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Abstract of the Dissertation

Study of Initial and Final State Effects in
Ultrarelativistic Heavy Ion Collisions Using Hadronic
Probes

by
Anuj Kumar Purwar
Doctor of Philosophy
in
Physics
Stony Brook University

2004

It has been theorized that if heavy nuclei (e.g. Au, Pb) are collided at suffi-
ciently high energies, we might be to recreate the conditions that existed in the universe
a few microseconds after the Big Bang: a phase transition into a new state of matter
in which quarks and gluons are deconfined (Quark-Gluon Plasma or QGP). However, we
never directly get to see the QGP because as the matter cools it recombines (hadronizes)
into ordinary subatomic particles. In this dissertation we attempt to shed some light on:

1. Properties of the final state of produced matter in Au+Au collisions at /syn = 200
GeV. As the hot, dense system of particles from the collision zone cools and expands,
light nuclei like deuterons and anti-deuterons can be formed, with a probability
proportional to the product of the phase space densities of its constituent nucleons.
Thus, invariant yield of deuterons, compared to the protons and neutrons from
which they coalesce, provides information about the size of the emitting system and
its space-time evolution.

The transverse momentum spectra of d and d in the range 1.1 < pr < 4.3 GeV/c
were measured at mid-rapidity and were found to be less steeply falling than pro-
ton (and antiproton) spectra. A coalescence analysis comparing the deuteron and
antideuteron spectra with that of proton and antiproton was performed and the
extracted coalescence parameter B, was found to increase with pr, indicating an
expanding source.
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2. The initial conditions can be probed by looking at the nuclear modification fac-
tor R, from particle production in forward and backward directions in a “control”
experiment using d+Au collisions at /syy = 200 GeV. This can allow us to distin-
guish between effects that could potentially be due to deconfinement, versus effects
of cold nuclear matter.

We found hadron R., to be suppressed at forward rapidities (d going direction).
This is qualitatively consistent with shadowing/saturation type effects in the small-x
region being probed at forward rapidities. R, was enhanced at backward rapidities
(Au going region).
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Chapter 1

Introduction

A few microseconds [1] after the Big Bang, the universe consisted of a hot and dense
plasma of deconfined quarks and gluons. As the universe expanded and cooled, this
deconfined plasma coalesced into protons and neutrons (hadronization), followed by the
formation of bound nuclei (nucleosynthesis). Finally atoms and molecules were formed
after a few thousand years. A sketch of this timeline is shown in Figure 1.1.

1.1 Ultrarelatvistic Heavy Ion Collisions and QGP

It has been theorised that if heavy nuclei are smashed together at very high energies
(Ultrarelativistic heavy ion collisions) by means of particle accelerators, we might be
to recreate the conditions that existed in the universe in that early epoch, in the lab.
At sufficiently high energies, it is expected that the kinetic energy of the colliding nu-
clei gets converted into heat, leading to a phase transition into a new state of matter:
the Quark-Gluon Plasma (QGP), in which quarks and gluons are deconfined. Quantum
Chromodynamics (QCD), the theory of the Strong Interaction predicts [2] that at a well
determined temperature (7. ~ 150 — 180 MeV for zero net baryon density!) ordinary
hadronic matter undergoes a phase transition from color singlet hadrons to a deconfined
medium consisting of colored quarks and gluons. Lattice QCD calculations predict that
the energy density at this transition point: €(7.) ~ 0.7 — 1.0 GeV/fm?, almost 10 times
the density of nuclear matter. A phase diagram of nuclear matter in equilibrium is shown
in Figure 1.2.

ITotal baryon number equal to zero or in other words the amount of matter and anti-matter is
approximately equal.
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Figure 1.1: Big Bang timeline and Quark-Gluon-Plasma (QGP).

The holy grail of ultrarelativistic heavy ion collisions is the discovery and
characterisation of the Quark-Gluon Plasma (QGP). Discovering the QGP is not an easy
task, because we never see the bare quarks and gluons. Even if QGP is produced in an
experiment, it subsequently hadronizes into the usual menagerie of hadrons. So we never
get to directly see the QGP, and can only hope to infer it’s existence from indirect means.
Some of the traditional QGP signatures are briefly outlined below:

1. Dilepton production: A quark and an anti-quark can interact via a virtual photon
v* to produce a lepton and an anti-lepton {1~ (often called dilepton). Since the
leptons interact only via electromagnetic means, they usually reach the detectors
with no interactions, after production. As a result dilepton momentum distribution
contains information about the thermodynamical state of the medium (For reviews
see [4]).

2. Thermal Radiation: Similar to dilepton production, a photon and a gluon can be
produced via ¢+ q — v+ g. Since the electromagnetic interaction isn’t very strong,
the produced photon usually passes to the detectors without any interactions after
production. And just like dileptons, the momentum distribution of photons can
yield valuable information about the momentum distributions of the quarks and
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Figure 1.2: A phase diagram of nuclear matter (nuclear density along z-axis and tempera-
ture along y-axis) shows how deconfinement can occur extreme conditions of temperature
(Big Bang, RHIC) and density (dense stellar matter like neutron stars). This figure is
taken from 1983 NSAC Long Range Plan [3].

gluons that make up the plasma, giving us a window into it’s thermodynamical
properties (for a review see [5]).

3. Strangeness Enhancement: Production of strange quarks requires a larger amount
of energy compared to ordinary u and d quarks. The high energy densities in QGP
are conducive for ss production, leading to an enhancement in the number of strange
particles as compared to the strangeness production in p+p collisions [6].

4. J/1 suppression: In a Quark-Gluon-Plasma (QGP), color screening due the pres-
ence of free quarks and gluons (similar to Debye screening seen in QED), the J/v
particle — a bound state of charm and anti-charm quarks c¢c — can dissociate.
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This leads to a suppression of .J/v¢ production, a classic signature first predicted by
Matsui and Satz [7].

5. HBT: The Hanbury-Brown-Twiss effect — first used to measure the diameter of
a star [8] — is also used to in high energy nuclear experiments, by measuring the
space-time(or energy-momentum) correlation of identical particles emitted from an
extended source. In ultrarelativistic heavy ion collisions, an HBT measurement can
yield information about size and the matter distribution of the source.

6. Jet suppression: In nucleon collisions, energetic partons (jets) can be produced via
hard scatterings. In presence of deconfined matter, they interact strongly, leading
to energy loss ~ GeV/fm, mostly due to gluon bremmstrahlung processes. This
results in a decrease in the yield of high energy particles or jet suppression [9].

Discovery of QGP is beyond the scope of this dissertation, instead we shall have
to satisfy ourselves by studying the behavior of nuclear matter at extreme conditions of
temperature and density, via ultrarelativistic heavy ion collisions and trying to shed some
light on a) properties of the final state of produced matter, and b) the initial conditions
that led to this. As a result this dissertation will have two main thrusts:

1. Exploration of the final state effects of the produced matter from Au+Au collisions
at \/syny = 200 GeV, by studying the production of the simplest nuclei: deuterons
and anti-deuterons.

2. Study the effect of cold nuclear matter in d+Au collisions at /syy = 200 GeV, by
looking at particle production in forward and backward directions.

1.2 Deuterons and anti-deuterons as probes of final
state effects

Previous measurements indicate that high particle multiplicities [10, 11] and large p/p
ratios prevail at RHIC, which is expected for a nearly net baryon free region [12, 13, 14].
As the hot, dense system of particles cools, it expands and the mean free path increases
until the particles cease interacting (“freezeout”). At this point, light nuclei like deuterons
and antideuterons (d and d) can be formed, with a probability proportional to the product
of the phase space densities of it’s constituent nucleons [15, 16]. Thus, invariant yield of
deuterons, compared to the protons [17, 18] from which they coalesce, provides information

about the size of the emitting system and its space-time evolution. We use the PHENIX
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Time-Of-Flight (TOF) detector along with the central arm tracking chambers: Drift
Chamber (DC) and Pad Chambers (PC3) to detect deuterons. We measure momentum
and time of flight and use it to obtain the mass, which is used for particle identification
(PID). Corrections are then applied to account for limited acceptance, detector efficiencies
and myraid other minutae that are the bane of experimentalists all over the world. We
eventually obtain the corrected invariant yields EFd®N/dp® and look really really hard at
them, paying special attention to the shapes of the spectra and compare them with proton
yields to glean some information about the spacetime evolution of the collision zone.

1.3 Particle multiplicities at forward and backward
rapidities as probes of initial state effects

Particle multiplicities have yielded some of the most interesting insights at RHIC (Rel-
ativistic Heavy Ion Collider). Data from the Au + Au collisions at /syny = 200 GeV
at mid-rapidity indicated a suppression [19, 20, 21, 22] of particle yields as compared to
the expectation from naive scaling of p+p collisions. This was consistent either with a)
jet suppression i.e, suppression of high pr particles due to energy loss in the deconfined
medium or b) due to the depletion of low-z? partons due to gluon saturation processes
as predicted by the Color-Glass Condensate (CGC) hypothesis. In order to figure out
whether this suppression in Au+Au collisions was due to final state effects (the Quark-
Gluon-Plasma (QGP)) or due to initial state effects (gluon saturation effects), a control
experiment was done by colliding deuteron and gold nuclei at the same energy. The Run
3 data with d + Au collisions at /syy = 200 GeV, showed an enhancement at mid-
rapidity [23, 24]. Similar effects have been seen at lower energies and go by the name of
Cronin effect and are usually attributed to multiple scattering of partons in the initial
state. Obviously this was inconsistent with the CGC (gluon saturation) hypothesis, which
predicted a suppression in particle multiplicities [25, 26, 27] for d+Au collisions. How-
ever, all hope wasn’t lost: the scale at which the gluon saturation effects occur, provided
an escape hatch and it turns out that although particle multiplicities are not suppressed
at mid-rapidity, if we look at forward rapidity (in the deuteron going direction) we can
explore the low-z region of the Au nucleus. And depending upon the saturation scale,
we might be able to see suppression. In the second half of this dissertation, we seek to
measure charged hadron multiplicities at forward rapidity (approximate pseudorapidity
range 1.2 < n < 2.0) using the PHENIX Muon Arms (which b.t.w weren’t supposed to
detect hadrons). By looking at the particle multiplicities scaled with those at peripheral
collisions, which is the lazy man’s way of getting around the need to use p+p data, at
forward and backward rapidities and their variation with centrality (or impact parameter)

22 is the momentum fraction carried by the parton.
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we hope to shed some light on the issue of initial conditions.

1.4 Some jargon

The field of the relativistic heavy ion physics is saturated with jargon, a minefield for the
uninitiated. Before we embark on the rest of this dissertation, here is a brief description
of some of the commonly used terms:

e Center of mass energy: a.k.a. /s, this is the Lorentz invariant quantity:

s = (p1 +p2)u(p1 + p2)* (1.1)

For nuclei with energy F; and 3-momentum pj, it reduces to:

For instance at RHIC (Run 2 and 3), the center-of-mass energy per nucleon is

\/SNN = 200 GeV.

e Tranverse momentum pr: this is simply the projection of a particle’s momentum
perpendicular to the collision axis: z (see Figure 1.3).

pr = psinf (1.3)

where 6 is the polar angle along the z-axis. A common variable derived from this is
the transverse energy (or mass) mp = /p% + ma.

e Rapidity y: this defines the longitudinal motion scale for a particle of mass my
moving along z-axis (see Figure 1.3):

y=~log <E+pz> (1.4)

2 E—p,
Since there is cylindrical symmetry around the collision axis, this allows us to de-
scribe the 4-momentum of particle in terms of its transverse momentum py, rapidity

y and the transverse energy mp as:

p" = (mq coshy, pr cos ¢o, my sinh y) (1.5)
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Figure 1.3: Beam axis, transverse momentum pr and rapidity y.

e Pseudorapidity 7: derived from rapidity (Eq. 1.4), this variable is used when the
particle in question is unidentified i.e., mq is not known:

n = —log (tan Z) (1.6)

Where 6 is the angle w.r.t. the beam axis. 7 is often used to describe geometrical
acceptances of detectors.

e Invariant yield: the invariant differential cross section of a particle is the proba-
bility of obtaining d* N particles in the phase space volume dp®/F in a given number
of events Neyent:

1 d>N >N
‘- (1.7)
Nevent dp NeventppoTdy

In cylindrical coordinates dp® = dp,dp,dp. reduces to prdprdém, coshydy. Due to
azimuthal symmetry we get a factor of 1/27, resulting in the form:

I\ N
Nevent dp2 B 27TNeventppoTdy

(1.8)
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Using dN/prdpr = dN/mpdmr, we get our final form:

1 &N N
Nevent dp2 B QﬂNeventdedey

(1.9)

e Centrality: when the two nuclei collide, there can be range of impact parame-
ters. Events with a small impact parameter are known as central events whereas
events with a large impact parameter are called peripheral (see Figure 1.4), and the
variation in impact parameters is called centrality.

Central ﬂ

' } > <%

- ||

Peripheral

O0— V

Figure 1.4: Centrality is related to impact parameter: large impact parameter events are
called peripheral and small impact parameter events are called central.

e Minimum Bias: this is the collection of events containing all possible ranges of
impact parameters. This is important so that our data does not have any bias due to
events that might be triggered by specific signals e.g. presence of a high pr particle.
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1.5 Organization of thesis

This work is organised as follows: in Chapter 2 we describe the experimental setup at
PHENIX. Our measurements of deuterons and anti-deuterons are described in Chapters
3 and 4. Chapters 5 discusses the background for the nuclear modification factor, while
Chapters 6 and 7 are devoted to the measurement of particle multiplicities at forward
(and backward) rapidities. Finally Chapter 8 summarizes all our results. Bon Voyage!



Chapter 2

Experimental Facilities and Setup

In this chapter we shall give an overview of the Relativistic Heavy Ion Collider (RHIC) and
the PHENIX detector [28] alongwith the subsystems that were used for deuteron/anti-
deuteron measurement.

2.1 RHIC facility

In order to have any hope of discovering the Quark-Gluon-Plasma, experimentalists have
tried to collide heavy nuclei at the highest possible energies obtainable subject to the
usual constraints of technology and funding. Most of the past experiments have been
fixed target experiments, in which a beam of a given species, e.g. proton (p) or lead
(Pb) at CERN Super Proton Synchrotron (SPS), is incident on a fixed target of the
appropriate material e.g. Pb at SPS. Since the lab frame is not same as the beam frame,
for a given beam energy, the actual center-of-mass energy is lesser as compared to a
colliding beam accelerator like RHIC. Typical center-of-mass energies at the Alternating
Gradient Synchrotron (AGS) at BNL were in the range 2.5 — 4.5 GeV, and at SPS typical
Vs = 17 GeV (for Pb+PDb).

RHIC consists of 2 counter-circulating rings capable of accelerating any nu-
cleus on any other, with a top energy (each beam) of 100 GeV/nucleon Au+Au and
250 GeV polarized p+p. The tunnel is 3.8 km in circumference and contains powerful
superconducting dipole magnets to guide the beams at these energies.

Before the high energy heavy ion collisions can occur, the ions undergo several
steps:

10
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Figure 2.1: A picture of the Relativistic Heavy Ion Collider (RHIC) complex at
Brookhaven National Lab (BNL) in Long Island, NY. The RHIC ring with associated
systems: Tandems and AGS booster can also be seen.

1. After removing some of the electrons from the atom, the Tandem Van de Graaff
uses static electricity to accelerate the resulting ions into the the Tandem-to-Booster
line (TTB). For p+p collisions, the Linear A