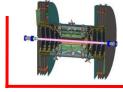



# **Sensors/FPHX Readout Chip**

# WBS 1.4.1/1.4.2


Jon S Kapustinsky



• Los Alamos

1

Jon S Kapustinsky



# Outline

- Overall design of the FVTX wedge and FPHX readout chip
- Silicon sensor specifications and tests
- FPHX specifications and tests
- Schedule

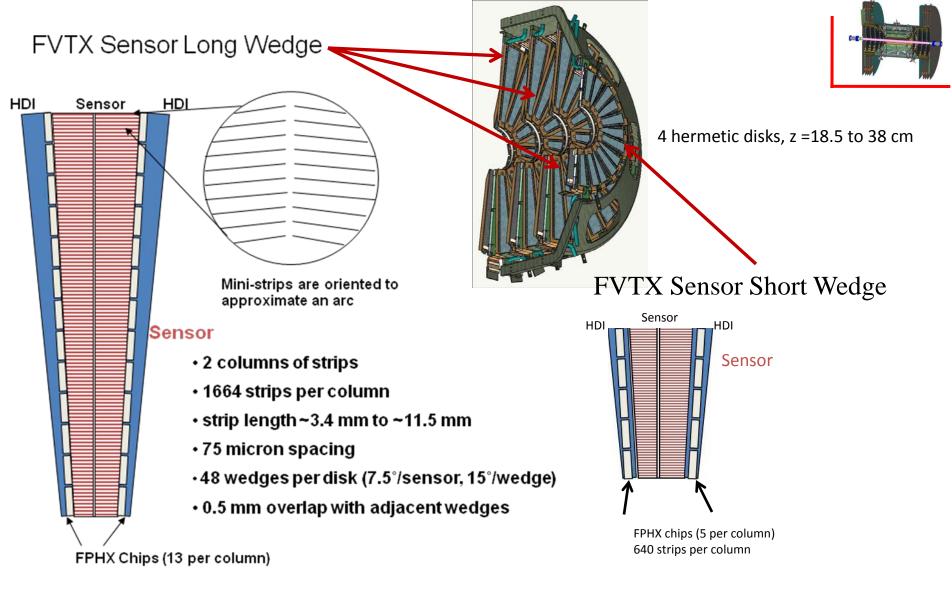




2



### Design Decisions Leading to the FVTX Sensor Wedge and FPHX


Technical risk minimization the key driver

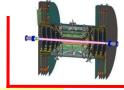
- Mini-strips maintain good resolution in r and phi with reasonable occupancy and manageable channel count
- Wire bonds (as opposed to bump bond design)
- Chip placement moved from centerline of sensor to the edges
  - minimizes potential noise coupling between chip and sensor
  - facilitates implementation of decoupling between sensor bias and chip reference and avoids long path-length sensor return to ground
- Wedge assembly unit based on ease of assembly (see Dave Winter's talk later today)



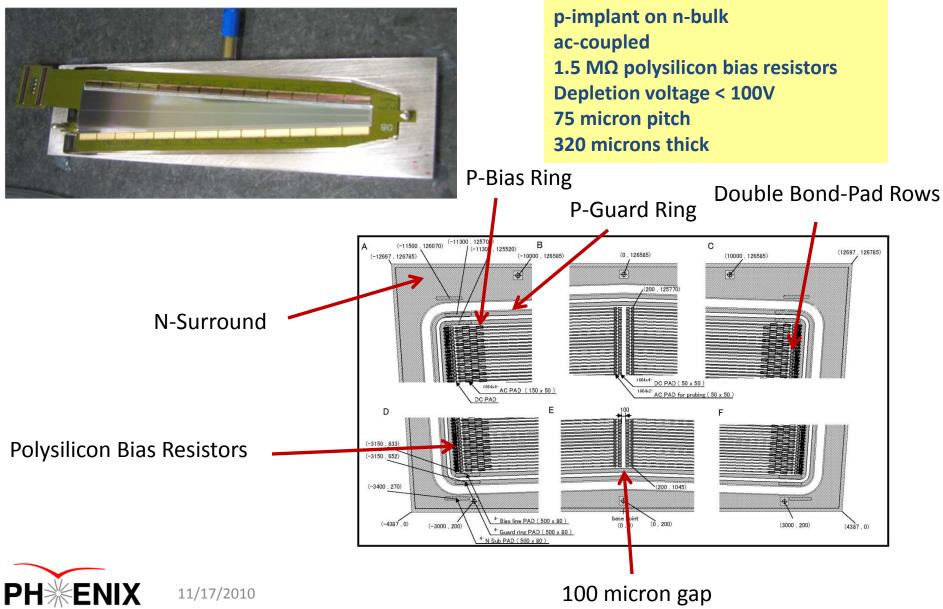
• Los Alamos

3




Overall length 126.8 mm Overall width 8.8 mm i.r., 25.4 mm o.r. Overall length 50.1 mm Overall width 8.8 mm i.r., 15.3 o.r




11/17/2010

**PH\*ENIX** 

### **FVTX Sensors**



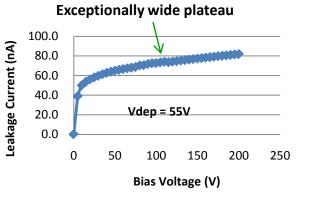
#### Novel design places two independent sensors on one substrate

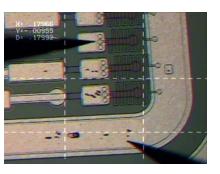


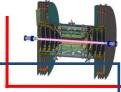
## **QA Silicon Sensor Wedges (UNM, LANL)**

### **QA** specifications

**PH** 


- Visual inspection to identify processing or handling flaws
- Current versus voltage characteristic curve for each sensor
- Full depletion voltage and breakdown voltage for each sensor
- Individual strips probed at UNM to confirm Hamamatsu results


### Sensors delivered from Hamamatsu are fully tested


- Coupling capacitor integrity or short for each strip
- Implant open or short for each strip

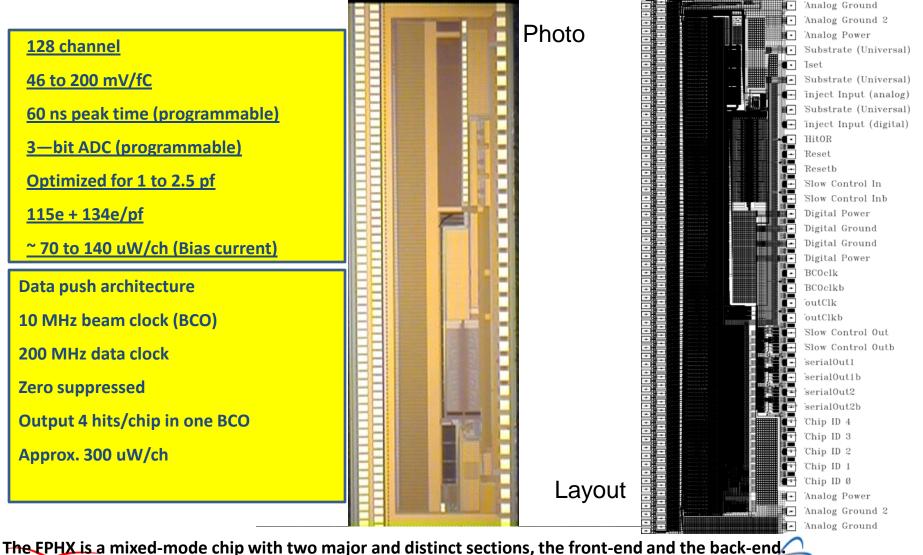
11/17/2010

Polysilicon resistor open or short for each resistor

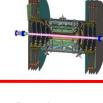






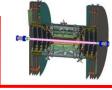



### The FPHX Chip

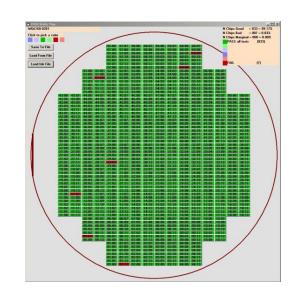

**PH**<sup>\*</sup> ENIX

11/17/2010

The FPHX is the custom readout chip designed for the FVTX Silicon Sensor. Each FPHX chip integrates and shapes (CR-RC) signals from 128 channels of mini-strips, digitizes and sparsifies the hit channels each beam crossing (106ns beam clock), and serially pushes out the digitized data.






## **The FPHX Chip**

All major functions of the FPHX tested on the wafer probe station. One wafer per day. Greater than 95% yield.







11/17/2010

**PH**<sup>\*</sup>ENIX

FNAL designed FPHX-specific probe card
FNAL developed control software to run the probe station

•FNAL developed software to run test program on the probe station

- •All registers written to and read back
- Pulser scan tests run for each die
- •Bad chips were inked
- •All test results written to a database



Jon S Kapustinsky

### **Schedule For Sensors**

Initial Prototype, ON-Semi – May, 2007

Current Prototype, Hamamatsu – shipped 31 October, 2008

**Production Order submitted to Hamamatsu** October, 2009

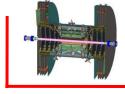
Production delivery 3-to-5 months ARO (partial deliveries)

**Production order:** 

**343 Large Wedge Sensors** 

• 288 installed in FVTX

• 55 spares


**120 Small Wedge Sensors** 

• 96 installed in FVTX

•24 spares

| WBS       | Item                         | Date            |
|-----------|------------------------------|-----------------|
| 1.4.1.2.1 | Design prototype sensor mask | 06/24/08 done   |
| 1.4.1.2.2 | Process prototype sensors    | 11/08/08 done   |
| 1.4.1.2.3 | Test prototypes              | 02/10/09 done   |
| 1.4.1.2.4 | Wire-bond sensor to FPHX     | 04/10/09 done   |
| 1.4.1.3.1 | Submit production sensors    | 10/23/09 done   |
| 1.4.1.3.2 | QA production sensors        | 04/20/2010 done |

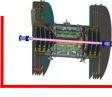




PH

#### 8448 installed in FVTX

#### ~13,000 tested die available for assembly




**PH**<sup>\*</sup>ENIX

| WBS                     | item                                    | Date          |
|-------------------------|-----------------------------------------|---------------|
| 1.4.2.3                 | FPHX layout design                      | 04/10/08 done |
| 1.4.2.6                 | Design review                           | 04/14/08 done |
| 1.4.2.4.1               | Submission to MOSIS                     | 06/22/08 done |
| 1.4.2.4.2               | Prototype tests                         | 10/10/08 done |
| 1.4.2.4.3,<br>1.4.2.4.4 | Submit second prototype run             | 06/16/09 done |
| 1.4.2.4.5               | Test second prototype                   | 09/25/09 done |
| 1.4.2.4.9               | Second run performance review           | 10/01/09 done |
| 1.4.2.5.1               | Submit engineering run (production run) | 12/17/09 done |
| 1.4.2.5.2               | Test production wafers                  | 05/14/10 done |
|                         | Dice Production wafers                  | 07/09/10      |
|                         |                                         |               |

**FPHX Schedule** 





11/17/2010

Jon S Kapustinsky

## Summary

- Sensor design, mask and prototype production complete
- Sensor QA complete
- Production sensor order complete
- FPHX first round fully functional prototype complete
- Bench tests validate analog and digital performance specs
- FPHX second round complete
- Second round changes perform as expected
- FPHX production complete
- FPHX probe station tests complete
- FPHX wafers diced and delivered to SiDet





PH