

FVTX Simulation and Analysis Software

Cesar L da Silva(LANL), Xiaorong Wang(NMSU)
For the FVTX group

Physics Goals with FVTX

Measurement in p + p, d + Au and Au + Au Collisions

Single Muons measurements:

- Precision heavy flavor and hadron measurements.
- Separation of c and b in semi-leptonic decays via decay kinematics.
- Improve W background rejection.

Dimuons measurements:

- Separation of ψ ' from J/ ψ at forward rapidity.
- B→J/ψ, golden channel to measure B cross section.
- Drell-Yan measurement at RHIC.

Physics FVTX Can Access:

- Energy loss mechanism in hot dense medium (Heavy flavor R_{AA,} v₂)
- Cold nuclear effects (Heavy flavor R_{dAu})
- Gluon polarization ∆G/G (Heavy flavor A_{LL})
- Sivers function, higher twist (Heavy flavor A_N)
- Crucial test of QCD universality (Drell-Yan A_N)

Forward Vertex Detector (FVTX)

The challenge: backgrounds (π -> μ and K-> μ) overwhelm the signal.

- Flying distance and decay angle are different. Get DCA components in r (higher resolution) and phi (moderate resolution).
- ➤ Significant improvement in angular resolution of track leading to dimuons mass resolution
- > Track isolation cut will suppress hadrons from jet for W measurement
- \gt Joint tracking with MuTr. Track χ^2 cut will discriminate muon from hadron background.

FVTX Software Overview

Offline Track Reconstruction

Current status

- > FVTX disks have updated to reflect as-built geometry.
- Detector response includes noise and digitization.
- Reconstructed FVTX tracks in real data and macthed with MuTr tracks. Fine Tuning is in process.
- Will add primary vertex-finding module which can use FVTX hits.

Variables of FVTX-MuTr Matched Track

MWGReco PHMuonOut picoDST singleMuon diMuon

PHMuonOut content

each MuTr+FVTX associated track
x,y,z vertex
px, py, pz at vertex
MuTr-FVTX phi residual
MuTr-FVTX theta residual
chi^2 from Kalman Filter
covariant matrix
nFVTX tracks around MuTr track (dphi, dtheta)

for each FVTX station projection

cluster size(station)

cluster charge(station)

(cluster peak) - (track projection)

peak strip index

Two FVTX filtered Golden Event Raw Data sets are stored on disk

- Events with reconstructed dimuons from MuTr (Golden J/Ψ sample)
 - Check FVTX-MuTr matching
 - Check DCA for the prompt μ
 - Study dimuons mass resolution improvement
- >Events with good reconstructed single μ with moderate to high momenta.

FVTX Single Muon Analysis

$$N_{total}^{measure}(p_{T}, DCA_{R}) = N_{p}(p_{T})f_{p}^{sim}(p_{T}, DCA_{R}) + N_{D}(p_{T})f_{D}^{sim}(p_{T}, DCA_{R}) + N_{B}(p_{T})f_{B}^{sim}(p_{T}, DCA_{R}) + N_{BG}(p_{T})f_{BG}^{sim}(p_{T}, DCA_{R}) + N_{D}(p_{T})f_{D}^{sim}(p_{T}, DCA_{R}) + N_{D}(p_{T})f_{D}^{sim}(p_{T},$$

$$N_{p}(p_{T}) + N_{D}(p_{T}) + N_{B}(p_{T}) + N_{BG}(p_{T}) = N_{total}^{measure}(p_{T});$$

where,
$$f_i^{sim}(p_T, DCA_R) = \frac{N_i(p_T, DCA_R)}{N_i(p_T)}$$
, $i = prompt, B, D, BG$

Clustering, Tracking and Residuals

Clustering

> Track Finding

Extract Residuals

Less than 50 μ m resolution in real data and simulation, which includes detector intrinsic resolution (25 μ m) + multiple scattering + projection errors met our deliverables.

Alignment (I) Survey

- Mechanical alignment, allows corrections for each wedge.
- Survey data for the big disks entered into the database.
- Sigma of residuals improved after survey corrections were made.

Alignment (II) – Offline Alignment

- Offline alignment, an algorithm (Millepede) which uses straight tracks align detectors. The algorithm has been working well in PHENIX MuTr system, is now being implemented in FVTX.
- Tested with simulation
 - Data Introduction mis-alignment for each wedge randomly [-100, 100] μm;
 - Test with 50k MC single muon zero-field tracks.
 - The input mis-alignments are well reproduced, with Residual sigma ~4 µm;

Correlations Between FVTX and BBC

FVTX track z versus BBC Vertex, North Arm

- > Select FVTX tracks which have 4 coordinates with good χ^2 .
- Project track back to z axis (FVTXz0reco) compare with BBC z vertex.
- Can see the arm can not reconstruct when vertex is underneath FVTX, but it can project to either side.
- Indicate that FVTX has been timed in and roughly aligned with PHENIX other detectors.

FVTX and MuTr Match

- Loop over MuTr tracks and look for matched FVTX tracks.
- Best matching tracks peaks at 0.
- We expect a few cm window due to the multiple scattering in absorber. Simulations use 3cm windows for matching.
- ➤ It will be improved once we finish the detector alignment. (FVTX alignment and global alignment)

Database Status

- FVTX disks have been updated to reflect as-built geometry.
 Survey data has been added into database
 Alignment constant from Millepede need to be stored into database
- Detector response includes noise and digitization from calibration data.
 Need to add database connection
- FVTX DAQ download parameters already stored by expert GUI Already put into database
- QA scan: store running time electronics failure Need to add database class
- High Voltage history during the run has been stored in log file.
 Need to add database class

FVTX Group

LANL: Cesar Luiz da Silva, Hubert van Hecke, Melynda Brooks,

Ming Liu, Pat McGaughey, Xiaodong Jiang, Christine Aidala

Huang Jin, Matt Durham, Kwangbok Lee

NMSU: Xiaorong Wang, Feng Wei, Elaine Tennant, Abraham Meles,

Darshana Perera, new student

UNM: Douglas E. Fields, Amaresh Datta, Sergey Butsyk, Aaron Key

Kathy Deblasio, Dillon Thomas

Columbia University: Beau Meredith, Aaron Veicht

Georgia State University: Xiaochun He, Jezghani, Margaret

* student

-- Institutes now working on Muon Arm analyses

BNL, Colorado, ISU, Korea U., RIKEN, UCR, UIUC ...

Will continue muon related analyses with FVTX, like W measurement.

Summary and Future Work

- FVTX software has been used in real data analysis. FVTX tracks have been reconstructed and matched with MuTr tracks and correlated with BBC. Fine tuning is still underway.
- ➤ Filtered golden dimuon and single muon raw data has been stored on-disk. They will allow us to do alignment, fine tune our software and physics analysis.
- ➤ Adding more information into database.
- Finishing importing survey information and use millepede to get final alignment correction (Software is ready).
- Will add VTX both in track finding and primary vertex finding. Will get improved DCA measurement and start physics analysis.

backups

FVTX Real Data Status

Collecting Physics data in PHENIX Big Partition

200 GeV p+p: 100M events with 1/6 of the FVTX

500 GeV p+p: 4.1B events

Lower momentum single muon trigger has been implemented successfully.

Goal: open heavy flavor measurement (c and b)

Trigger: MUON_S(N)_SG3&MUIDLL1_S(N)1D&BBCLL1(noVtx)

Offline Efficiency:

(>80% for p > 5 GeV)

PRDF Filtering will keep all single muon and dimuon golden events on disk.

GoldenEvent_Dimuon.PRDF (MuID_2Deep trigger)
GoldenEvent_FVTX.PRDF (SG1(SG3) &1Deep trigger)

Clustering, Tracking and Residuals

Cluster distributions look reasonable

- Cluster size peaks at 2 strips wide
- ➤ Total charge in the ball-park of expected (need to update ADC→electron conversions).

x = extracted coordinate

FVTX Software Flow Chart

Variables FVTX – MuTr Matched Track

PHMuonOut content

each MuTr+FVTX associated
track

x,y,z vertex

px, py, pz at vertex

MuTr-FVTX phi residual

MuTr-FVTX theta residual

chi^2 from Kalman Filter

covariant matrix

nFVTX tracks around MuTr track (dphi, dtheta)

for each FVTX station

projection

cluster size(station)

cluster charge(station)

(cluster peak) - (track projection)

peak strip index

Track Finding

- Track finding has some good and not-so-good distributions
 - Number of coords = 3, 4, 5...
 - Number of hits versus angle seems to make sense
 - Chi-square distributions have some oddities this actually looks better now when placing cuts on tracks that have appropriate hits, but still tuning to do

Number of coordinates on a track

 χ^2 of track

Residuals Extracted

- Residuals for each wedge now getting to about what you would expect compared to Monte Carlo, but survey and alignment needed for all residuals to line up
- We will run over large filtered sample and make residual versus muon p and see if correlation is as expect.

Detector Efficiencies

- > Take station 0-1-3 tracks
- ➤ Require that the 0-1-3 residual be less than some value
- > Require that the theta and phi of the 0,1,3 track be in some window
- ➤ Now create histogram of (# that pass cuts and have a good station 2 residual)/(# that pass cuts), versus whatever variable you want

Efficiency measured here

Residuals Extracted

- > Station 0-1-2 residuals not as good as station 1-2-3
- South arm has more issues than North Arm
- Probably some remaining geometry issues and/or coordinate calculation issues

FVTX-BBC Correlations

- Select FVTX tracks which have 4 coordinates and a good chi-square fit
- Project track back to the z axis and compare z value to the value of the BBC reconstructed vertex.
- Can see the arm cannot reconstruct when vertex is underneath it but can project to either side
- May be some alignment work to do, shouldn't be difficult

Clustering, Tracking and Resid

Clustering

> Track Finding

Extract Resid

FVTX - MuTr Correlations

- Loop over MuTr tracks and look for candidate matches in the FVTX system
- ➤ Best matching track peaks at ~0 and has close to the expected resolution
- Alignment should be done
- Efficiency should be measured for good MuTr tracks
- > Plots should be made with matching tracks, using filtered data sets

Detector Efficiencies

- Some inefficiency seen in integrated distributions of channel number
- Saw similar issues in the lab when trying to tune the BCO→ReadClk phase. Will have to see if this can be improved or is the limit of the board layout

Channel Distribution Across All ROCs

PH***ENIX**

North Arm new-sg3 turn-on at ~5 GeV/c used file: /direct/phenix+u/xjiang/mapping_xj021012p1_sg3.txt

Thanks John!

South Arm sg3 turn on ~5 GeV/c, used file: /direct/phenix+u/xjiang/mapping_xj021012p1_sg3.txt

Thanks John!