Studying Cold QCD with Hadron Colliders

Disclaimer: Much taken from soon-to-be-released draft cold QCD plan, but this is NOT an official report of the plan! Emphases in talk are my own choices.

> Christine A. Aidala University of Michigan

sPHENIX Collaboration Meeting, Rutgers University December 11, 2015

References and resources (chronological order)

- Future Opportunities in p+p and p+A Collisions at RHIC with the Forward sPHENIX Detector, April 2014
 https://indico.bnl.gov/getFile.py/access?resId=0&materialI
 - d=5&confId=764
- The RHIC Spin Program: Achievements and Future Opportunities, Jan 2015
 - arXiv:1501.01220
- *Physics Opportunities with STAR in 2020+*, Oct 2015
 https://drupal.star.bnl.gov/STAR/files/STAR-2020-plan.pdf
- Forthcoming RHIC Cold QCD Plan
 - Draft to be released this month

Slide from sPHENIX talk, Why did we build RHIC WWND2011... in the first place?

• To study QCD!

- An accelerator-based program, but not at the energy (or intensity) frontier. More closely analogous to many areas of condensed matter research—create a system and study its properties!
- What systems are we studying?

- "Simple" QCD bound states—the proton is the simplest stable bound state in QCD (and conveniently, nature has already created it for us!)
- Collections of QCD bound states (nuclei, also available out of the box!)
- QCD deconfined! (QGP, some assembly required!)

eRHIC version of the slide, DNP 2012 . . .

- A facility to bring this new era of quantitative QCD to maturity!
- Study in detail
 - "Simple" QCD bound states: Nucleons
 - Collections of QCD bound states: Nuclei
 - Hadronization

Collider energies: Focus on sea quarks and *gluons*

eRHIC version of the slide, DNP 2012 . . .

- A facility to bring this new era of quantitative QCD to maturity!
- Study in detail
 - "Simple" QCD bound states: Nucleons
 - Collections of QCD bound states: Nuclei
 - *Hadronization*

Collider energies: Focus on sea quarks and *gluons*

Not just QCD systems

 In the business of nuclear physics, you study your systems via scattering processes
 – Scattering process typically treated as a tool

• In recent years, QCD processes themselves becoming a focus, in addition to QCD systems

Not just QCD systems

 In the business of nuclear physics, you study your systems via scattering processes
 – Scattering process typically treated as a tool

• In recent years, QCD processes themselves becoming a focus, in addition to QCD systems

"The good life is a process, not a state of being." – Carl Rogers (20th century American psychologist)

QCD *interactions*

- QCD interactions in the form of parton dynamics within systems already a focus, e.g.
 - Spin-momentum correlations of partons in nucleon
 - Flow of partons in QGP

QCD *interactions*

- QCD interactions in the form of parton dynamics within systems already a focus, e.g.
 - Spin-momentum correlations of partons in nucleon
 - Flow of partons in QGP

- Some observables provide interesting information on both structure *and* interactions, e.g.
 - Transverse single-spin asymmetries: due to e.g. Sivers pdf *plus* initial- or final-state gluon exchange in the interaction
 - Diffractive measurements for spatial imaging, and to probe universality of processes in e+p/A and hadronic collisions

QCD interactions

- QCD interactions themselves increasingly an explicit focus, e.g.
 - Parton energy loss traversing cold or hot QCD matter
 - Hadronization, in various environments
 - Quantum phase interference and phase shifts
 - Predicted color entanglement of partons *across* colliding protons
 - For hadronic final states sensitive to nonperturbative transverse momentum

Manipulating QCD systems and their interactions

• As QCD research has matured, more in common with areas of research based on QED (condensed matter, AMO)

Manipulating QCD systems and their interactions

- As QCD research has matured, more in common with areas of research based on QED (condensed matter, AMO)
- But: (Sub-)nuclear distance scales require high energies
 → large accelerators

Manipulating QCD systems and their interactions

- As QCD research has matured, more in common with areas of research based on QED (condensed matter, AMO)
- But: (Sub-)nuclear distance scales require high energies
 → large accelerators
- And while we can *control* various aspects of the interactions (collision species → geometry, path length; energy; polarization), we have to *select out* many others (centrality, ultraperipheral events,...)
- Given short distance and time scales, also need to find clever ways for the interactions themselves to create our system probes

"Gamma-ray diffraction" to probe spatial structure of nuclei

Diffraction pattern from monochromatic plane wave incident on a circular screen of fixed radius

From E. Aschenauer

"Gamma-ray diffraction" to probe spatial structure of nuclei

"Cold" QCD physics areas of focus (Many are linked to one another!)

- Diffraction
- Partonic structure of nuclei/nuclear pdfs
- Low-x/Saturation
- Spin-momentum correlations, interference effects and their process dependence
- Hadronization in different environments

"Cold" QCD physics areas of focus (Many are linked to one another!)

- Diffraction
- Partonic structure of nuclei/nuclear pdfs
- Low-x/Saturation
- Spin-momentum correlations, interference effects and their process dependence
- Hadronization in different environments
- At RHIC: focus on measurements in support of or complementary to future EIC physics program
 - Unique color interactions
 - Early measurements to gauge scale of effects/observables to be studied in depth at EIC
 - Draw larger community into physics and observables of EIC

Lots of recent work/plans/ideas by STAR
 J/Psi results in Au+Au—clear diffractive peaks!

- Lots of recent work/plans/ideas by STAR
 - J/Psi results in Au+Au—clear diffractive peaks!
 - Measurement of diffractive contribution to forward single-spin asymmetries

- Lots of recent work/plans/ideas by STAR
 - J/Psi results in Au+Au—clear diffractive peaks!
 - Measurement of diffractive contribution to forward single-spin asymmetries
 - First-ever, early measurement of GPD "E" for gluons in Run-17 510 GeV p+p via diffractive J/Psi sensitive to gluon orbital angular momentum(!)

- Lots of recent work/plans/ideas by STAR
 - J/Psi results in Au+Au—clear diffractive peaks!
 - Measurement of diffractive contribution to forward single-spin asymmetries
 - First-ever, early measurement of GPD "E" for gluons in Run-17 510 GeV p+p via diffractive J/Psi sensitive to gluon orbital angular momentum(!)
 - Diffractive J/Psi production in polarized p+A, for two different physics measurements!
 - Spatial imaging of gluon distribution in nucleus
 - Probe gluon OAM in polarized proton Z² from A helps!

- Not as far along as nucleon structure—less of a focus in earlier years
- Recent advances via
 - Spin-momentum (and spin-spin) correlations in FFs

- Not as far along as nucleon structure—less of a focus in earlier years
- Recent advances via
 - Spin-momentum (and spin-spin) correlations in FFs
 - Multiparton correlations in hadronization—interference effects between hadronization from (q+g) and only a quark, or (g+g) and only a gluon

- Not as far along as nucleon structure—less of a focus in earlier years
- Recent advances via
 - Spin-momentum (and spin-spin) correlations in FFs
 - Multiparton correlations in hadronization—interference effects between hadronization from (q+g) and only a quark, or (g+g) and only a gluon
 - Looking at interference effects of multiple hadrons coming from a single parton

- Not as far along as nucleon structure—less of a focus in earlier years
- Recent advances via
 - Spin-momentum (and spin-spin) correlations in FFs
 - Multiparton correlations in hadronization—interference effects between hadronization from (q+g) and only a quark, or (g+g) and only a gluon
 - Looking at interference effects of multiple hadrons coming from a single parton
 - Hadronization in nuclear environment

- Not as far along as nucleon structure—less of a focus in earlier years
- Recent advances via
 - Spin-momentum (and spin-spin) correlations in FFs
 - Multiparton correlations in hadronization—interference effects between hadronization from (q+g) and only a quark, or (g+g) and only a gluon
 - Looking at interference effects of multiple hadrons coming from a single parton
 - Hadronization in nuclear environment
- Intense Trento workshop dedicated to hadronization late October—topic getting more attention these years!

STAR pushing forward studies of hadronization at RHIC:Clear spin-dependent hadronization observed

Charged pion in a reconstructed jet

Interference between two pions hadronizing from same parton

Hadronization in higher-density partonic environments

- Nuclear modification of particle production
 - Not fully explainable by nuclear pdfs
- Enhancement of protons compared to pions in e+A with respect to scaled e+p

Hadronization in higher-density partonic environments

 $\begin{array}{c|c} & & \langle N_{coll} \rangle & & \langle N_{part} \rangle \\ \hline Au + Au & & \\ 60 - 92\% & 14.8 \pm 3.0 & 14.7 \pm 2.9 \\ \hline d + Au & & \\ 0 - 20\% & 15.1 \pm 1.0 & 15.3 \pm 0.8 \end{array}$

p/pi ratio for central d+Au and peripheral Au+Au—shape *and* magnitude identical!

Suggests common mechanism(s) for baryon production in the two systems

PRC88, 024906 (2013)

Links to collective behavior in highmultiplicity p+p, and in p+A?

Lots of interesting behavior when extra partons come into play, whether it's "hot" or "cold" QCD

$\bullet \rightarrow \bullet \bullet$

- Cold QCD physics goals will continue taking shape over next year, influenced by
 - Run-15 p+A results
 - Run-15 forward direct photon measurements
 - STAR diffractive measurements
 - Increasing thought/ideas on hadronization
 - Input from all interested parties!

• --- •

- Cold QCD physics goals will continue taking shape over next year, influenced by
 - Run-15 p+A results
 - Run-15 forward direct photon measurements
 - STAR diffractive measurements
 - Increasing thought/ideas on hadronization
 - Input from all interested parties!
- Physics goals in turn define/refine detector needs—adding forward capabilities essential

Generic detector requirements

- Coverage approximately $1 < \eta < 4$
- Calorimetry (EM and HCal)
- Tracking
- Roman pots
- Hadron PID for hadronization measurements
- (Nearly all) new investments should be potentially reusable for eRHIC

fsPHENIX: Starting point for IP8 implementation

 sPHENIX flux return further back → now leaves room for future forward instrumentation!

• Important to preserve the envelope!

fsPHENIX: Starting point for IP8 implementation

With sPHENIX in LRP and envelope in place, now the time to work on forward instrumentation design in earnest. Plenty to do for anyone interested!

• RHIC a beautiful facility for manipulating QCD systems and their interactions!

Conclusions

- RHIC a beautiful facility for manipulating QCD systems and their interactions!
- While current techniques stem from manydecade history, over past 15 years—with RHIC in our hands—our community has truly become masterful at these manipulations

Conclusions

- RHIC a beautiful facility for manipulating QCD systems and their interactions!
- While current techniques stem from manydecade history, over past 15 years—with RHIC in our hands—our community has truly become masterful at these manipulations
- Part of new era of QCD as a more mature field

Conclusions

- RHIC a beautiful facility for manipulating QCD systems and their interactions!
- While current techniques stem from manydecade history, over past 15 years—with RHIC in our hands—our community has truly become masterful at these manipulations
- Part of new era of QCD as a more mature field

I look forward to seeing how we'll gain even more exquisite control and understanding as we continue to work with our "tabletop" experiment for giants!

Nuclear modification of FFs at HERMES

Nuclear pdfs aren't enough to explain modification of pion production in nuclear SIDIS!

Twist-2 fragmentation functions

Unpolarized

Spin-spin correlations

Spin-momentum correlations

Comparing central d+Au with peripheral Au+Au

PRC88, 024906 (2013)

Enhancement of strange meson production in central Au+Au

 K/π ratio higher in more central Au+Au than p+p, increases with centrality

Enhancement of strange meson production in central Au+Au

 K/π ratio higher in more central Au+Au than p+p, increases with centrality

 K/π ratio in d+Au same as p+p for all centralities

Bound states of hadronic bound states: Creating nuclei!

Bose-Einstein correlations for nuclear semi-inclusive DIS

- Sensitive to spatial separation of production of the two particles
- No nuclear
 dependence found within
 uncertainties

$p+p \rightarrow hadron asymmetries persist up to$ $<math>\sqrt{s=0.5 \text{ TeV} and p_T} = 7 \text{ GeV}!$

• Effects persist to kinematic regimes where perturbative QCD techniques clearly apply

$$p_T = 8 \text{ GeV}$$

 $\rightarrow Q^2 \sim 64 \text{ GeV}^2!$

Note $x_F = 0.24-0.32$ here, where asymmetries approached zero on lowerenergy plots—need moreforward measurements at high energies!

Testing TMD-factorization breaking/ color entanglement: p+p → hadrons

 2010 prediction by Rogers and Mulders that nonperturbative objects no longer factorize from one another when have p+p → hadrons and observable sensitive to nonperturbative transverse momentum

– PRD 81, 094006 (2010)

• Try to test by measuring out-of-plane momentum component in nearly back-to-back particle production in p+p

Direct photon – hadron and π^0 – hadron correlations in p+p

Additional nonperturbative transverse momentum in π^0 – charged hadron correlations

Testing TMD-factorization breaking/ color entanglement: $p+p \rightarrow hadrons$

Drell-Yan p_T for different hard scales: no entanglement expected π^0 -charged hadron and γ -charged hadron correlations for different hard scales: entanglement expected. Gaussian shape at low p_{out}

Look for different evolution with hard scale. . . In progress!

Much better data coming soon from 510 GeV p+p

Collinear, twist-3 multiparton correlations in hadronization

- Interference between a (quark+gluon) hadronizing and only a quark
- Similarly, interference between (gluon+gluon) and only a single gluon
- Can generate transverse single-spin asymmetries

Transverse single-spin asymmetry in dihadron production, 200 GeV p+p

- Pion pair hadronizes from same quark; correlation with quark transverse spin; chiral-odd
- Clear nonzero effects in e+e- and semi-inclusive DIS
 - Transversity x IFF in SIDIS
- Clear nonzero asymmetry observed; pseudorapidity dependence
 - Sensitive to transversity x IFF

High-multiplicity p+p: p_T -dependent cos 2 ϕ modulation

- $v_2 = amplitude of \cos 2\phi$ modulation
- Heavy ion community thinks of hydrodynamic flow . . .
- Proton structure community thinks of spin-momentum correlations such as Boer-Mulders . . .

