

FVTX Simulation Status

Xiaorong Wang New Mexico State University

- Physics Motivation
- Detector Performance
- (Un)-blind Analysis
- Summary and Future Work

Measurement in p + p, d + Au and Au + Au Collisions

Single Muons measurements:

- Precision heavy flavor and hadron measurements
- Separation of charm and beauty through semi-leptonic decay
- Improve W background rejection

Dimuons measurements:

- Separation of J/ ψ from ψ ' at forward rapidity
- $B \rightarrow J/\psi$, golden channel to measure B cross section.
- First Drell-Yan measurement

Physics FVTX Can Access:

- Energy loss mechanism in hot dense medium (Heavy flavor R_{AA}, v₂)
- Cold nuclear effects (Heavy flavor R_{dAu})
- Gluon polarization Δ G/G (Heavy flavor A_{LL})
- Sivers function, higher twist (Heavy flavor A_N)
- crucial test of QCD non-universality (Drell-Yan A_N)

Current Status

- Various physics plots were made in 2007/2008 based on study of S:B improvement with 2007 detector design and software.
- Need to update all the physics plots using new full simulation with current detector geometry and updated offline code.
- Simulation work is also a preparation for real data analysis.

FVTX Software Status

4

Track Finding Efficiency

Xiaorong Wang, NMSU, FVTX Review

Track Matching Efficiency

About 15% efficiency loss due to incorrect track matching in high multiplicity environment.

Xiaorong Wang, NMSU, FVTX Review

DCA_R

DCA_R Shape

- μ decay from D, B and hadrons have different DCA_R shapes in a given μ p_T bin.
- DCA_R shape also depends on the parent particle and the decay μ p_T.

DCA_R Shape vs p_T

DCA_R (pT=3.5GeV/c)

Blind Analysis Challenge

Un-blind Analysis

- Analysis procedures for the un-blind analysis are exactly the same as for the blind one.
- FVTX team generates the MC event and mix them with a known fraction.
- Simulated samples (B/D/BG) are split in two First part is used to generate the B/D/BG shapes used for the fit. (training sample).

Second part is used to generate the inclusive measured sample.

Note on the intermediate results shown in **this** presentation:

- Right now the same BG sample is used for the training sample and the mixed sample
- \bullet The same D and B $p_{\rm T}$ spectra are used for training and mixed samples

These limitations are known to bias the results and we are working on addressing them.

Blind and Un-blind Statistics

Event Type	Goal Statistics N _{event} (10pb ⁻¹)	Achieved Blind Statistics Today	Achieved Un-blind Statistics Today
D Event (All D meson)	4.25 B	250 K	202 M 202 M (training)
B Event (All B meson)	24 M	250 K	1.1 M 1.1 M (training)
BG Event I (PYTHIA) (p _T > 2.75 GeV/c)	240 B	1 M	10 B
BG Event II (0.75 < p _T < 2.75 GeV/c) (Single Particle Generator)			10 B
Mixed Measured Sample		10 M	202 M (D) + 1.1M (B) + 10B (BG)

Mixed using ratios consistent with the cross sections measured by PHENIX.

- 1. Use Monte Carlo to determine DCA_R shapes for each particle type in each p_T bin (0.5 GeV/c wide)
- 2. Then for mixed sample, in each given p_T and in each DCA_R bin

 $N_{total}^{measure}(p_T, DCA_R) = N_D(p_T) f_D^{sim}(p_T, DCA_R) + N_B(p_T) f_B^{sim}(p_T, DCA_R) + N_{BG}(p_T) f_{BG}^{sim}(p_T, DCA_R)$

$$N_D(p_T) + N_B(p_T) + N_{BG}(p_T) = N_{total}^{measure}(p_T);$$
 $N_i(p_T)$ are fit parameters.

where,
$$f^{sim}_{i}(p_T, DCA_R) = \frac{N_i(p_T, DCA_R)}{N_i(p_T)}, i = B, D, BG$$
 f_i^{sim} are training samples

3. For each p_T bin, use TMinuit to fit all DCA_R bins. It will give the N_i value for B, D and background.

c and b Separation -- Results

Limitations:

Same p_T spectra for B and D and same background sample are used in training sample and mixed sample.

Systematic error need to be quantified.

PHKENIX Preparation for Real Data Analysis

-- manpower

LANL: Zhengyun You, Hubert van Hecke,* Melynda Brooks, Ming Liu
NMSU: Xiaorong Wang, Elaine Tennant
Saclay: Hugo Pereira
UNM: Jeongsu Bok, Imran Younus
Columbia University: Dave Winter, Eric Vazquez, AAron Veicht
SUNYSB: Axel Dress, Benjamin Bannier

Software Leader H. v Hecke (LANL) X. Wang (NMSU) Database **Online Monitoring** Alignment **Offline Software** Analysis **GEANT Simu.** Z. You (LANL) Columbia LANL M. Brooks (LANL) LANL, H.v Hecke (LANL) NMSU Columbia Z. You (LANL) NMSU, X. Wang (NMSU) Columbia, D. Winter (Columbia) UNM, E. Vazquez (Columbia) Saclay, H.Pereira (Saclay) BNL, ...

Preparation for Real Data Analysis PH^{*}ENIX

-- cosmic ray and beam test

htemp res1 {select==1&&chisq<20.} Entries 287 Mean RMS

Alignment and Calibration

- Calibration was done regularly for the beam test.
- Fit residuals after alignment read out from 4 telescopes. •σ ~1 strip (75µm)

Jon Kapustinsky's talk

Online monitoring preparation

- BCO, hit distributions flat within statistics
- Reasonable number of 1,2,3 strip-wide clusters
- Cluster charge looks to be ~18,000 electrons

Summary and Work To Do

- FVTX software is ready for realistic data simulations and real data analysis.
- It provides high reconstruction and matching efficiency in p + p and Au + Au collisions.
- The current (un)blind analysis demonstrates that the FVTX detector provides sufficient DCA_R resolution to make c and b separation possible. However further work is needed to be completed on the analysis chain to show all the necessary steps in a c/b separation physics.
 - •Quantify the sensitivity of the method described here on the input p_T spectrum and derive a corresponding systematic error.
 - •Study the possible use of additional information (isolation cut, DCA $_{\Phi}$, χ ,et al.) to further improve S/B.
- Update physics plots.
- Some preparation work towards real data analysis has already started and will be continued.