
Digital Signal Processing of Pad Sensors

Schematic Layout

The signal at the input of the shaper is proportional to the current pulse at the 
sensor. Since we measure the charge deposited in the sensor, the output signal of 
the channel should be integral of the current pulse.

Terminology
We are following the terminology as it explained in [AD].

Noise-Free (Flicker-Free) Code Resolution 
The noise-free code resolution of an ADC is the number of bits of resolution 
beyond which it is impossible to distinctly resolve individual codes. This limitation 
is due to the effective input noise (or input-referred noise) associated with all 
ADCs, usually expressed as an rms quantity with the units of LSBs rms. 
Multiplying by a factor of 6.6 converts the rms noise into a useful measure of 
peak-to-peak noise - the actual uncertainty with which a code can be identified - 
expressed in LSBs peak-to-peak. Since the total range (or span) of an N-bit ADC is 
2N LSBs, the total number of noise-free counts is therefore equal to:

Noise-free counts = 2N

peak-to-peak input noise (LSBs)
The number of noise-free counts can be converted into noise-free (binary) code 
resolution by calculating the base-2 logarithm as:

Noise-free code resolution = log2(Nose-free counts)

Fig 1: Schematic layout of the NCC pad sensor readout chain.



The ratio of the full-scale range to the rms input noise (rather than peak-to-peak 
noise) is sometimes used to calculate resolution. In this case, the term effective 
resolution is used. Note that under identical conditions, effective resolution is 
larger than noise-free code resolution by log2(6.6), or approximately 2.7 bits.

Effective resolution = log2
2N

rms input noise (LSBs)


Effective resolution =  Noise-free code resolution + 2.7 bits

Effective Resolution or Noise-Free Code Resolution should not be confused with 
Effective Number of Bits (ENOB) 

Because of the similarity of the terms, effective number of bits and effective 
resolution are often assumed to be equal. This is not the case.

Effective number of bits (ENOB) is derived from an FFT analysis of the ADC output 
when the ADC is stimulated with a full-scale sine-wave input signal. The root-sum-
of-squares (RSS) value of all noise and distortion terms is computed, and the ratio 
of the signal to the noise-and-distortion is defined as SINAD, or S/(N+D). The 
theoretical SNR of a perfect N-bit ADC is given by:

SNR = 6.02 + 1.76 dB

ENOB is calculated by substituting the ADC's computed SINAD for SNR in Equation 
5 and solving equation for N.

ENOB = (SINAD-1.76dB)/6.02

The Noise-free code resolution is best applicable for pulse 
measurements while ENOB – for frequency domain systems.

Noise Sources
input-referred noise - modeled as a noise source connected in series with the 
input of a noise-free ADC.

quantization noise – errors due to digitization of continuous values.

The input-referred noise in a well designed system (good ADC, layout, grounding 
and decoupling) is approximately Gaussian.

The quantization noise can also be considered as a random noise in most cases. 

The quantization error cannot be treated as random in one important case when 
the analog signal remains at about the same value for many consecutive samples 
and the input-referred noise is less than one LSB. Instead of being an additive 
random noise, the quantization error now looks like a thresholding effect or weird 
distortion.

In our application the input-referred noise is larger than LSB, therefore 
we can treat all ADC-related noise as random.



Optimal Digitization of The Pulse With Known Shape
The effect of input noise can be reduced by digital averaging. If noise is random 
then averaging over N samples improves the signal-to-noise ratio N times.

Using optimal digital filtering will further increase signal-to-nose ratio, effectively 
increasing the dynamic range of the system at the expense of overall output 
sampling rate.

In this section we describe three types of optimal FIR (Finite Impulse Response) 
filters applied to a system with random noise. 

Different filters are "best" (optimal) in a different ways [SMITH]. 

The moving average filter is optimal in the sense that it provides the fastest 
step response for a given noise reduction. For our application we will consider 
sliding integrator instead of moving average since we need to integrate the 
input signal.

The matched filter. The idea behind the matched filter is correlation. The 
amplitude of each point in the output signal is a measure of how well the filter 
kernel matches the corresponding section of the input signal. The output of a 
matched filter does not necessarily look like the signal being detected. The 
matched filter is optimal in the sense that the top of the peak is farther above the 
noise than can be achieved with any other linear filter. (To be perfectly correct, it 
is only optimal for random white noise).

The Wiener filter (named after the optimal estimation theory of Norbert Wiener) 
separates signals based on their frequency spectra. The gain of the filter at each 
frequency is determined by the relative amount of signal and noise at that 
frequency:

Assume the ADC takes n samples of signal Si with known shape Fi  . Assume the 
white noise at the  ADC input has level of Vn. 

Sliding Integrator

Output amplitude: Aa=a⋅∑
i=1

n

F i   where a is a conversion coefficient of the ADC.

Output Noise: Na=n⋅Vn  

Signal-to-Nose ratio: SNa= a
Vn

⋅ 1
n

⋅∑
i=1

n

F i

Matched Filter

Filter coefficients (weights) are proportional to the signal shape Wi = w*Fi.   the w 
is an normalizing coefficient.



Output amplitude: Am=a⋅∑
i=1

n

F i⋅W i Am=a⋅w⋅∑
i=1

n

F i
2

Output noise: Nw=Vn⋅w⋅∑
i=1

n

F i
2

Signal-to-Nose ratio: SNw=
a

Vn
⋅∑

i=1

n

F i
2

Signal-to-Noise improvement

Interesting to note that

SNa= a
Vn

⋅n⋅〈Fi〉  〈F i〉 is the mean of the signal shape function.

SNm= a
Vn

⋅n⋅〈Fi2〉  〈F i
2〉 is the mean of the squared signal shape function.

The improvement factor of using matching filter over sliding integrator:

SNm
SNa

=
〈F i

2〉
〈F i〉

=1
sigma2

〈F i〉
2  the sigma is the variance of the signal shape 

function.

Examples:

1) When the signal shape is flat  then, obviously,  is no improvement:
SNm
SNa

=1

2) For linear shape: SNm
SNa

=2⋅2⋅n1
3⋅n1

,  n is the number of samples; for large n 

it reaches 4
3

 = 1.1547

For unipolar shapes the improvement is small (less than n ) since the variance 
cannot be bigger then the mean. For bipolar signals the improvement could be 
very large since the mean of the signal shape could be arbitrary small.

In our application we are using low pass pass filter (4th order Bessel),  it will be 
always negative overshoot in the output pulse shape. 



Optimal Digitization for Readout Channel of NCC Pad 
Sensor

Fig 2: LTSPICE simulation of the readout chain for NCC 
pad sensors. Detector signal (blue) and the output of 
the filter (red) are shown. 



Selection of the Sampling Rate and the Length of the 
Filter

● The signal-to-noise ratio of the original signal has maximum of 6.4 at 
sample 4.

● the matching filter reaches maximum of 10.2 (1.59 times better than 
original signal) at sample 6.

● the sliding integrator reaches maximum of 8.4 (1.32 better than original 
signal) at sample 6.

● the 4-sample moving  delayed by two samples performs as good
 as matching filter, it has maximum of 9.8 (1.52 times better than original 
signal).

Fig 3: Signal-to-noise ratio (solid lines) for sliding 
integrator (red) and for matching filter (blue) versus 
number of samples for random noise with rms=1. The 
thin black  - for moving , delayed by two samples. The 
signal amplitude is green dotted line. The sampling rate 
is 20MHz.



Conclusion:
The sliding integrator with integration time of 200 ns around the signal peak is 
near optimal for the signal shape shown on Fig. 3. This filter improves signal to 
noise ratio by the factor of 0.76∗N .

For example:
● If we use 4-sample  with 20MHz ADC then signal-to-noise improvement will 

be 1.53. 
● If we use 4 times faster ADC (80 Mhz) with  the same noise-free code 

resolution and use 16-sample integration then we will gain another factor of 
two in signal to noise ratio and total improvement will be 3.06.
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