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Looking back at the early universe and exploring the phase diagram of nuclear matter
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The experimental tools
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QuantumChromoDynamics: spectrometers with

tracking + ID for photons,
electrons and hadrons;
forward and backward
muon spectrometers
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“asymptotic freedom”:
coupling strength is minimal at
high temperatures or densities
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Before the universe expanded and cooled enough for protons and
neutrons to form, it existed in a state that consisted mostly of freely
roaming quarks and gluons: a primordial quark-gluon soup that
lasted up to about 10-> seconds into the universe’s existence.

Starting with normal nuclear matter (nuclei) at the bottom of the
diagram, new states can be reached by increasing the temperature
or density. The early universe here is on the top left, and RHIC
collisions are expected to follow trajectories starting into the top
left quadrant, and returning to the normal state, possibly through a
——————————————— - phase transition indicated by the lines
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STAR: cylindrical tracking
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It’s the perfect (hot) liquid... ... and a jet-quencher! coverage; particle ID for
hadrons and high-p;

electrons, photons

Perfect |IqUId? It flows! High-momentum scatterings between quarks

CMS Experiment at the LHC, CERN

produce back-to-back jets of hadrons. When uaveicompeieci i SEESEHCIRCR R S
these happen inside the hot and dense medium . . .
) created at RHIC, the jet can be a probe: it's What happens in a head-on Au+Au collision?
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_ This strong field, combined with the
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Jet-quenching puzzles: bubbles) in the QGP where parity symmetry
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may be locally violated, will result in a
separation of electric charges: the Chiral
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e energy loss mechanism(s) not yet fully

%2, Magnetic Effect.
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o v b Light (direct photons) emitted from
““““““ furbide et al. PRCGS the collision region, combined with
a hydrodynamical analysis of the
collision evolution, indicate that the
temperature reached is within
300-600 MeV, or about 4 trillion
degrees. This is well above the

The effect can be measured by studying
pairs of same charge and opposite
charge particles. In the presence of the
Chiral Magnetic Effect, same charge
pairs (1 and 2, above) will be emitted
preferentially into the same
hemisphere, while opposite charged
pairs (1 and 2’) will tend to go into
different hemispheres.
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mesons is a surprise
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The Earth’s magnetic

field:
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observed under jet peak (top-left): is the
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“ridge” jet-related?

Recent developments:

5 10° transition temperature needed to T e full reconstruction of jets (bottom-left)

- Common magnets:
PH.CENIX “melt” protons and neutrons into | i 8
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charge pairs for non-central collisions,
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wide class of systems, thus suggesting that black hole horizons are dual to the most ideal fluids.




