Investigating Proton Structure at the Relativistic Heavy Ion Collider

Christine Aidala University of Michigan

HiX Workshop, Frascati November 19, 2014

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

- A collider-based program, but not designed to be at the energy (or intensity) frontier. More closely analogous to many areas of condensed matter research—create a system and study its properties
- What systems are we studying?

- "Simple" QCD bound states—the proton is the simplest stable bound state in QCD (and conveniently, nature has already created it for us!)
- Collections of QCD bound states (nuclei, also available out of the box!)
- QCD deconfined! (quark-gluon plasma, some assembly required!)

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

- A collider-based program, but not designed to be at the energy (or intensity) frontier. More closely analogous to many areas of condensed matter research—create a system and study its properties
- What systems are we studying?

Understand more complex QCD systems within
the context of simpler onesable→RHIC designed from the start as a single facility
capable of nucleus-nucleus, proton-nucleus, and
proton-proton collisionst of

Proton spin structure at RHIC

Gluon Polarization ΔG	Flavor decomposition $\frac{\Delta u}{u}, \frac{\Delta \overline{u}}{\overline{u}}, \frac{\Delta d}{d}, \frac{\Delta \overline{d}}{\overline{d}}$	Transverse spin and spin-momentum correlations
π , Jets $A_{LL}(gg, gq \rightarrow \pi + X)$ Back-to-Back Correlations	W Production $A_L(u + \overline{d} \rightarrow W^+ \rightarrow \ell^+ + \nu_1)$ $A_L(\overline{u} + d \rightarrow W^- \rightarrow \ell^- + \overline{\nu}_1)$	Transverse-momentum- dependent distributions Single-Spin Asymmetries

C. Aidala, HiX Workshop, November 19, 2014

Proton spin structure at RHIC

Gluon Polarization ΔG	Flavor decomposition $\frac{\Delta u}{u}, \frac{\Delta \overline{u}}{\overline{u}}, \frac{\Delta d}{d}, \frac{\Delta \overline{d}}{\overline{d}}$	Transverse spin and spin-momentum correlations
π , Jets $A_{LL}(gg, gq \rightarrow \pi + X)$ Back-to-Back Correlations	W Production $A_L(u + \overline{d} \rightarrow W^+ \rightarrow \ell^+ + \nu_1)$ $A_L(\overline{u} + d \rightarrow W^- \rightarrow \ell^- + \overline{\nu}_1)$	Transverse-momentum- dependent distributions Single-Spin Asymmetries

Advantages of a polarized *proton-proton collider*:
Hadronic collisions → Leading-order access to gluons
High energies → Applicability of perturbative QCD
High energies → Production of new probes: W bosons

Reliance on input from simpler systems

- Disadvantage of hadronic collisions: much "messier" than deep-inelastic scattering → Rely on input from simpler systems
 - Just as the heavy ion program at RHIC relies on information from simpler collision systems

 The more we know from simpler systems such as DIS and e+e- annihilation, the more we can in turn learn from hadronic collisions!

RHIC performance for polarized protons

RHIC's current main experiments

STAR:

- Key strengths jets + correlations •
- Full acceptance including PID • for $|\eta| < 1$, $\Delta \phi \sim 2\pi$
- Forward EM calorimetry •

PHENIX:

- High resolution; high rate capabilities for rare probes
- Central arms $|\eta| < 0.35$, $\Delta \phi \sim 2\pi$ with key strength measuring EM probes
- Muon arms $1.2 < |\eta| < 2.4$
- Forward EM calorimetry

Probing the helicity structure of the nucleon with p+p collisions

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{1}{|P_1P_2|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

Study difference in particle production rates for same-helicity vs. oppositehelicity proton collisions

Neutral pion and jet double-helicity asymmetries

Neutral pion and jet double-helicity asymmetries arXiv:1405.5134

- Clear nonzero asymmetry seen in STAR jet measurements from 2009 data!
- PHENIX π⁰ data consistent

• DSSV and NNPDF have released new polarized pdf fits including RHIC data

- 2009 STAR jet A_{LL} results in particular provide significantly tighter constraints on gluon polarization than previous measurements
- Both find evidence for positive gluon polarization in the region x > 0.05 See talks by M. Stratmann and E. Nocera

Other recently measured probes sensitive to gluon helicity

Other recently measured probes sensitive to gluon helicity

Other recently measured probes sensitive to gluon helicity

Other recently measured probes sensitive to gluon helicity

Other recently measured probes sensitive to gluon helicity

Flavor-separated sea quark helicities through W production

$\Delta q(x), \Delta \overline{q}(x)$

$$A_L^{W^+} \approx -\frac{\Delta u(x_1)\overline{d}(x_2) - \Delta \overline{d}(x_1)u(x_2)}{u(x_1)\overline{d}(x_2) - \overline{d}(x_1)u(x_2)}$$

$$A_L^{W^-} \approx -\frac{\Delta d(x_1)\overline{u}(x_2) - \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) - \overline{u}(x_1)d(x_2)}$$

Parity violation of weak interaction + control over proton spin orientation gives access to *flavor*-spin structure of proton

C. Aidala, HiX Workshop, November 19, 2014

C. Aidala, HiX Workshop, November 19, 2014

World W cross section measurements

Large parity-violating single-helicity asymmetries

 Improve constraints on light antiquark helicity distributions

 See talks by M.
 Stratmann, E. Nocera

$$A_{L} = \frac{1}{P} \frac{N^{+} / L^{+} - N^{-} / L^{-}}{N^{+} / L^{+} + N^{-} / L^{-}}$$

Large parity-violating single-helicity asymmetries

Improve constraints on light antiquark helicity distributions – See talks by M. Stratmann, E. Nocera

 New preliminary PHENIX muon results extend rapidity range

$$A_{L} = \frac{1}{P} \frac{N^{+} / L^{+} - N^{-} / L^{-}}{N^{+} / L^{+} + N^{-} / L^{-}}$$

Transverse single-spin asymmetries: From low to high energies!

BRAHMS

MICHIGAN

Effects persist up to transverse momenta of 7(!) GeV/c at $\sqrt{s}=500$ GeV

- Can try to interpret these non-perturbative effects within the framework of perturbative QCD.
- Haven't yet disentangled all the possible contributing effects to the (messy) process of p+p to pions

New eta A_N from PHENIX PRD90, 072008 (2014)

- Large ηA_N observed by STAR and PHENIX (and E704), similar in magnitude to π^0
- Expect to measure forward *direct photons* from 2015 data for p+p, p+A with transverse proton polarization minimal sensitivity to final-state effects

PHENIX MPC-EX forward preshower upgrade

Transverse single-spin asymmetry in dihadron production from STAR

- Nonzero result observed in 200 GeV
 - Collinear process—
 should be cleanly
 sensitive to transversity
 times dihadron
 interference FF

Transverse single-spin asymmetry in dihadron production from STAR

- Nonzero result observed in 200 GeV
- Collinear process—
 should be cleanly
 sensitive to transversity
 times dihadron
 interference FF
- Recent results from
 500 GeV—also
 nonzero, and larger for
 larger pair p_T and
 larger pseudorapidity

Transverse single-spin asymmetry in dihadron production from STAR

C. Aidala, HiX Workshop, November 19, 2014

<u>Modified universality</u> of T-odd transverse-momentum-dependent distributions: Color in action!

Deep-inelastic lepton-nucleon scattering: Attractive final-state interactions

Quark-antiquark annihilation to leptons: Repulsive initial-state interactions

As a result, get *opposite sign* for the Sivers transversemomentum-dependent pdf when measure in semi-inclusive DIS versus Drell-Yan: *process-dependent* pdf! (Collins 2002)

<u>Modified universality</u> of T-odd transverse-momentum-dependent distributions: Color in action!

Deep-inelastic lepton-nucleon scattering: Attractive final-state interactions Quark-antiquark annihilation to leptons: Repulsive initial-state interactions

Still waiting for a polarized quark-antiquark annihilation measurement to compare to existing lepton-nucleon scattering measurements . . .

Probing modified universality via W production at RHIC

Possible long 510 GeV run in 2016 – Could measure W A_N with uncertainty ~0.06 at STAR

Modified universality requires full QCD: Gauge-invariant quantum field theory

We have ignored here the subtleties needed to make this a gauge invariant definition: an appropriate path ordered exponential of the gluon field is needed [18].

gauge links have physical consequences; quark models for non vanishing Sivers function, SIDIS final state interactions

From M. Anselmino, Transversity 2014

Collins, 1993

Brodsky, Hwang, Schmidt, PL B530 (2002) 99 - Collins, PL B536 (2002) 43

An earlier proof that the Sivers asymmetry vanishes because of time-reversal invariance is invalidated by the path-ordered exponential of the gluon field in the operator definition of parton densities. Instead, the time-reversal argument shows that the Sivers asymmetry is reversed in sign in hadron-induced hard processes (e.g., Drell-Yan), thereby violating naive universality of parton densities. Previous phenomenology with time-reversal-odd parton densities is therefore validated.

$$[f_{1T}^{q\perp}]_{\text{SIDIS}} = -[f_{1T}^{q\perp}]_{\text{DY}}$$

Physical consequences of a gauge-invariant quantum theory: Aharonov-Bohm (1959)

Wikipedia:

"The Aharonov–Bohm effect is important conceptually because it bears on three issues apparent in the recasting of (Maxwell's) classical electromagnetic theory as a gauge theory, which before the advent of quantum mechanics could be argued to be a mathematical reformulation with no physical consequences. The Aharonov–Bohm thought experiments and their experimental realization imply that the issues were not just philosophical.

The three issues are:

- whether potentials are "physical" or just a convenient tool for calculating force fields;
- whether action principles are fundamental;
- the principle of locality."

Physical consequences of a gauge-invariant quantum theory: Aharonov-Bohm (1959)

Physics Today, September 2009 : The Aharonov–Bohm effects: Variations on a subtle theme, by Herman Batelaan and Akira Tonomura.

"Aharonov stresses that the arguments that led to the prediction of the various electromagnetic AB effects apply equally well to any other gauge-invariant quantum theory. In the standard model of particle physics, the strong and weak nuclear interactions are also described by gauge-invariant theories. So one may expect that particle-physics experimenters will be looking for new AB effects in new domains."

Physical consequences of a gauge-invariant quantum theory: Aharonov-Bohm effect in QCD!!

Deep-inelastic lepton-nucleon scattering: Attractive final-state interactions

As a result: $Sivers|_{DIS} = -Sivers|_{DY}$

See e.g. Pijlman, hep-ph/0604226 or Sivers, arXiv:1109.2521

C. Aidala, HiX Workshop, November 19, 2014

Physical consequences of a gauge-invariant quantum theory: Aharonov-Bohm effect in QCD!!

Deep-inelastic lepton-nucleon scattering: Attractive final-state interactions Quark-antiquark annihilation to leptons: Repulsive initial-state interactions

Simplicity of these two processes: Abelian vs. non-Abelian nature of the gauge group doesn't play a major qualitative role.

BUT: In QCD expect additional, new effects due to specific <u>non-Abelian</u> nature of the gauge group

the 504226 ers, arXiv:1109.2521

As a r

QCD Aharonov-Bohm effect: Color entanglement

- 2010: Rogers and Mulders predict *color entanglement* in processes involving p+p production of hadrons if quark transverse momentum taken into account
- Quarks become correlated *across* the two protons
- Consequence of QCD specifically as a *non-Abelian* gauge theory!

$$p + p \rightarrow h_1 + h_2 + X$$

Color flow can't be described as flow in the two gluons separately. Requires simultaneous presence of both.

Testing the Aharonov-Bohm effect in QCD as a non-Abelian gauge theory

Get predictions from fits to data where

no entanglement expected

 $p+A \rightarrow \mu^+ + \mu^- + X$ for different invariant masses: No color entanglement expected

Testing the Aharonov-Bohm effect in QCD as a non-Abelian gauge theory

Get predictions from fits to data where no entanglement expected

 $10^{-2} = \pi^{0} - h$ $0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3$ Out-of-plane momentum component p_{out} (GeV/c)

Make predictions for processes where entanglement *is* expected; look for deviation 40

Summary and outlook

- Data from RHIC are helping to constrain the gluon and flavor-separated sea quark helicity distributions
- Lots of interesting effects continue to be observed in transverse single-spin asymmetries in p+p
 – Spin-momentum and spin-spin correlations
- Additional results forthcoming from 2012 and 2013 data sets
- Stay tuned for polarized p+p and p+A running in 2015!

Summary and outlook

- Data from RHIC are helping to constrain the gluon and flavor-separated sea quark helicity distributions
- Lot Hadronic interactions play a in t complementary role to DIS in the study
 -S of nucleon structure, and allow further
 Ad exploration of color effects

2013 data sets

Stay tuned for polarized p+p and p+A running in 2015!

rved

Additional Material

Neutral pion cross sections

Jet reconstruction at STAR

Particl

Jet direction

- For 2006 200 GeV data:
 Mid-point cone algorithm
 Adapted from Tevatron II hep-ex/0005012

 a. Seed energy = 0.5 GeV
 b. Cone radius R = 0.7 in η-φ
 space
 c. Split/merge fraction f = 0.5

 For 2009 200 GeV data

 Anti-k_T algorithm
 Cacciari, Salam, and Soyez, JHEP 0804, 063
 o Cone radius R = 0.6

Parton

Jet double-helicity asymmetry at 510 GeV

Also clearly nonzero

Sampling the integral of ΔG : $\pi^0 p_T vs. x_{gluon}$

Inclusive asymmetry measurements in p+p collisions sample from wide bins in x sensitive to (truncated) integral of ΔG , not to functional form vs. x

Based on simulation using NLO pQCD as input

C. Aidala, HiX Workshop, November 19, 2014

Dijet cross section at 200 GeV and 500 GeV

 Di-jet cross section well described by NLO pQCD with corrections for hadronization and underlying event

C. Aidala, HiX Workshop, November 19, 2014

STAR

48

Dijet double helicity asymmetry

- Clear nonzero asymmetry observed
- Can better reconstruct hard scattering kinematics to pin down x values probed

PHENIX Run-13 preliminary W peaks (midrapidity)

Forward eta cross section at 200 GeV

51

Transverse single-spin asymmetry in dihadron production

Asymmetry (M_{Inv},p_T)

- A_{UT} as a function of M_{Inv} plotted for 5 p_T bins
- Avg M_{Inv} in each M_{Inv} bin decreases with decreasing <p_T>
- Significant asymmetry seen at mid-M_{Inv} and high <p_T>

Transverse single-spin asymmetry in dihadron production

Asymmetry (p_T,M_{Inv})

- A_{UT} as a function of p_T plotted for 5 M_{Inv} bins $0.06 = \frac{1}{p^+ p \rightarrow \pi^+ \pi^+ + X}$ $0.05 = \frac{1}{M_{Inv}} (GeV/c^2)$
 - Avg p_T in each p_T bin slightly decreases with decreasing <M_{Inv}>
 - Asymmetry rises significantly for high p_T and high M_{Inv}

Azimuthal distribution of pions within jets

 A_{UT} vs. z for $x_{r} > 0$

- Collins-like measurement
- Nonzero effect observed

Azimuthal distribution of pions within jets

 A_{UT} vs. p_T for $x_F > 0$

η and $\pi^0 A_N$ at midrapidity

0.1⊢ (a) $p+p \rightarrow \pi^0 + X$ 0.05 0.004 -0.05 0.002 -0.002 -0.1 -0.004 Å 0.2E (b) $p+p \rightarrow \eta + X$ 0.15E ●-0.35 < n < 0.35 0.20 < hl < 0.35, x > 0 0.1E $\nabla 0.20 < h_1 < 0.35, x_2 < 0$ 0.05E n -0.05 -0.1 2 6 8 10 12 Δ p_(GeV/c)

p+p √s=200 GeV

PHENIX collaboration: PRD90, 012006 (2014)

Sensitive to gg, qg scattering Consistent with zero

. Aluaia, піл workshop, November 19, 2014

Enhanced A_N for isolated forward neutral pions

Transverse Spin Phenomena - Large Forward AN

The puzzle continues...

- 1-photon events, which include a large π⁰ contribution in this analysis, are similar to 2photon events
- Three-photon jet-like events have a clear nonzero asymmetry, but substantially smaller than that for isolated π^{or}s

A_N for #photons >5 is similar to that for #photons = 5

and points to a need for qualitatively new instrumentation and measurements

Open heavy flavor A_N to probe twist-3 trigluon correlations

Expect measurement with ~0.01 accuracy from 2015 data, with displaced vertex heavy flavor tagging

• π*

• π΄

Pattern of pion species asymmetries in the forward direction \rightarrow valence quark effect.

0.4

But this conclusion confounded by kaon and antiproton asymmetries!

Another surprise: Transverse single-spin asymmetry in eta meson production

<

$$p^{\uparrow} + p \rightarrow \eta + X \quad \sqrt{s} = 200 \,\text{GeV}$$

 $\eta \rightarrow \gamma + \gamma$

Larger than the neutral pion!

 $.55 < X_F < .75$ $\left\langle A_N \right\rangle_{\eta} = 0.361 \pm 0.064$ $\left\langle A_N \right\rangle_{\pi} = 0.078 \pm 0.018$

$$\pi^{0} \equiv \frac{u\overline{u} - d\overline{d}}{\sqrt{2}}$$
$$\eta \equiv \frac{u\overline{u} + d\overline{d} - 2s\overline{s}}{\sqrt{6}}$$

$$\begin{array}{c} 0.8 \\ 0.8 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.7 \\ 0.7 \\ 0.8 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\$$

PRD 86:051101 (2012)

Another surprise: Transverse single-spin asymmetry in eta meson production

RHIC as a polarized p+p collider

