimize program speed under normal conditions. This means that the functions h,
reflect the dominant variation of the matrix element from propagators etc. Since this
may change with kinematics, e.g. dominance of pure Z° exchange at very large %, more
optimal values may be found under certain conditions.

In the initialization phase (subroutine LINIT) the simulation variables are defined and
their effective limits calculated from applied cuts. The optimization parameters are set
and the maximum needed for the weighting is found using an adaptation of MINUIT [22].
Further, the total cross section can be obtained at this stage by numerical integration
over the kinematic variables. In the simulation phase, see subroutine LEPTO, phase
space points are chosen from the cross section (in subroutine LEPTOX) as discussed
above. This Monte Carlo sampling is also used to provide an estimate of the cross section
for the process being simulated, see PARL(24) in common LEPTOU. Since the result is
updated with each generated event the accuracy depends on the generated statistics as

~1/V/N.

2.3 Longitudinal structure function

Target mass effects and the longitudinal structure function, defined by
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m
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can be included as an option (see LST(11)) using the formalism for photon exchange. The
cross section in eq. (14) is then modified to [21]
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where all mass effects have been absorbed into F| t which consists of the three terms
Fi(e, Q%) = F""(2,@Q%) + F[M(2,Q%) + F{" (2, Q%) (24)

The QCD contribution (which is leading twist) is to order ay given by [23]
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The first term originates from the gluon radiation diagram and the second one from the
photon-gluon fusion process, where the sum runs over the quark flavours (taken as u, d, s, ¢
in the program). F LQCD gives an important contribution at small-z, where the gluon term
dominates and Fj, may hence be used to extract the gluon distribution [20]. The target
mass correction to O(m?2/Q?) is given by [23, 24]

P
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where also the mass term in eq. (22) has been included. Finally the (dynamical) higher
twist contribution to O(1/Q?) can be written as [24, 23]

2
K
FT (2, Q%) = S@FQ(JT, Q%) (27)
where the scale of this twist-4 contribution is given by the parameter ? (cf. PARL(19))
with a value around 0.03 GeV? obtained [24] from SLAC data.

In the numerical implementation of these equations the evaluation of the integrals in
egs. (25,26) can be performed for each event at its proper x and Q?-value. Since this
tends to be time-consuming another option (see LST(11)) is to initially (in LINIT) set
up a grid in z, Q? with their values and then perform a linear interpolation to the desired
x, Q* when simulating events. The latter method is preferrable and gives almost the same
precision under normal conditions. The inclusion of F}, only affects the distribution in
r,Q?% i.e. eq. (22) and thereby the cross section, but not the generation of the hadronic
part of the event. For the first order QCD matrix element corrections, which are still
generated as usual (cf. section 2.5), this is not fully consistent but should be an adequate
approximation for inclusive properties of the hadronic final state.

2.4 Parton density distributions

To define the parton content of the proton for the cross section formulae above the parton
density functions q(x, Q?), §(z,@?*) and g(z, Q?) are needed. These give the probability to
find a quark or antiquark of specific flavours, or a gluon, respectively, carrying a fraction x
of the proton momentum when probing the proton with a momentum transfer Q2. Several
parametrizations of these distributions have been obtained using data, in particular from
lepton scattering experiments, and with @Q*-dependence according to the perturbative
QCD evolution equations [25]. The fit to the data provides the xz-dependence and the
QCD parameter A. The choice among many available parton density parametrisations in
PyTHIA 5.7 [26] and in PDFLIB [27] is made through the switches LST(15) and LST(16)
in common LEPTOU.

The possibility to scatter on intrinsic charm and bottom quarks in the nucleon is
included by an option, see LST(15). The hypothesis of intrinsic charm quarks in the
proton was introduced [28] as an attempt to understand a large discrepancy between early
charm hadroproduction data and leading order perturbative QCD (pQCD) calculations.
This discrepance has largely disappeared as more data have been collected and next-to-
leading order (NLO) pQCD calculations have been made. Still, however, there are certain
aspects of charm production data which are difficult to understand within the pQCD
framework, but are natural if the intrinsic charm hypothesis is basically correct (see [29]



and references therein). Intrinsic charm (IC) corresponds to a Fock-state decomposition of
the proton wave function, |p) = ajuud)+ B|uudcé)+..., with a small, but finite, probability
(% (PARL(12)) for an intrinsic ¢ pair as a quantum fluctuation. The normalization of
this component is the key unknown, although it should decrease as 1 /m2Q Originally, a
1% probability was assumed, but later investigations based on EMC data on the charm
structure function F§(x, Q%) [30] indicate a somewhat smaller but non-vanishing level;
~ 0.3% [31] and (0.86 £ 0.60)% [32].

From the IC model one obtaines an effective charm quark density [29]
1
cro(z) = %1800 {3(1 —2)(14+ 102 +2°) + 2z(1 + ) Inz } (28)

which gives a charactersitic hard momentum spectrum with (x.) = 2/7. The Q* depen-
dence from normal leading log GLAP equations have been calculated for IC [31], but
can be taken into account through a simple extension of the parameterisation in Eq. (28)
[29]. This quark density is then used in the electroweak cross section fomulae to simulate
the scattering on such an intrinsic charm (or bottom) quark. One should note that the
intrinsic charm quark density is not the same as the normal charm quark density present
in conventional parametrizations. The latter starts with no charm being present at small
Q? and develops a charm sea through perturbative QCD processes, e.g. GLAP evolution,
resulting in a soft momentum distribution. In contrast, intrinsic charm is present already
in the non-perturbative proton wave function giving the characteristic hard momentum
fraction distribution above.

The scattered intrinsic (anti)charm quark may radiate gluons through initial and
final state parton showers as usual. Adding conventional Lund model hadronization
gives a charmed hadron in the current fragmentation region and the remaining partner
(anti)charm quark in the proton remnant gives a charmed hadron in the target fragmen-
tation region. For phenomenological studies with this model, see [29].

2.5 First order QCD processes

The leading order parton level process is V*q¢ — ¢, where V* is the exchanged virtual
boson v/Z or W. In first order QCD the gluon radiation or QCD Compton process,
V*q — qg, and the boson-gluon fusion (BGF) process, V*g — ¢g, appear and can be
included with their matrix elements (ME) [33, 34, 35, 36]. Quark masses are not included
in these ME, but a threshold factor is applied for boson-gluon fusion into heavy quarks.
For more accurate heavy quark simulations the AROMA Monte Carlo [37] may be used.

The first order ME are rather complicated functions involving three new degrees of
freedom corresponding to energy, polar angle and azimuthal angle of one final parton
(the other is then determined by energy-momentum conservation). In terms of the more
suitable variables [34] z, = /£ and 2, = P - p,/P - q, where £ is the momentum fraction
that the incoming parton take of the proton and p, the four-momentum of, e.g., the final
quark, the cross sections are five-fold differential

d’o
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Here ¢ is the parton azimuthal angle with respect to the lepton scattering plane (in the
vp cms) and its distribution has the form

do = doy + doy cos ¢ + doy cos 2¢ (30)

where do; depends on the other four variables. When averaging over ¢, only the first
term contributes and the ¢-dependence can therefore often be neglected, but in dedicated
analyses it can be observed [38]. The invariant mass squared of the two emerging partons
(qg or qq) is labelled $.

The matrix elements have soft and collinear divergences that may be partly cancelled
by virtual corrections and partly absorbed in the parton density functions. The QCD-
Compton cross section G,, diverges as 1/(1 — z,)(1 — z,) and the boson gluon fusion 6,4
as 1/z4(1 — z,). To avoid these singularities in a Monte Carlo simulation procedure, it is
common practice to impose a cut-off on the matrix elements. In LEPTO, several different
cut-off procedures are available through LST(20). In the W scheme it is required that
each pair of emerging partons (including the proton remnant) have a minimum invariant
mass, expressed as s;; = (p; +p;j)? > YeuW?. As a new default in the present version
of the program, we use a variation of the ‘mixed scheme’ [36]. In this ‘2§’ scheme the
applied cuts are zgmin < 2 < 1 —2gmin a0d § > Spip, With 2 me, and S, set by PARL(8)
and PARL(9), respectively. As discussed in [39], this gives some advantages compared to
previously used cut-off schemes. In particular, it gives a better division of the available
phase space into a region for hard emission, which is best described by exact matrix
elements, and the soft and collinear regions where higher orders are important and can
be taken into account by leading log parton showers (cf. section 2.6).

To decide on an event-by-event basis whether to generate one of the first order event
types (gg- or gg-event) rather than the leading order process (g-event), the probability for
each event type must be available as a function of the kinematic variables x, Q%. The ¢-
event probability is taken as P, = 1—FP,,— P,; and the probabilities Py, and P4 are defined
as the integral of the relevant first order matrix element over the above three variables,
divided by the overall differential cross section do/dzd@?. The integration over ¢ is trivial
and the variable z, can be integrated analytically leaving only the z,-integration, which
involves parton density parametrizations, to be performed numerically using an adaptive
Gaussian method. If the cut-off is chosen too low the calculated probabilities for the first
order processeses Py, + P,z can be larger than unity at the given x and @?. In this case the
cutoff is increased, the y.,; in the W scheme and the z,,;, or the §,,;, in the 2§ scheme,
until 1-PARL(13)< P,, + P,; < 1. The effective cut-off actually used in a generated
event is stored in PARL(27).

To save computer time the probabilities for ¢g- and ¢g-events can be calculated at the
initialization time (LINIT) and stored on a ‘grid’ in the z, W or x, y plane. In the following
event generation phase the probabilities at any x, Q* (or z,y) point, chosen according to
section 2.2, are then obtained by linear interpolation on this grid. The switch LST(19)
regulates the use of such grids and provides an option with a grid that automatically
adjusts to the kinematical region chosen by the user. There is also a possibility to calculate
these integrals for each event, and thereby avoid interpolation errors.

Having chosen to generate a first order event based on the probabilities P, Py, and
P,;, the internal variables x,, z, and ¢ are generated in turn from the matrix element
formulae where the subsequent variables are integrated out. Given the values of all five
variables the four-momenta of the scattered lepton and partons can be calculated.



2.6 QCD parton shower evolution

In order to take higher than first order QCD effects into account the parton shower
(PS) approach has been implemented as described in detail in ref. [14]. This has the
advantage that arbitrarily high orders in a; can be simulated, but only in the leading
log Q% approximation as opposed to the exact treatment in fixed order ME. Higher order
effects are important at high energies where multiple parton emission can give rise to
multijet events as well as affect the internal properties, such as hardness and width, of a
jet [15, 40] and the overall structure of the event in terms of, e.g., energy flows.

In DIS the quark struck by the electroweak boson can emit partons both before and
after the boson vertex giving rise to initial and final state parton showers, respectively. A
parton close to mass-shell in the incoming nucleon can initiate a parton emission cascade
(or shower) where in each branching one parton becomes increasingly off-shell with a
space-like virtuality (m? < 0) and the other is on-shell or has a time-like virtuality (m? >
0). This initial state space-like shower results in a space-like quark which interacts with
the electroweak boson that turns it into an outgoing quark which is either on-shell or
has a time-like virtuality. In the latter case a final state, time-like shower will result
where the off-shell mass is reduced by branching into daughter partons with decreasing
off-shell masses and decreasing opening angles. This shower continues until all partons
are (essentially) on-shell. Any parton with a time-like virtuality from the initial state
shower will develop similarly. The general behaviour of initial and final state showers
are similar since they are both based on the branching processes ¢ — qg, ¢ — ¢gg and
g — qq as described by the GLAP equations [25] in the leading logQ? approximation of
perturbative QCD.

The final state radiation is analogous to parton radiation in e*e™ — ¢q and is theo-
retically well developed and tested against data. The routine LUSHOW in JETSET [26]
is therefore used for all time-like showers. The evolution is based on the Sudakov form
factor, which expresses the probability that a parton does not branch between some initial
maximum virtuality and some minimum value. From this one can find the mass of the
decaying parton, the energy fractions in the branching and the flavours of the daughter
partons. The process is iterated with a reduced virtuality until all parton virtualities are
below some cutoff m2 around 1 GeV?. The technical details are given in [14], but it should
be noted that coherence in soft gluon emission is taken into account through angular or-
dering (decreasing opening angles in subsequent branches) and that p% ~ z(1 — z)m? is

used as argument in oy as suggested by studies of coherence effects.

The initial state radiation is performed using the ‘backwards’ evolution scheme [41]
where the shower is constructed from the hard electroweak interaction backwards with
decreasing virtualities down to the on-shell parton from the incoming nucleon. A modified
version [14] of the routine PYSSPA in PYTHIA [42] is used for the space-like shower. This
is a more complicated process, e.g. since the nucleon parton density functions must be
taken into account (which tend to reduce the amount of radiation). In addition it is not
so well tested by the more ‘messy’ hadron collision data. When combining the initial
and final state radiation to get the complete model, special precautions have been taken
[14] to preserve energy-momentum conservation and keep the normal definitions of the
kinematic variables for the electroweak scattering such that they will be obtained from
the scattered lepton as usual, in particular that Bjorken-x is preserved.

The amount and hardness of the initial and final radiation depends on the off-shellness
of the struck parton just before and the partons after the boson vertex. These virtualities



are chosen, using the Sudakov form factor, between the lower cut-off and a maximum
value to be given by the energy or momentum transfer scale in the process. The default
procedure is to add the parton shower to a matrix element event. The possible final states
are then ¢, qg and ¢q events. In the case of a ¢ event the maximum scales are set by the
matrix element cut-off (e.g. y.WW? in the W-scheme) since emissions harder than the
cut-off would be double-counting. In the case of a gg or ¢¢ event the maximum virtuality
scale for the final state shower is set to §. As maximum virtuality for the backwards initial
state shower it is natural to use the mass-squared of the quark propagator just before the
boson vertex. This is given by the known four-vectors of the exchanged boson and the two
final partons from the matrix element, but depending on the underlying Feynman diagram
in the amplitude different combinations are possible leaving some remaining ambiguity.
The largest of these possible virtualities is being used (cf. subroutine LSCALE).

In the case where the parton shower is used without the matrix element there is a large
ambiguity in which maximum scale should be used. Whereas only one scale is present in
ete”, any function of Q% and W2 may be possible in DIS. Although Q? and W? can often
be of similar magnitude, cf. eq. (2), at small z-values W? is much larger than Q? giving
rise to drastically different amounts of radiation [43]. Given this uncertainty, different
scales are available (cf. LST(9)) based on different motivations. The phase space limit
is given by W2, such that a smaller scale (Q?) would cut off the tail of high-p, parton
emission. Refering to the first order ME parton level one finds (p?) ~ Q*(1—=x) for x — 1
and (p?) ~ Q*In(1/x) for z — 0 [33]. A suitable interpolation between these limiting
behaviours is the choice Q?(1—x)max(1,1In 1) which is the default choice when the matrix
elements are not used.

The parton shower approach has some shortcomings due to its approximate nature.
The separation of initial and final state parton emission implies the neglect of interference
terms between the two and is not gauge invariant. The use of the leading logarithm
approximation means that the emission of partons that are soft or close to the directions
of the emitting partons should be well described, while the emission of hard partons at
large angles could be mistreated. Therefore, the rate of events with extra hard partons
that give rise to separate jets, i.e. multijet events, need not be well accounted for. The
use of matrix elements is preferable for these purposes and is therefore the default option.
Starting with the ME the hard emission is generated and extra, but softer emissions are
then added using PS. An advantage of this procedure is, of course, that the hard parton
emission is properly treated using the first order ME.

2.7 Nucleon remnant and hadronization

The remnant system is the target nucleon ‘minus’ the parton entering the hard scattering
system (initial parton showers and matrix elements). This interacting parton can be either
a valence quark, a sea-quark or a gluon.

When the interacting parton is a valence quark the nucleon remnant is simply a diquark
composed of the two left-over valence quarks as spectators. In the Lund model [5] a colour
triplet string is stretched between the colour triplet charged struck quark and the diquark
which is a colour antitriplet. This system is then hadronized in the usual way [5, 26] by
the production of quark-antiquark and diquark-antidiquark pairs from the energy in the
field, leading to hadron production. The proton remnant diquark is not a single entity;



its two quarks may go into a leading baryon but they can also be separated to produce a
leading meson followed by a baryon.

In case the interacting parton is a sea quark (g¢s) or antiquark the nucleon remnant
contains the corresponding antiquark or quark in addition to the three valence quarks
(¢»). This more complicated four-quark system ¢,q,¢,qs or ¢,¢,q,qs must be taken into
account to conserve the flavour quantum numbers.

In the conventional way (default in LEPTO version 6.2 and earlier) the following treat-
ment has been used. If g, = @ or d it is cancelled against a corresponding valence quark
leaving a simple diquark system to be treated as above. For other flavours of ¢, it is joined
with a valence quark of arbitrary flavour into a meson (M = ¢,qs). The g is assumed to
have no specific dynamic properties such that this splitting process into a meson and a
diquark should be similar to normal hadronization. The meson is then given a fraction
z of the remnants energy-momentum (£ + p,) along the beam direction from a probabil-
ity distribution P(z) (cf. LST(14)) and only a small Gaussian p; (cf. PARL(14)). The
left-over diquark, with longitudinal momentum given by 1 — z and equal but opposite p|,
forms a string system with the scattered quark and hadronization proceeds as usual. If an
antiquark (g;) was scattered the remnant is a four-quark system ¢,q,q,qs which is treated
similarly to the previous case. Here, the corresponding quark (gs) is combined with a
random diquark giving a baryon (B = ¢,q,qs) leaving the remaining valence quark to
form a string system with the scattered antiquark. The split of the remnant is as before,
taking account of the masses in the distribution for z (cf. LST(14)).

In LEPTO 6.3 a modified treatment of sea quarks in the remnant was introduced which
is now default (cf. LST(35)). The essential difference is that the sea quark partners (g;)
are treated dynamically and also u and d quarks can be considered as sea quarks. The
interacting quark is assigned to be a valence or sea quark from the relative size of the
corresponding parton distributions ¢,(z1, @%) and ¢,(z1, @Q?), where x; is the momentum
fraction of the quark ‘leaving’ the proton and Q7 is the relevant scale (typically the cutoff
Q3 of the initial state parton shower). In case of a valence quark the previous treatment
is used, but in case of a sea quark a new treatment is used. The left-over partner ¢
is given a longitudinal momentum fraction from the Altarelli-Parisi splitting function
P(g — ¢q) and the transverse momentum follows from the masses of the partons in
the splitting. Essentially the same results are obtained if the longitudinal momentum
fraction is chosen from the corresponding sea quark momentum distribution. The former
approach is presently used since this allows the mechanism to be simply implemented in
the initial state parton shower routine as an additional, but non-perturbative, g — q@
process. This partner sea quark will then be at the end-point of a string and not, as
previously, go directly into a hadron together with another spectator parton. Depending
on the momentum of the partner sea quark, this new string may extend more or less into
the central region and through hadronization contribute to the particle and energy flow
in the forward region. In particular, the transverse forward energy flow will be enhanced
[44, 39] and improve the agreement with HERA data.

In boson-gluon fusion the removed gluon leaves the three valence quarks in a colour
octet state. This remnant is split into a quark and a diquark, chosen with random flavours,
which form two separate strings with the antiquark and quark, respectively, produced in
the fusion process. Again the split of the remnant involves the same longitudinal mo-
mentum sharing and a Gaussian transverse momentum. For the order oy gluon radiation



process (gg-event) the string is stretched from the scattered quark via the gluon to the
target remnant.

In the parton shower case, the backwards evolution always results in one parton being
removed from the nucleon as in the above cases such that the same procedures can be
applied. The additional partons emitted in the PS case will, however, lead to a more
complicated string configuration. The string follows the colour flow of the parton shower
such that it starts from a colour triplet quark and goes via a number of colour octet
gluons, which are kinks on the string, before ending up on a colour antitriplet antiquark
or diquark. Where quark-antiquark pairs have been produced in the shower, the colour
flow will be broken resulting in a termination of the first string piece and the start of
a new one. The string system may thus be divided into subunits which then hadronize
separately.

The ME and PS emissions may give a varying number of soft or collinear partons,
depending on the details of the cut-offs. Although such partons cannot be observed as
separate jets, they may give a ‘softening’ and ‘fattening’ of jets. The Lund string model
is particularly suitable in this context, since it provides a stability in the sense that the
hadron level result will not depend strongly on the presence of extra soft partons. Rather,
one obtains a smooth transition to a configuration without them [45, 46]. The independent
hadronization model, available as an option in [26] does not have the same property and
is therefore not recommendable.

In this context one should also note that the two-string configuration for sea-quark
initiated processes provides a desirable continuity between the two-string gluon-initiated
qq-events and the one-string quark-initiated g-events. Depending on the partner sea-quark
momentum, the corresponding string will extend more or less into the central region in
rapidity. The hadronization of this extra string will contribute to the particle multiplicity
and energy flow in this region [44, 39].

The parameters for the hadronization process in JETSET [26] are obtained from fits to
ete™ data and are assumed to be the same in DIS based on jet universality. Nevertheless,
they depend on which QCD effects are explicitly included in the Monte Carlo simulation.
The default values are suitable when higher orders are taken into account via parton
showers, whereas with first order ME alone the hadronization should be made slightly
‘softer’ and ‘wider’ to account for the additional parton emission not simulated explicitly.

2.8 Soft colour interactions and rapidity gaps

The rapidity gap events discovered in deep inelastic scattering at HERA [47] are usually
interpreted in terms of pomeron exchange models [48]. Although this seems to work
reasonably well phenomenologically, there is no satisfactory understanding of the pomeron
and its interactions mechanism. As an alternative, we have introduced a model [44, 39]
based on soft colour interactions (SCI) that give rise to rapidity gap events without using
the concept of a pomeron.

At small Bjorken-z (107* — 1072), where the rapidity gap events occur, the events
are frequently initiated by a gluon from the proton. This can either be directly from the
boson gluon fusion matrix element or after the initial state parton shower, including a
possible split in the sea quark treatment. In the conventional string hadronization model



this gives two separate strings from the ¢ and ¢ to the proton remnant spectator partons,
where the gluons from the parton shower are kinks on the string, thereby causing particle
production over the whole rapidity region in between. The new hypothesis introduced
here is that additional non-perturbative soft colour interactions may occur. These have
small momentum transfers, below the scale 3 defining the limit of pQCD, and do not
significantly change momenta from the perturbative phase. However, SCI will change the
colour of the partons involved and thereby change the colour topology as represented by
the strings. Thus, it is proposed [44] that the perturbatively produced quarks and gluons
can interact softly with the colour medium of the proton as they propagate through it.
This should be a natural part of the processes in which ‘bare’ perturbative partons are
‘dressed’ into non-pertubative quarks and gluons and the formation of the confining colour
flux tube in between them.

Lacking a proper understanding of such non-perturbative QCD processes, a simple
model is used to describe and simulate these interactions. All partons from the hard
interaction (electroweak + pQCD) plus the remaining quarks in the proton remnant con-
stitute a set of colour charges. Each pair of charges can make a soft interaction changing
only the colour and not the momenta, which may be viewed as soft non-perturbative
gluon exchange. As the process is non-perturbative the exchange probability cannot be
calculated so instead it is described by a parameter, PARL(7). The number of soft ex-
changes will vary event-by-event and change the colour topology of the events such that,
in some cases, colour singlet subsystems arise separated in rapidity. In the Lund model
this corresponds to a modified string stretching and rapidity gaps may arise when a gap
at the parton level is not spanned by a string, as illustrated in [44]. In particular, when
the hard process starts with a gluon from the proton, leaving a colour octet remnant and
giving a colour octet hard scattering system, a soft colour exchange between the two octet
systems can give two colour singlets separated in rapidity.

SCI may thereby give a string system, including a valence diquark from the proton
remnant, which has a small invariant mass. Such systems are not optimally treated
in JETSET regarding production of one- or two-particle final states and taking isospin
constraints into account. We have therefore constructed a new treatment (implemented
in subroutine LSMALL) for such systems giving two particles if kinematically possible and
otherwise one. When one particle is made, the isospin restriction from the effective isospin
singlet exchange in SCI is taken into account to prevent A production. The invariant mass
of such small systems is roughly given by the constituent masses of the partons in the
proton remnant and the transverse momentum in the remnant split. With the default
contituent masses (m, = 325 MeV and my, = 650 MeV) and width of the transverse
momentum in the remnant split (350 MeV), the invariant mass of the consituents in
the proton remnant exceeds the mass of the proton itself. Therefore the possibility has
been introduced to reduce the constituent masses of the remnant partons when the target
remnant is more complicated than a simple diquark (cf. PARL(20)).

SCT also gives rise to other string topologies without gaps, but where the string goes
back and forth in rapidity between the partons. In such cases, there will be more particles
and energy per unit of rapidity. This contributes to a better description of, e.g., the
forward energy flow observed at HERA as discussed in [39)].



3 Description of program components

The present program, LEPTO version 6.5, is a backwards compatible update of versions
6.1 [7] to 6.4. It is a further development of earlier versions [6], but is not backwards
compatible with those due to the changed conventions in JETSET version 7 now being
used. Previous knowledge of earlier versions is not necessary, but is helpful since the main
structure and use of the program has been kept similar. The code is written completely in
standard FORTRANT7 and should therefore run on any computer with such a compiler.
Single precision is normally used, but double precision is being used when required.

3.1 Subroutines and functions

The following routines should or may be called by the user:

SUBROUTINE LINIT(LFILE,LEPIN,PLZ,PPZ INTER)

Purpose: to initialize the event generation procedure and, optionally, integrate cross
section.

Arguments:

LFILE : logical file number containing weights for first order QCD, see LST(8).

= (: the weights are calculated but not save on file, no file is used.
< 0: the weights are calculated and stored on file number ~LFILE.
> 0: the weights are read from file number LFILE.

Remarks: When using weights from a file, the same conditions (interaction, cuts etc)
must hold as when the weights were calculated. The relevant quantities
are checked and a mismatch results in an error message, cf. LST(3). There
is no strong reason, in this upgraded program, to store weights on a file
since their calculation is fast enough to be repeated in each run.

LEPIN : type of lepton, i.e. 11 =e7, 12 = v,, 13 = 7, 14 = v, and negative values
for the coresponding antiparticles, i.e. JETSET [26] code.
PLZ, PPZ: momentum (GeV/c) for incoming lepton and nucleon, respectively, along

the z-axis (if both non-zero, i.e. colliding beams, they must have opposite
signs). Colliding beams which are not along a common axis, or variable
beam energies, are possible using LST(17).

INTER : type of interaction to be simulated.

=1: electromagnetic (EM), i.e. v exchange.

=2: weak charged current (CC), i.e. W* exchange.
=3: weak neutral current, i.e. Z° exchange.

=4: neutral current (NC), i.e. 7/Z° exchange.

Procedure: Various constants are calculated, effective limits on kinematic variables
are derived from the cuts and, depending on the interaction, integration
variables are chosen and parameters are set. For the Monte Carlo rejec-
tion technique to give unweighted events, the maximum of the differential
cross section (having factored out a suitable function that can be sim-
ulated exactly, see section 2.2) is found using an adaptation of MINUIT
[22]. The cross section is calculated using numerical integration (LST(10))
and stored (PARL(23)). Optionally, grids with probabilities for first order
QCD processes are set up (LST(8)) and grids for including the longitudinal
structure function (LST(11)).



SUBROUTINE LEPTO

Purpose: to administer the generation of one event of the kind specified by the last
LINIT call.

Procedure: ~ Beam energies are taken from LINIT (optionally from LUJETS, see LST(17)).
A phase space point z,Q? is chosen according to the differential cross
section (using LEPTOX), and the parton level system, optionally with
QCD corrections (cf. LST(8)) is set up. Hadronization and decays are
performed, via LUEXEC, and the event is transformed to the selected
frame (LST(5),LST(6)). The Monte Carlo estimate of the cross section,
PARL(24), is updated with each event.

Remarks: Under some conditions, an error may have occured and the event should
be rejected, see LST(21).

SUBROUTINE LFRAME(IFRAME,IPHI)

Purpose: to transform the event between different frames.
Arguments:
IFRAME :  specifies the desired frame (as for LST(5)).
=1: hadronic CM frame, z-axis along exchanged boson.
=2: lepton-nucleon CM frame, z-axis along lepton.
=3: lab system as defined by last user call to LINIT.
=4: as 3, but z-axis along exchanged boson.
IPHI : specifies whether to include a random rotation for the azimuthal angle, ¢,
of the lepton scattering plane.
=0: no rotation, scattering plane is  — z plane. A possible earlier rotation is

undone.
=1: random rotation in ¢, made in lepton-nucleon CM frame. Not made for
IFRAME=1.
Remark: The present frame is stored in LST(28), LST(29) and is updated by LFRAME.

Transforming the event with other routines can therefore cause errors in a
following LFRAME call.

SUBROUTINE LPRWTS(NSTEP)

Purpose: to print a table of the QCD weights in common LGRID, i.e. the probabil-
ities for ¢-, gqg- and gg-events in first order QCD. Only the values on each
NSTEP point in the x, W grid is printed, i.e. NSTEP=1 prints all grid
points.

SUBROUTINE LWBB(ENU)

Purpose: to give energy (ENU in GeV) of a (anti-)neutrino chosen from a sim-
ple parametrization (defined by DATA statement within the routine) of a
wide band beam. The energy is actually chosen from the beam spectrum
weighted with the energy to take into account the linear rise with energy
of the cross section, which LEPTO does not account for. This routine is a
simple example to be replaced by a more realistic beam energy distribution
if necessary.

Remark: For running with variable beam energies, see LST(17).

SUBROUTINE LTIMEX(TIME)



Purpose: to get cpu execution time (in seconds) since start of job. Interface to
machine dependent routine, by default TIMEX (Z007 in the CERN library)
which can simply be changed, or TIME set to zero since timing information
is not essential (although useful).

SUBROUTINE LNSTRF (X,Q2,XPQ)

Purpose: to give the parton distribution functions per nucleon for a nucleus defined
by PARL(1) and PARL(2). Arguments as in LYSTFU which is called.
This routine is called internally, but can also be used separately after ini-
tialization by LINIT.

SUBROUTINE LYSTFU(KF,X,Q2,XPQ)

Purpose: to give the parton distribution functions for the target hadron through an
interface to subroutine PYSTFU in PYTHIA 5.7 [26], complemented with
options for intrinsic charm and beauty quarks in the nucleon.

Arguments:

KF : particle flavour, e.g. 2212=p, 2112=n, —2212=p, —2112=n.
X momentum fraction carried by the parton.

Q2 : momentum transfer scale Q2.

XPQ : array (—6:6) that on return contains the values of the momentum-weighted
parton densities, i.e. x - ¢(z,Q?) and - g(z,Q?). Index: 0=g, 1=d, 2=u,
3=s, 4=c, 5=b, 6=t and —1=d, —2=u, —3=5, —4=¢, —5=b, —6=t.

Remarks: Different parametrizations of structure functions are implemented and can
be selected by LST(15) and LST(16). This routine is called internally but
can also be used separately after initialization by LINIT.

In the following list all subroutines (S) and functions (F) are briefly described. The
order is as they appear in the code and reflects the flow in the program. Further details
about their purpose and procedures used are given by comments in the code. All routine
names start with characteristic letters to indicate origin and avoid name clashes. L,
or D for real functions, is for LEPTO routines in general; FL for routines related to
longitudinal structure function; LY for modified PYTHIA routines [42]; LM for modified
MINUIT routines [22]; GADAP, RIW and DV for routines related to different integration
procedures.

Routine Purpose

LTIMEX (S) to give execution time since start of job, see above.

LEPTOD block data to give default values to all switches and parameters.

LINIT (S) to initialize program package, see above.

LEPTO (S) to administer the generation of an event, see above.

LEPTOX (S) called by LEPTO to generate kinematic variables, within the applied cuts,
according to the differential cross section giving unweighted events. Op-
tionally include F},. Update Monte Carlo estimate of cross section, PARL(24),
select lepton helicity and target nucleon.

LKINEM (F) called by LEPTOX to calculate various kinematic variables and optionally
(LST(2)) to reject event if outside given kinematic limits in CUT.

LQCDPR (S) called by LEPTO to obtain probabilities for first order QCD processes,
either by linear interpolation of weights stored on a grid set up in LINIT,
or direct calculation event-by-event, see LST(19).



LQEV (S) called from LEPTO to generate parton system for g-event, i.e. without
QCD processes.

LQEVAR entry in LQEV used by ARIADNE [49] for some boson-gluon fusion events.

LQGEV (S) called from LEPTO to generate parton system for gg-event, i.e. first order
QCD gluon radiation.

LQQBEV (S) called from LEPTO to generate parton system for gg-event, i.e. first order
QCD boson-gluon fusion.

LXP (S) called from LQGEV and LQQBEV to generate a value of z, from the
relevant QCD matrix element folded with parton density functions (for
given z, Q?, but z, and ¢ integrated out).

LZP (S) called from LQGEV and LQQBEV to generate a value of z,, from QCD
matrix element (for given x, Q*, x,, but ¢ integrated out).

LQMCUT (F) to apply cuts on QCD parton configuration to take quark mass effects into
account and ensure ability to apply string hadronization.

LAZIMU (S) called from LQGEV and LQQBEV to generate the azimuthal angle ¢, of
parton plane w.r.t. lepton scattering plane, from first order QCD matrix
elements eq. (30), for given z, Q% x,, z,.

DSIGMA (F) differential cross section do/dz, for first order QCD processes.

DSIGM2 (F) modified DSIGMA with a variable substitution to speed up integration
DQCD  (F) first order QCD differential cross sections do/dz,dz, (section 2.5) [34].
DQCDI (F) first order QCD differential cross section do/dx, obtained after analytical

integration over z, and factoring out 1/(1 — x,).

LFLAV  (S) selects flavour of struck quark and outgoing quark (with flavour mixing
in CC) and defines the corresponding parton system from the nucleon
remnant, also applies threshold factor for charm and heavier quarks.

LREMH (S) gives energy-momentum fraction for target remnant split, cf. LST(14); also
selects remnant flavours (not for PS case).

LPRIKT (S) generates magnitude and azimuthal angle for Gaussian primordial k; of
parton in nucleon, see PARL(3).

LFRAME (S) transforms event to different frames, see above.

LWBB  (S) selects energy from a neutrino wide band beam, see above.

LWEITS (S) integrates first order QCD matrix elements to set up grid in z, W or z,y
of weights for gluon radiation and boson-gluon fusion and finds maxima
used for QCD simulation, see LINIT and common LGRID.

LPRWTS (S) prints QCD weights, see above.

LSIGMX (S) called by MINUIT routines to calculate differential electroweak cross sec-
tion divided by the optimization function to obtain the maximum for the
weighting procedure.

LXSECT (S) called from LINIT to integrate cross section using GADAP, RIWIAD or
DIVONNE, see LINIT and LST(10).

RIWIBD (S) substitutes block data for RiwiAD [50], print flag changed.

DVNOPT (S) substitutes block data for DIVONNE [51], print flag changed.

DFUN  (F) integrand for DIVONNE integration, calls RIWFUN.

RIWFUN (F) integrand for RIWIAD integration, calls DCROSS.

DCROSS (F) differential electroweak cross section used as integrand for numerical inte-
gration, see LXSECT. Integration variables given by LST(1), function is
zero outside the cuts in array CUT.



DLOWER, DUPPER (F) lower and upper limit on second kinematic variable (y,Q* or
W?) given a value of the first variable (z) and the cuts. Used together
with DCROSS for cross section integration.

FLTABL (S) called from LINIT to tabulate integrals in z, Q*-grid for the longitudinal
structure function, see LST(11).

FLIPOL (S) called from LEPTOX to obtain longitudinal structure function from inter-
polation on grid from FLTABL, see LST(11).

FLINTG (S) called from LEPTOX to obtain longitudinal structure function by integra-
tion event-by-event, see LST(11).

FLQINT (F) integrand for quark contribution to QCD longitudinal structure function.

FLGINT (F) integrand for gluon contribution to QCD longitudinal structure function.

FLTINT (F) integrand for target mass correction, see LST(11).

LSCI (S) generates soft colour interactions (SCI), see section 2.8.

LECSWI,LEASWTI (S) switches colour and anticolour pointers for SCI.

LSMALL (S) creates hadrons from small mass colour singlet systems including diquarks.
)

(

LSHOWR (S) administer parton cascade evolution added to a g-event.

LMEPS (S) administer parton cascade evolution added to a qg- or gg-event from first
order QCD matrix elements.

LSCALE (S) gives scale for maximum virtuality in parton showers, see LST(9).

LYSSPA (S) simulate initial state parton cascade evolution, modification [14] of routine
in [42].

LYREMN, LYSPLI (S) treatment of target remnant and primordial £; when using par-
ton showers, modifications [14] of routines in [42].

LMCMND,LMINTO,LMIDAT,LMINEW,LMPRIN,LMPINT,LMRAZZ,LMSIMP modified
MINUIT routines [22] to find maximum of cross section.

GADAP, GADAP2, GADAPF one- and two-dimensional adaptive Gaussian integration
routines [52].

LNSTREF (S) gives parton distributions in a nucleus, see above.

LYSTFU (S) interface to subroutine PYSTFU in PYTHIA 5.7 [26] to give parton distri-
bution functions, see above.

3.2 Common blocks

Most of the communication between the user and the program is via the switches and
parameters in the common blocks. The user need mainly be concerned with common
LEPTOU since all others are essentially for internal use. All variables are given sensible
default values in block data LEPTOD, as shown by (D=...) below. These values may
be changed by the user to modify the behaviour of the program. Note, however, that
this should usually be done before calling LINIT and that some of the parameters are
interrelated. Variables whose name start with D are in double precision. The generated
event is stored in common LUJETS, described in [26].

COMMON /LEPTOU/ CUT(14),LST(40),PARL(30),X,Y,W2,Q2,U

Purpose: contains input switches (LST(1)-LST(20),L.ST(34),LST(35)) and input pa-
rameters (PARL(1)-PARL(20)) to specify physics, kinematic cuts and nu-
merical procedures, as well as output flags (LST(21)-LST(40)) and output
variables (PARL(21)-PARL(30)). Overwriting default values should be
made before calling LINIT.



Parameters:

CUT(1), CUT(2) : (D= 0 4.1.) lower and upper limit of Bjorken-z variable.
CUT(3), CUT(4) : (D= ) lower and upper limit of y variable.

CUT(5), CUT(6) : (D= 4 108) lower and upper limit of Q* (GeV?).

CUT(7), CUT(8) : (D= 5.,10®) lower and upper limit of W? (GeV?).

CUT(9), CUT(10) : (D= 1.,10%) lower and upper limit of variable v (GeV).

CUT(11), CUT(12) : (D=1.,10%) lower and upper limit of scattered lepton energy (GeV,

in frame defined by LINIT call).

CUT(13), CUT(14) : (D=0.,3.1416) lower and upper limit of lepton scattering angle (in

Remarks:

LST(1) :

LST(2)

LST(3) :

LST(4) :

LST(5) :

LST(6) :

radians), with respect to incoming lepton in frame defined by LINIT call.
These cuts are applied already when choosing kinematic variables, before
evaluating cross section formulae and structure functions, and will there-
fore be more efficient than applying cuts later on in the users program. The
cross section estimates take these cuts into account. CUT(11)-CUT(14)
are less efficient, since they refer to a special frame and the user should, if
possible, translate them into cuts in z,y, Q%

(D=0) choice of the two independent variables to be used for simulation
and numerical integration of cross section.

: program makes a ‘best’ choice for simulation efficiency depending on which

process is to be generated (1 if y-exchange included, else 2) cf. LST(31).

. 7 and Q?

=2: r and y

.z and W?

(D=1) choice of simulation and applying cuts in array CUT. (Used inter-
nally also with negative values.)

: kinematic variables, LST(1), chosen from differential cross section and cuts

applied.

=2: variables (x,y) supplied by user via LEPTOU, cuts applied.
=3: variables (x,y) supplied by user via LEPTOU, cuts not applied.

(D=5) regulates output and error handling.

: no output, execution not stopped on error.

: only warnings printed, execution not stopped on error.

: as 1, but execution stopped on error.

: as 2, and output at first initialization, no MINUIT output.

as 3, but output at all initialization calls.

: full output, i.e. as 4 and MINUIT output.

(D=1) regulates information in the event record. To be given as Ijcpion +
10 X Ishower, Where Ijepon = 0/1 inactives/actives the scattered lepton
(K(i,1)=21/1) and Ispower = 0/1 excludes/includes intermediate partons
in the parton showers.

(D=3) choice of frame for the event.

: hadronic CM frame, z-axis along exchanged boson.
. lepton-nucleon CM frame, z-axis along lepton.

: lab system as defined by last user call to LINIT.

. as 3, but z-axis along exchanged boson.

(D=1) regulates the azimuthal angle, ¢, of the lepton scattering plane.

: no ¢-rotation, scattering plane is x — z plane.
: random ¢-rotation, performed in lepton-nucleon cms for LST(5)> 2.



(D=1) regulates completeness of Monte Carlo simulation (to speed up pro-
gram when only partial information is needed).

. only kinematic variables generated.
: kinematic variables and parton level event generated, optionally including

QCD effects (cf. LST(8)). Hadronization can be made later by calling
LUEXEC.

: full event generated, i.e. as 0 plus hadronization and decays.

(D=12) simulation of QCD effects in hadronic final state.

=0: QCD switched off.
=1: first order QCD matrix elements (ME) for gluon radiation and boson-gluon

fusion.

=2: QCD parton cascade evolution from initial and final quark.

: QCD parton cascade evolution from initial quark only.

QCD parton cascade evolution from final quark only.

: QCD switched off, but target remnant treatment as in cascade case.

=9: set by ARIADNE [49] when simulating parton emission in the colour dipole

=12-15:
Remarks:

LST(9) :

model [53].

as 2-5, but PS added on event from first order matrix elements.

See PARL(8),PARL(9) for cut-off on ME. Without PS one may decrease
the cutoff to maximize QCD emission.

(D=5) scale in parton showers, i.e. maximum virtuality (mass-squared) of

parton initiating the shower. Only used when QCD ME are not included,
i.e. LST(8)=2,3,4. See further section 2.6.

_3Q2

. W2
W@

Q?*(1 — x), which is ~ (p?) from ME at large x

=5: Q*(1 — ) max(1,In<), which is a combination of (p%)-dependence from

ME at large and small x

: 2oW?2, to represent the mass-squared of the hadronic system whithout the

(non-perturbative) spectator. A valence-like parton distribution f(xq, Q3) ~
(1 — 29)* (a = 4) is used to chose xy representing an original parton.

: W43, ie. similar as in the colour dipole cascade model [49)].

(D=1) numerical integration of cross section in LINIT.

=0: not performed.

: performed using GADAP [52], i.e. adaptive Gaussian method.
: performed using RIWIAD [50], i.e. adaptive Monte Carlo method.

=3: performed using DIVONNE [51], automatic invocation.
=4: performed using DIVONNE [51], detailed invocation.

Remarks:

LST(11) :

Integration variables are defined by LST(1), integration region by the
cuts in array CUT and required accuracy by PARL(15). Result stored
in PARL(23). Under normal conditions the simpler GADAP routine is ac-
curate enough.

(D=0) inclusion of longitudinal structure function, target mass and higher
twist corrections, see section 2.3, for v and y/Z exchange. To be set as
LQCD+10*LTM~+100*LHT where LQCD, LTM and LHT are 0 or 1 to ex-
clude or include contributions from QCD, Target Mass and Higher Twist,
respectively. The QCD and target mass parts involve integrals which are



LST(12) :
LST(13) :

evaluated at initialization and stored on an x, Q? grid used for interpo-
lation when simulating events. In this mode, the cross section estimates
PARL(23) and PARL(24) include Fj. By setting LQCD or LTM equal 2,
the corresponding contribution are evaluated by integration for each event
at the proper z, Q% point, which gives a more accurate result. In this
case, the result is included in PARL(24) but not in PARL(23) since nested
integrations is too time consuming.

(D=4) maximum flavour used in sea structure function parametrizations.
(D=5) heaviest quark flavour allowed in boson-gluon fusion. A threshold
factor is applied to compensate for neglected quark masses in the matrix
elements.

(D=4) treatment of target remnant after removing interacting parton, see
section 2.7.

: remnant approximated by anti-parton of removed parton, i.e. by ¢, g, g for

removed ¢, q,g. No baryon is produced.

: for removed valence quark the remnant is a diquark hadronizing into a

baryon with the Lund model. For a removed gluon, sea quark (gs), sea
antiquark the remnant is, respectively, a ¢,¢,9y, 9 9vqvqs, QvGuqvqs Which
is split into ¢,q, + qu, Qv + M(quqs), ¢ + B(ququqs). The (lighter) part
of the remnant containing one random flavour valence quark ¢,, takes the
energy-momentum fraction z given by P(z) = 2(1 — 2), i.e. (2) =1/3.

:as 1, but with P(z) = (a + 1)(1 — 2)* with a chosen such that (z) =

1/(a+2) = m/(m+ M) where m (M) is the mass of the light (heavy)
remnant subsystem.

: as 2, but using the ‘Peterson’ function P(z) = N/(2(1—1/z —¢/(1 — 2))?)

with ¢ = (m/M)?.

: using LUZDIS, i.e. the fragmentation function chosen in JETSET.

(D=9) choice of parton distribution functions, xq(x,Q?), zq(x,Q*) and
zg(x,Q?), for the target hadron, see section 2.4 and LST(16).

: parton density choice and parameters are controlled directly through pa-

rameters MSTP(51), MSTP(52), MSTP(57), MSTP(58) and PARP(51) in
common PYPARS in PyTHIA 5.7 [26].

: Eichten-Hinchliffe-Lane-Quigg set 1 [54].
. Eichten-Hinchliffe-Lane-Quigg set 2 [54].
: Duke-Owens set 1 [55].

: Duke-Owens set 2 [55].

: CTEQ2M (best MS fit) [56].

: CTEQ2MS (singular at small-z) [56].

CTEQ2MF (flat at small-x) [56].

: CTEQ2ML (large A)) [56].

=9: CTEQ2L (best leading order fit) [56].

: CTEQ2D (best DIS fit) [56].
: Intrinsic charm quarks only, see section 2.4; to be used with overall nor-

malisation PARL(12), primordial transverse momentum PARL(3)~ m, ~
1 GeV, LST(19)=-1 (no grid) and the cuts CUT(5) (min @?) and CUT(7)
(min W?) such that charm production is kinematically allowed.

. Intrinsic bottom quarks only, approximated by taking the same distribu-

tion as for intrinsic charm, but renormalized by m?/m? ~ 0.1. Comments
for intrinsic charm apply with my instead of m..



Remarks:

Except for intrinsic charm and beauty, the parton densities are obtained
from subroutine PYSTFU in PyTHIA 5.7 [26]; with parameters set to
MSTP(51)=LST(15), MSTP(52)=LST(16) and MSTP(58)=LST(12), un-
less LST(16)=0 when the user directly controls the PYSTFU parameters.
To evaluate structure functions separately, see subroutines LYSTFU above.
(D=1) choice of proton parton-distribution-function library, i.e. MSTP(52)
in PYTHIA 5.7 [26].

=1: internal PYTHIA according to LST(15).

: PDFLIB (version 4 or later) [27], with with NGROUP and NSET to be

given as MSTP(51)=1000*NGROUP+NSET.
(D=0) regulates varying energies of initial particles from event to event.

. fixed energies as specified in LINIT.
. energies allowed to vary; momenta should be given in P(i,j) with i=1,2 for

lepton, nucleon and j=1...5 for p,, py, p,, £, m. See also LWBB. Note: this
option is not fully tested, use ME only with LST(19)=-1.

(D=2) running of electromagnetic coupling a and choice of W and Z
masses.

.« fixed to value at Q? = 0 given in PARL(16), Z and W masses given

independently by PMAS(23), PMAS(24) in /LUDAT?2/.

: as 0, but W, Z masses calculated from standard model using sin 0y, a, Gp

and radiative corrections; i.e. PARL(5), PARL(16), PARL(17), PARL(18)

: as 1, but « varying with @ using ULALEM in [26], see MSTU(101).

(D=-10) regulates use of grid to store probabilities for qg- and gg-events.

: the probabilites are obtained from an automatic grid, but close to the

saturation limit they are recalculated to avoid interpolation errors.

: no grid, necessary integrals calculated for each event, more time consuming

but higher precision.

: user defined grid to be read in free format, see comments in subroutine

LWEITS.

: grid suitable for lepton beam energy < 300 GeV on fixed target.

: grid suitable for lepton beam energy < 1000 GeV on fixed target.

: grid suitable for ep collisions in HERA.

: grid suitable for ep collisions in LEP+LHC.

: grid chosen automatically after the kinematic region specified by user.

(D=5) scheme for cut-offs against divergences in the QCD matrix elements
[36], cf. section 2.5 and PARL(8),PARL(9). (m;; is the invariant mass of
any parton pair).

: W? (or JADE) scheme, m?j > Your W2
=2: Q* scheme, m; > Yo Q?
: mixed scheme, i.e. m?j > ¢,Q? for partons 7, j that are not spectators and

2p; - P > Q% /1 = co(W? + Q?) else. Virtuality scale for matched parton
showers in g-event is ¢; Q?.
as 3, but with virtuality c,Q?/x for initial state parton showers.

=5: z—s5 scheme, § > 5,,;, and 2, < 2y min < 1—24. To regulate the divergence,

%, is changed, see PARL(27).

. as b, but 8, is changed to regulate the divergence, see PARL(27).

error flag, =0 for properly generated event. Nonzero value indicates in-
correct event that should be rejected; may occur in case of user supplied
kinematic variables or variable beam energies, cf. LST(2) and LST(17).



LST(22) :

specifies chosen target nucleon in current event.

: proton.
: neutron.

specifies process simulated.

. electromagnetic (EM), i.e. v exchange.

: weak charged current (CC), i.e. W* exchange.
: weak neutral current, i.e. Z° exchange.

: neutral current (NC), i.e. 7/Z° exchange.

specifies first order QCD process in current event.

. g-event, i.e. no first order QCD.

=2: qg-event, i.e. gluon radiation in first order QCD.

. gg-event, i.e. boson-gluon fusion in first order QCD.

specifies flavour of struck quark in current event: 1=d, 2=u, 3=s, 4=c,
5=b, -1=d, 2=u, 3=5, -4=¢, —5=b

entry line in event record of outgoing struck quark. In parton shower case,
quark at boson vertex before final state shower.

signals split of non-trivial nucleon remnant, cf. LST(14).

: no split, simple diquark or LST(14)=0.
: split into parton and particle, gg+ M or g+ B, occurs when sea (anti)quark

removed through the interaction.

: split into quark and diquark, ¢ + gg, occurs when a gluon is removed.

specifies the frame in which the current event is given with code as for
LST(5), cf. LFRAME.

specifies azimuthal angle rotation with code as for LST(6), cf. LFRAME.
specifies chosen helicity of beam lepton in current event.

: left-handed.
. right-handed.

specifies chosen variables for the simulation/integration.

.z and Q2.

=2: r and y.

=1
LST(23) :
LST(24) :
=2
=3
LST(25) :
LST(26) :
LST(27) :
=0
=2
LST(28)
LST(29)
LST(30)
— 1
= +1
LST(31) :
=2
=3
LST(32) :
LST(33) :
LST(34) :
=0
=1
LST(35) :
=0

LST(36)-LST(40) :

PARL(1) :
PARL(2) :

. x and W2,

Internal flag, 0 or 1 for simulation and integration, respectively.
Reserved for internal test.
(D=2) switch for soft colour interactions; see section 2.8.

. off
: SCI possible within all pairs of emerging partons.
: SCI only within parton pairs where at least one parton comes from the

target nucleon remnant, thus excluding pairs with both partons from the
perturbative emissions.
(D=1) switch for new sea quark treatment; see section 2.7.

. off
: on, the virtuality of the seaquark is given by the cut-off in the initial state

parton shower.

: on, the virtuality of the seaquark is chosen from a Gaussian distribution

of width PARL(10).
unused at present.

(D=1.) number of nucleons in target nucleus, i.e. A.
(D=1.) number of protons in target nucleus, i.e. Z.



PARL(3) :
PARL(4) :
PARL(5) :
PARL(6) :

PARL(7) :

(D=0.44 GeV) width of Gaussian distribution for the primordial transverse
momentum k; of partons in the nucleon.

(D=0.75) probability that a ud-diquark in the target remnant has spin and
isospin equal zero, i.e. I=S=0.

(D=0.2319) sin? By (Weinberg angle) [21].

(D=0.) polarization of lepton beam; should be set to 1 — 2P, = 2Py — 1
where Pp, p is the probability of left(right)-handed helicity, i.e. —1(+1)
corresponds to a fully left(right)-handed polarized beam.

(D=0.5) probability for soft colour interactions between parton pairs, see
section 2.8.

PARL(8),PARL(9) : (D=0.04,4) cut-offs against divergences in the QCD matrix elements,

Remarks:

PARL(10) :

PARL(11) :

PARL(12) :
PARL(13) :
PARL(14) :

PARL(15) :

PARL(21) :

PARL(22) :
PARL(23) :

PARL(24) :

cf. section 2.5 and LST(20). Suitable values are given in parenthesis.
LST(20)=1,2: PARL(8)= yu and PARL(9)=minm;; in GeV. (0.005,2)
LST(20)=3,4: PARL(8)= ¢ and PARL(9)= ¢;. (0.05,2)

LST(20)=5,6: PARL(8)= z,min and PARL(9)= $,,i, in GeVZ. (0.04,4)
These are starting values when integrating first order QCD matrix ele-
ments, but the effective cut used, PARL(27), is automatically increased in
order that the QCD probabilities do not exceed unity.

(D=0.44 GeV) width of Gaussian distribution for the virtuality of the
seaquark in the seaquark treatment when LST(35)=2.

(D=0.01) required relative accuracy for one-dimensional integration, used
for first order QCD matrix element weights and longitudinal structure
function integrals.

(D=0.01) probability 42 for an intrinsic charm quark-antiquark pair in the
proton (cf. section 2.4).

(D=0.1) internal parameters used for adjustment of y.,; for integration of
QCD matrix elements.

(D=0.35 GeV) width of Gaussian distribution in transverse momentum
when a non-trivial target remnant is split into two particles, cf. LST(27).
(D=0.01) required relative accuracy for two-dimensional integration to get
total cross section, cf. LST(10).

(D= 7.29735 x 1073) finestructure constant « [21], cf. LST(18).

(D= 1.16639 x 107> GeV~?) weak Fermi constant G [21].

(D=0.044) Ar from radiative corrections [21].

(D=0.03) scale x* in GeV? for higher twist correction [24], see eq. (27).
(D=0.1 GeV) in case of a more complicated nucleon remnant than a simple
diquark, the constituent masses of quarks and diquarks in the remnant are
decreased with PARL(20) and 2*PARL(20) respectively.

2P - k, where P is proton and k lepton four-vectors, equals invariant mass
squared, s, when masses are neglected.

2P - q, where P is proton and ¢ is boson four-vectors.

cross section in pb, corresponding to the kinematic region allowed by the
cuts in array CUT, obtained by numerical integration in LINIT call, cf.
LST(10). If LQCD=2 or LTM=2, c¢f. LST(11), the corresponding contri-
bution to F}, is not included.

Monte Carlo estimate of the cross section in pb associated with the gen-
erated event sample, taking CUT into account. Set to zero by LINIT call
and updated with each event generated, hence accuracy improves with
statistics as 1/v/N and only final value should be used.



PARL(25) :  value of o, in current event.

PARL(26) :  value of A obtained from structure functions, which is used in a; and in
the initial state parton shower.

PARL(27) :  depending on LST(20), present value of the ey, z,- or §-cut for first order
QCD. These are given by PARL(8) and PARL(9), but modified internally
to prevent QCD weights to exceed unity.

PARL(28),PARL(29),PARL(30) : values of x,, z;, and ¢ in first order massless QCD ma-
trix elements, section 2.5, for current event if it is a qg- or ¢g-event, see
LST(24). For a g—event they are set to 1.0, 1.0 and 0.0.

X Bjorken-z, i.e. x = Q*/2P - q.

Y standard y variable, i.e. y = P - q/P - pe.

W2 : mass-square of hadronic system, i.e. W2 = (P + ¢).

Q2 : momentum transfer squared, i.e. Q* = —¢* = —(p. — po)*.
U energy transfer variable v = P - ¢/m,,.

Remark: for details see section 2.1.

COMMON /LFLMIX/ CABIBO(4,4)

Purpose: Contains the Cabbibo-Kobayashi-Maskawa matrix elements squared for
flavour mixing. First index corresponds to the up-quark flavours u,c,t, h
and second index to the down-quark flavours d, s, b,l. The default values
are [21] CABIB0/.95,.05,2*0.,.05,.948,.002,2*0.,.002,.998,4*0.,1./

COMMON /LOPTIM/ OPTX(4),0PTY (4),0PTQ2(4),0PTW2(4),COMFAC

Purpose: parameters to optimize simulation efficiency, see section 2.2. Default values
are good for normal usage, but improvements may be possible under, e.g.,
unusual kinematic conditions. For changes, see their detailed meaning
given by comments in the code of subroutine LEPTOX.

COMMON /LBOOST/ DBETA(2,3),STHETA(2),SPHI(2),PB(5),PHIR

Purpose: rotation and boost parameters for transforming event between frames.
DBETA(i,j), STHETA(i) and SPHI(i) are the boosts, polar and azimuthal
angles for transforming from lepton-nucleon cms to lab (i=1) and from
hadronic cms to lepton-nucleon cms (i=2). For these cases, the order of
the transformations should be first rotation in #, then in ¢ followed by
the boost where j=1,2,3 corresponds to x,y, 2 components. Should only
be used via subroutine LFRAME to set flags properly, cf. LST(5) and
LST(6).

COMMON /LGRID/ NXX,NWW,XX(31),WW(21),PQG(31,21,3),PQQB(31,21,2),
& QGMAX(31,21,3),QQBMAX(31,21,2),YCUT(31,21),XTOT(31,21),NP

Purpose: information for simulating first order QCD processes.

Remarks: Probabilities PQG and PQQB for gluon radiation and boson-gluon fusion,
i.e. ¢g- and gg-events, are stored on a grid in z, W (or z, y for LST(19)=10)
with NXX, NWW points defined by XX and WW. Indices are for z, W (y)
and helicity contributions. The cut on parton pair masses y;; is also stored
and maxima for the Monte Carlo rejection technique. The grid content
is set up by LWEITS and can be printed by LPRWTS. See LST(19) and
section 2.5 for physics and methods.



COMMON /FLINFO/ RFLQ,RFLG,RFLM,RFLT

Purpose: gives the relative contributions from the different parts (quark, gluon, mass,
higher twist) of the longitudinal structure funtion to the differential cross
section at the z, Q? point of the current event, cf. section 2.3.

COMMON /LYPARA/ IPY(80),PYPAR(80),PYVAR(80)

Purpose: parameters for parton cascade routines. This is common PYPARA from
PyTHIA 4.8 and described in detail in [42]. Only those parameters used
with LEPTO in parton cascade mode are commented here (default values
as in PYTHIA 4.8 if not given).

Parameters:

IPY(8) : set to LST(12) in LINIT.

IPY(13) : set to zero in LINIT if LST(8)=3,5,13,15.
IPY(14) : set to zero in LINIT if LST(8)=4,5,14,15.

IPY(11),IPY(15),IPY(34),IPY (40)-IPY (42),IPY (47),IPY(48) : are used.

PYPAR(8),PYPAR(11)-PYPAR(16) : are used.

PYPAR(21) : (D=PARL(26)) Agcp in initial state parton shower.

PYPAR(22) : (D=1. GeV?) cutoff for initial state parton shower.

PYPAR(23),PYPAR(24) : are used.

PYPAR(25),PYPAR(26) : (D=2*1.) multiplies the chosen scale, cf. LST(9), to give max-
imum virtuality for final and initial state showers, respectively.

PYPAR(27) : (D=1.) multiplies virtuality @Q* for s and structure functions in initial

state showers.
PYVAR(1)-PYVAR(5) : are used.

COMMON /LUJETS/ N,K(4000,5),P(4000,5),V (4000,5)
COMMON /LUDAT1/ MSTU(200),PARU(200),MSTJ(200),PARJ(200)

N AN AN N

Purpose: LUJETS contains the record of the generated event and is essential for us-
ing the results. LUDAT1 contains switches and parameters that are, e.g.,
essential to control final state parton showers, a;, evaluation and hadroniza-
tion. These common blocks are described in the JETSET manual [26].

Short description of all common blocks:

Common Purpose

LEPTOU main common block for user control of program, see above.

LFLMIX quark flavour mixing parameters (KM-matrix), see above.

LOPTIM parameters to optimize simulation efficiency, see above.

LBOOST boost and rotation parameters, see above.

LGRID grid for first order QCD event simulation, see above.

LINTER internal parameters and variables; charges, couplings, cross section weights.
LINTRL internally used; basic system in different frames, effective limits on kine-

matic variables.
LPFLAG internal for output control.

LINTEG internal counters for integrand evaluations.

FLGRID grid with integrals for longitudinal structure function.

FLINFO relative size of longitudinal structure function contributions, see above.
LYPARA parameters for parton cascade evolution [42], see above.

LYPROC,LYINT1 internal for parton showers [42].
LMINULLMINUC input parameters and character names for MINUIT [22].



LM.... internally used in adaptation of MINUIT routines.

GADAP1 internal in GADAP integration routines.

PARAMS,ANSWER input/output for RIWIAD integration [50].
STORE,STORE1,OPTION,RANDOM,INTERN internal for RIWIAD [50].
BNDLMT,SAMPLE,PRINT input for DIVONNE integration [51].

ARDAT1 parameters in the ARIADNE MC for dipole radiation [49].
LUDAT1,LUDAT?2 switches, parameters, particle data in JETSET [26].
PYPARS switches, parameters used for parton densities in PYTHIA 5.7 [26].
LUJETS contains generated event, see [26].



4 Usage and availability

LEPTO 6.5 should be loaded together with JETSET 7.4 and PYTHIA 5.7 [26] (the latter
to access parton density parametrizations). The ordinary gamma function, GAMMA (X),
is called and must be supplied (usually available in FORTRANTT). Access to the CERN
library is not necessary, but gives access to the PDFLIB, RIWIAD and DIVONNE program
packages as well as the TIMEX routine. The program is a slave system, which the user
must call from his own steering program.

Information about the program, its update history, source code, example jobs etc. can
be obtained on request from the authors or directly via the WWW on the LEPTO home
page, http://www3.tsl.uu.se/thep/lepto/.
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