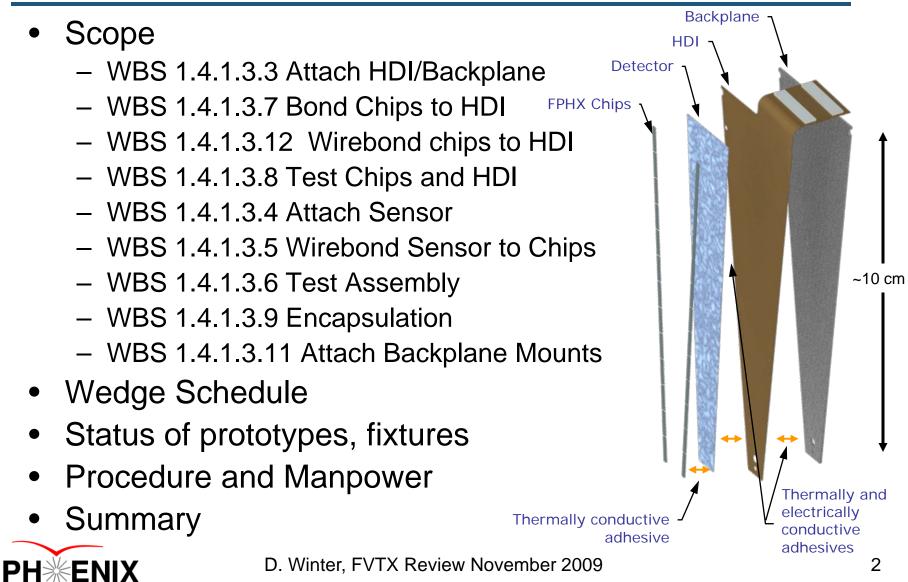


FVTX Wedge Assembly WBS 1.4.1.3.3 to 1.4.1.3.12


David Winter Columbia University FVTX Wedge Manager

Talk Outline

Scope

- Work with vendor to:
 - Prepare assembly lab(s)
 - Develop assembly procedure
- Receive backplanes, high-density interconnects (HDIs), sensors
 - All components arrive tested and qualified
 - HDIs populated with passive components
- Assemble received components into wedges
- Execute QA and testing procedures
- Enter QA/Test results into database
- Store assembled units
- Deliver assembled wedges to detector assembly facility at BNL

Wedge Schedule

Highlights of Dates Important to Assembly					
•	2 nd Prototyping/design of components, fixtures:	In progress			
•	Procure and Q/A sensors:	11/4/09	4/20/10		
•	Procure HDI:	10/27/09	2/9/10		
•	Fabrication of backplanes:	12/8/09	3/29/10		
•	Procure Wedge Assembly fixtures:	11/6/09	12/31/09		
•	FNAL testing of production run of FPHX:	12/25/09	2/4/10		
•	Wedge assembly:	2/2/10	1/13/11		
	 WBS 1.4.1.3.3 Attach HDI to Backplane: 	2/2/10	3/8/10		
	 WBS 1.4.1.3.12 Wirebond FPHX to HDI 	2/16/10	7/12/10		
	 WBS 1.4.1.3.5 Wirebond sensor to FPHX 	3/9/10	10/14/10		
	 WBS 1.4.1.3.9 Encapsulation 	4/6/10	11/11/10		
	 WBS 1.4.1.3.11 Attach BP mounts 	6/8/10	1/13/11		
•	Endcap assembly (wedges onto disks):	6/22/10	1/24/11		

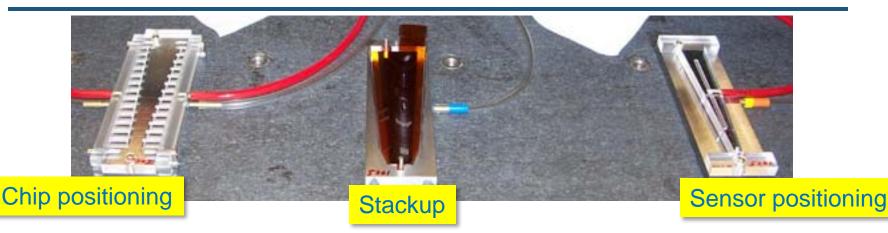
Important dependencies

- Critical path components: FPHX, HDI 2nd prototype, Backplanes
- Sensor development and production, assembly fixtures



- Sidet at FNAL was contracted to do prototype assembly
 - Develop and evaluate procedures and fixtures
 - Develop Cost & Schedule estimate for production
 - Assemble prototypes for noise, cosmics, and test beam data
- Assembly fixtures designed and awaiting fabrication

Status of Prototype Assembly


- Sidet has performed prototype assembly
 - In-line with previous experience, only technical challenge is size of FPHX chips (but they feel comfortable with them now)
 - Developed procedures
 - Evaluated assembly fixtures
 - R&D on adhesives (lamination tests, shapes, procedures)
 - Assembled prototype units for testing
 - Finished as of August 2009
- Prototypes produced to date (all 26-chip size):
 - Kapton HDI with sensor + 1 chip
 - Kapton HDI with sensor + 15 chips $\pm \pm$
 - PCB HDI with 1 chip
 - PCB HDI with sensor + 26 chips \bigstar
 - PCB HDI with sensor + 8 chips (x2) \bigstar
 - PCB HDI with sensor + 8 chips (with FPHX2) \bigstar
 - \star Used to take test beam data
 - \bigstar Used to take cosmic ray data

Assembly Fixtures

- Prototypes delivered to FNAL 12/9/09
 - 2 Sets; one used extensively, 1 held in reserve
- Initial evaluation by Sidet very positive
 - Fit well together
 - Allowed significant work to take place on procedure development
 - Enabled prototype modules to be built
 - Some issues identified (see next slides)

Assembly Fixture Issues and Solutions

Issue	Solution
BP without pedestals can't be precisely placed	Designed BP positioning fixture similar to sensor positioning fixture
Scribe lines for chip placement hard to use	Glued 160 um wires as chip stopsInvestigating machined stops
Chip spacing too narrow for Kapton HDI design	Fixture design changed to match Kapton
Acrylic sensor transfer fixture cracked	Design changed to use Al

8

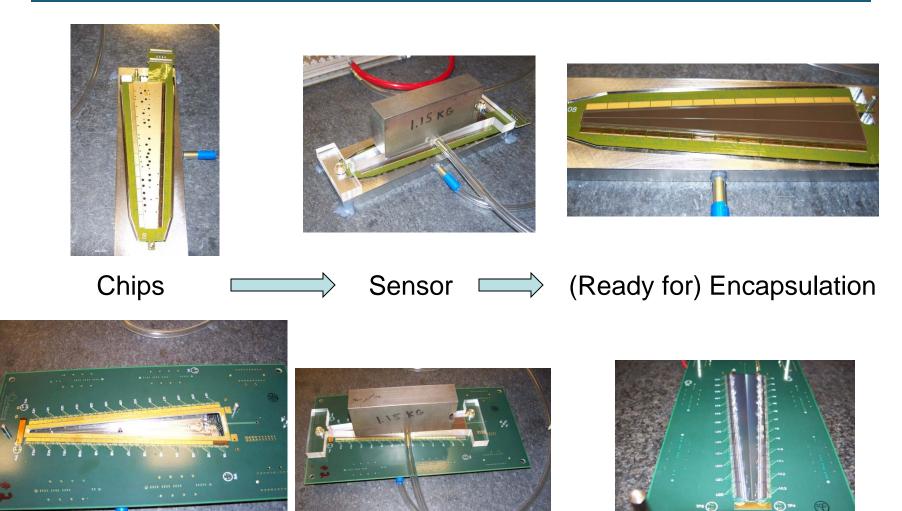
Current Assembly Procedure

- 1. Bond HDI to backplane \bigstar
- 2. Bond FPHX readout chips to HDI \bigstar
- 3. Wire bond FPHX output pads to HDI \star
- 4. Test HDI + FPHXs
- 5. Bond sensor to HDI \star
- 6. Wire bond sensor output pads to FPHX input pads \bigstar
- 7. Test assembly
- 8. Encapsulate wire bonds \bigstar
- 9. Final Testing of assembly
- 10. Pedestal attachment/HDI bending
 - Additional details
 - Strips of Arclad 7876 (2 mil) adhesive tape for:
 - Bonding chips to HDI
 - Bonding side edges of sensor to HDI
 - Ag epoxy in center area of sensor for bias
 - Encapsulant is Sylgard 186
 - Assembly (Sidet) time includes inspection and QA
 - Traveler documents for each module

PH^{*}ENIX

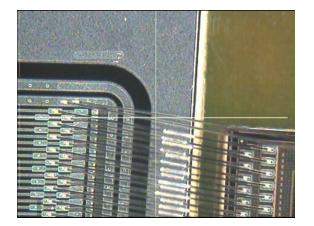
D. Winter, FVTX Review November 2009

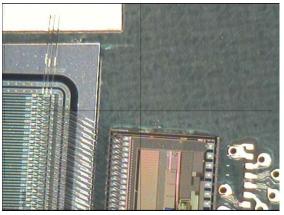
RED: performed by FVTX


BLACK: performed by Sidet

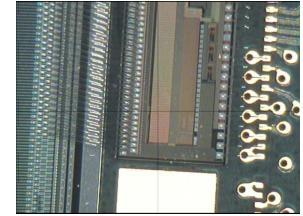
- ★ Developed procedure
- \bigstar Done manually
- ★ Work in progress

Assembling the Prototypes





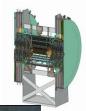
Assembling the Prototypes (2)



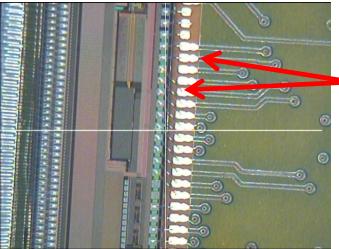
Kapton HDI missing bond pad for guard ring Bonded to FPHX pad

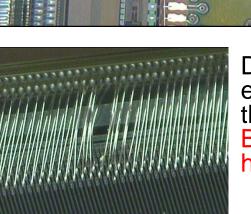
Kapton HDI

PCB HDI



Kapton and PCB HDIs have different chip spacing Hand-mounted and wirebonded without problem





Some challenges allowed Sidet to demonstrate their technical prowess...

Mismatch between FPHX and HDI pads Wirebonded with no trouble

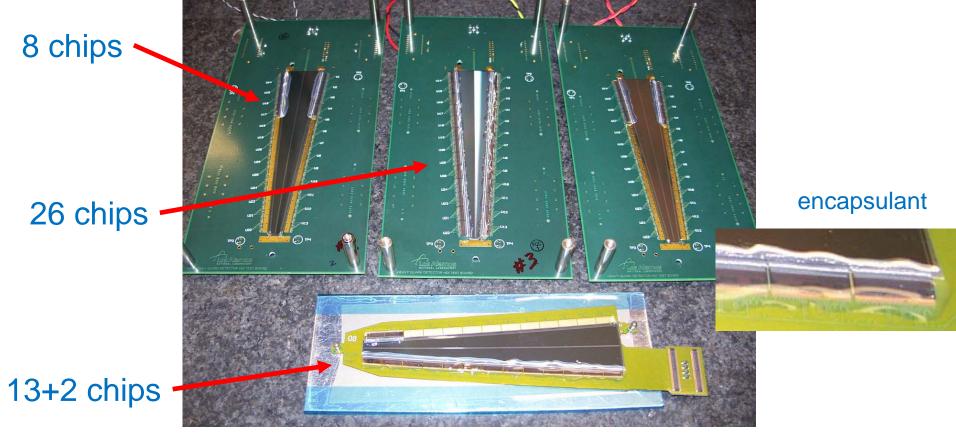
PH SENIX

Discovered just how easy it is to bump the wirebonds Bonds separated by hand (none broken)

Chip 1

Chip 12

Chip 13


Distance between vias on left & right led to interference between chips, sensor and vias Thin bead of epoxy to protect vias allowed 26 chips to be placed

3 PCB and 1 Kapton HDIs with chips and sensors, encapsulated

Proposed QA and Testing of Wedge Units

Basic Procedure includes:

- Power up to verify low voltage and bias channels are operational
- Download of configuration to the FPHX chips
- Read back of configuration from the FPHX chips
- Threshold and noise measurements of the FPHX chips
- Readout of strips in response to external source (for example, LEDs)
- Record results in database
- In-line with testing FVTX has done with prototype modules
- Plan calls for testing at various stages of assembly
- Test multiple units at once (for example, current ROC can easily read out four wedges at once)
- Final qualification to be performed after assembly completed and before shipping



- Important goal of the prototype SOW was to develop a production (cost and schedule) estimate
- Estimate produced in Spring/Summer
- SOW finalized this Fall.
- In current estimate, production spans ~40 weeks
 - Primary bottleneck is wirebonding (31.5 weeks)
 - Testing can take place in parallel
 - Does not include attaching of pedestals
- Quoted cost is \$248k. Includes:
 - Labor
 - Materials and Services
 - Indirect

Basis for Schedule Estimates

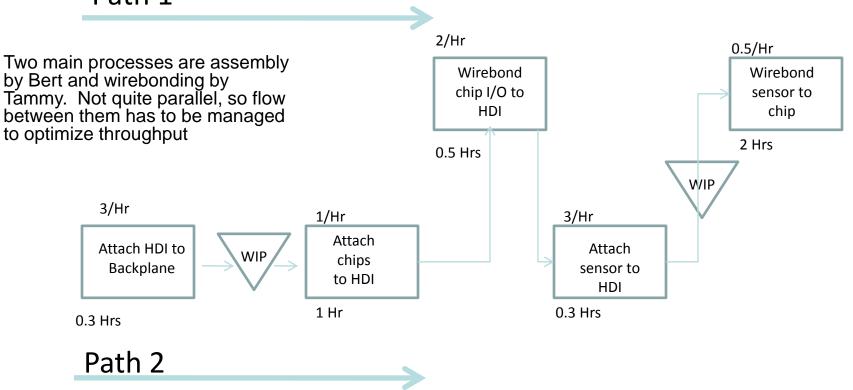
Step	Rate per week	Responsibility
HDI to BP	100	Senior, Junior Tech
FPHX Chips to HDI	40	Senior, Junior Tech
Wirebond FPHX- HDI	40-60	Tech Specialist, Sr. Technician
Sensor to HDI	120	Senior, Junior Tech
Wirebond Sensor- FPHX	20	Tech Specialist, Sr. Technician
Encapsulate	40-50	Junior Tech

Assumptions

- Sidet technicians in charge of assembly steps; FVTX personnel for QA testing
- At least 4 sets of assembly fixtures + enough bases for transport between steps
- QA System testing done in parallel and keeps up with production

Schedule will need to be optimized:

- Steps are done in series, and more than one step handled by each tech
- Individual throughput is not the same from step to step
- Functional balance to be established to prevent techs from being idle waiting for predecessors


D. Winter, FVTX Review November 2009

16

Illustration of Process Flow

Path 1

- Testing done in parallel and throughput can keep up with production
- Similar case for encapsulation
- Glue curing can happen overnight and not critical for process flow

D. Winter, FVTX Review November 2009

17

Projected Manpower Requirements

- Currently assembly itself calls for Sidet technicians
 - Steps that are manpower and time-intensive are also require technical skill (chip placement, wirebonding)
 - Handled by senior and junior techs, with load taken more by junior techs as experience is gained
 - Assembly: Tech Supervisor, Jr/Sr Technician
 - Wirebonding: Tech Specialist, Sr Technician
 - Encapsulation: Trechnician
- FVTX personnel in charge of wedge testing
 - Modest rate of 4-8 tested per day (easily reachable) more than keeps pace with production
 - Will require 1-2 people for span of production time (~30 weeks)
 - Graduate students and Postdocs available from several institutions to perform on-site testing
 - Subsystem manager stationed on-site to oversee production

Summary: WBS 1.4.1.3.3-12

- Specification Document
- Prototype status
- Number of wedges
- Spares
- Institutions Involved
- QA procedures in place
- Production schedule:
- Assembly work completed:
 - Several prototype modules
 - Fixtures prototyped and in process of revision
 - Sidet established that assembly is well within their technical expertise
 - Sidet provided production estimate & SOW now in place

TDR, Management plan

Complete

104 small, 313 large

8 small, 25 large

Columbia, NMSU, UNM, LANL

Done

2/2/10 to 1/13/11

- Wedge assembly comprises WBS items 1.4.1.3.3 –1.4.1.3.12
- Production schedule: 2/2/10 to 1/13/11
- Prototyping assembly work complete
 - Several prototype modules
 - Fixtures prototyped and in process of revision
 - Sidet established that assembly is well within their technical expertise
 - Sidet provided production estimate
- Production SOW in place

