EvB 2002

Major Categories of issues/work

- Performance (event rate)
- Hardware
 - Next generation of PCs
 - Network upgrade
- Control (Sean)
 - Solving CORBA speed/reliability problems
 - Detailed monitoring of components
- Infrastructure (Sean)
 - Compiler, STL implementation
 - Error logging

EvB Performance

Current Status

- Data rate
 - Have achieved rates of > 150 Mbyte/s.
 - No throughput limitations observed so far.
 - Have x3 headroom w/ existing hardware.
- Event rate
 - Currently limited to ~ 1.3 kHz for full system.
 - Individual SEBs can run as fast as 2.3 kHz.
 - ⇒e.g. GL1 SEB On 933 MHz machines
 - ⇒ More typically: 1.8 kHz for "larger" granules
 - Evidence that event rate depends on data volume (issue w/ PCI performance ?)

EvB Performance – Event Rates

How to increase event rates?

- Use full functionality of JSEB
 - Multiple event buffering
 - Interrupts instead of polling
 - ⇒Effects of these changes unknown.
 - ⇒But will be studied in existing system post-run.
- Code improvements
 - Have a number of code improvements "in hand" that we have not been able to fully test.
 - Many more places for optimization.
 - Reasonably achievable goal:
 - ⇒> 3 kHz with existing hardware

EvB Performance – Event Rates (2)

- Hardware upgrade
 - Dual processor machines
 - ⇒≈ factor of 2 (will verify after run using ATP PCs)
 - Faster CPUs: e.g. > 2 GHz P4 w/ DDR memory
 - ⇒SEB performance scales ∝ CPU clock speed.
 - ⇒≈ factor of 2
- Plan: $3 \text{ kHz} \times 2 \text{ (dual)} \times 2 \text{ (cpu)} = 12 \text{ kHz}$
- Contingency
 - JSEB optimization
 - Better compiler (?) & improved STL
 - Improved PCI performance (66 MHz, 64 bit)
 - ⇒ Will study after run using ATP PCs

Upgrade Goals as of Nov 01

- Goal of original PHENIX CDR: 2 Gbyte/s
 - Based on x10 "design" luminosity
 - Since then "design" has increased by a factor of 2 (4 if 116 bunches works)
 - ⇒ Reasonable to expect that RHIC may reach x10 original design in next few years
- Nominally: increase bandwidth by factor of 4
 - Increase data throughput of SEBs
 - ⇒ While keeping # ≈ constant
 - Increase number & throughput of ATPs
- Tony's 10 kHz * 150 Mbyte/s = 1.5 Gbyte/s

EvB Upgrade goals – How to Achieve

Nominally

- Upgrade to 40 Gbit/s switch.
- SEBs w/ OC-12 connections (> 60 Mbyte/s)
- 128 ATPs w/ OC-12 connections.
- Problem:
 - prohibitively expensive if we buy from FORE
 - ⇒ ~ \$500k for ATM hardware

Alternative

- Switch to Gbit ethernet.
 - ⇒> ATM solution for ¼ cost

EvB Upgrade – Gbit Ethernet

Possible implementation

- HP Procurve (256 Gbit/s)
 - Provides 64 Gbit ethernet ports
 - Inefficient to equip w/ fast ethernet use Gbit for ATPs or split w/smaller switches.
- In principle, get 4 Gbyte/s throughput
- Cost estimate

Component	Quantity	Component Price	Total
HP Procurve 9308 switch (256 Gbit/s backplane)	1	\$15,000.00	\$15,000.00
8-Port Gbit ethernet Card for HP 9308	8	\$9,000.00	\$72,000.00
HP 2524 Fast ethernet switch w/ Gigabit uplink	2	\$969.00	\$1,938.00
1000Base-T uplink card for HP2524	4	\$375.00	\$1,500.00
Intel Gbit ethernet NIC	64	\$150.00	\$9,600.00
Cat5e (Gigabit capable) cables	64	\$60.00	\$3,840.00
Quad CPU Rackmount Server w/ RAID system	2	\$8,200.00	\$16,400.00
Dell 1550 dual 1.4 GHz rackmount systems (SEBs)	32	\$2,500.00	\$80,000.00
Quad cpu Beowulf nodes	32	\$4,000.00	\$128,000.00
Total			\$328,278.00

Practical Considerations

Technical Issues

- There were (are) some good reasons for preferring ATM over ethernet:
 - 1) Multicasting
 - 2) Flow control (to protect against output port overloading)
 - 3) Hardware CRC and frame re-assembly
- Professional performance studies:
 - Layer-3 switches now available can handle #1 & #2
 - #3 is still an issue. But some NICs moving this functionality to hard(firm)ware.
- Would still choose ATM but for cost difference

Practical Considerations

How hard would the switch to Gbit be?

- In principle not that hard.
 - Implementation of ATM communication uses socket interface (Winsock2)
 - Change to TCP/UDP "straight-forward" as we already have C++ classes that wrap Winsock2 TCP sockets.
 - Winsock provides mechanism for establishing multi-cast groups/flow control.
- If we stick with NT for now, migration to Gbit ethernet should be easy.

Gbit Ethernet – Study Plan

How to make sure Gbit ethernet will work

- 1. Study single PC send/receive rates
 - a) Use ATP machines (66 MHz, 64 bit PCI)
 - b) Evaluate for both TCP and UDP
 - achievable rates
 - ii. CPU utilization
 - c) Check performance of different NICs.
 - d) Learn how to use flow control in Winsock.
- 2. Experiment w/ fast ethernet using Martin's switch (?)
 - a) In same machines compare w/ ATM.
- Test JSEB reading/sending to evaluate PCI

EvB – Robustness Issues

SEBs

- Hanging/crashing (unhandled exception) on bad FEM data.
 - ⇒Simply needs further debugging
- GL1 data errors, FEM bad event numbers
 - ⇒ Need logging system to alert operator
- Unhandled exception in transmit thread (rare but more frequent at high rate)
 - \Rightarrow Needs debugging.

• EBC

- Problem with end run in optimized code
 - ⇒Disappears in v3_0c

EvB Robustness (cont)

EBC (cont)

- Occasional crashes w/ high-rate Au-Au running
 - ⇒ Source of problem understood. Needs work to clean up end run procedure in EBC.

ATP

- Problem with ET failures largely solved.
- Problem w/ ATP thread killing/restarting (Sean)
- Problem with ATPs starting to generate unhandled exceptions every event (@ high rate)
 - \Rightarrow Needs debugging time.
- ATP access to Obj database
 - ⇒ Need to delay database initialization

EvB Open Issues / Other work

CORBA

- Slow setup of Corba connections (Sean)
- Upgrading Orbix on EvB machines
- Logging
 - Critically important for reporting failures (GL1, FEM, EvB, ...) to operator.
- Flow control
 - Need to automate flow control settings.
- Use (redundant) application/file server
 - Simplify system setup.
 - Avoid need to manually distribute code.