PHENIX results on the Lévy analysis of Bose-Einstein correlation functions

Sándor Lökös for the PHENIX Collaboration

Eötvös University, Budapest, Hungary
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. PHENIX Lévy HBT results: $\sqrt{s_{NN}}$ & centrality dependence
6. Summary
The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- Charged pion ID with TOF, from \(\sim 0.2 \) to 2 GeV/c
- This analysis: PID also with EMCal
The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- Charged pion ID with TOF, from ~ 0.2 to 2 GeV/c
- This analysis: PID also with EMCal
PHENIX runs at a glance

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>510.0</td>
<td></td>
</tr>
<tr>
<td>500.0</td>
<td></td>
</tr>
<tr>
<td>200.0</td>
<td></td>
</tr>
<tr>
<td>130.0</td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

○ p+p ○ Au+Au ○ d+Au ○ Cu+Cu ○ U+U ○ Cu+Au ○ He+Au ○ p+Au ○ p+Al

Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. PHENIX Lévy HBT results: $\sqrt{s_{NN}}$ & centrality dependence
6. Summary
Bose-Einstein correlations in heavy ion physics

- Quantum statistics connects spatial and momentum space distributions
- Spatial source $S(x)$ versus momentum correlation function $C_2(q)$:
 \[
 C_2(q) \approx 1 + \left| \frac{\tilde{S}(q)}{\tilde{S}(0)} \right|^2, \quad \tilde{S}(q) = \int S(x) e^{i q x} d^4 x, \quad q = p_1 - p_2
 \]
- Final state interactions distort the simple Bose-Einstein picture
- Coulomb interaction important, handled via two-particle wave function
- Resonance pions: Halo around primordial Core

The out-side-long system, HBT radii

- $C(q)$ usually measured in the Bertsch-Pratt pair coordinate-system
 - out: direction of the average transverse momentum (K_t)
 - long: beam direction
 - side: orthogonal to the latter two
- $R_{out}, R_{side}, R_{long}$: HBT radii
- Out-side difference $\rightarrow \Delta \tau$ emission duration
- From a simple hydro calculation:

 $R_{out}^2 = \frac{R^2}{1 + u_T^2 m_T / T_0} + \beta_T^2 \Delta \tau^2$

 $R_{side}^2 = \frac{R^2}{1 + u_T^2 m_T / T_0}$

- RHIC: ratio is near one \rightarrow no strong 1st order phase transition
- Plus lots of other details (pre-eq flow, initial state, EoS, ...)

Example: recent PHENIX HBT measurements

- Corr. func. in Bertsch-Pratt system, radii from Gaussian fit
- Linear $1/\sqrt{m_T}$ scaling of HBT radii for all systems and energies
- Interpolation to common m_T, PHENIX and STAR consistent

HBT radii and the search for the critical endpoint

- Signals of QCD CEP: softest point, long emission
- $R_o^2 - R_s^2$: related to emission duration
- $(R_s - \sqrt{2} \cdot \bar{R})/R_l$: related to expansion velocity
- Non-monotonic patterns
- Indication of the CEP?
- Further detailed studies done
- Maybe Levy exponent α gives further insight?
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. PHENIX Lévy HBT results: $\sqrt{s_{NN}}$ & centrality dependence
6. Summary
Lévy distributions in heavy ion physics

- Expanding medium, increasing mean free path: anomalous diffusion

- Lévy-stable distribution: \(\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}} \)

 - Generalized Gaussian from generalized central limit theorem
 - \(\alpha = 2 \) Gaussian, \(\alpha = 1 \) Cauchy

- Shape of the correlation functions with Levy source:

 \[
 C_2(q) = 1 + \lambda \cdot e^{-(Rq)^\alpha}
 \]

 \(\alpha = 2 \): Gaussian
 \(\alpha = 1 \): Exponential

- Critical behaviour \(\rightarrow \) described by critical exponents

- Spatial corr. \(\propto r^{-(d-2+\eta)} \rightarrow \) defines \(\eta \) exponent

- Symmetric stable distributions (Levy) \(\rightarrow \) spatial corr. \(\propto r^{-1-\alpha} \)

- \(\alpha \) associated to critical exponent \(\eta \)

A possible way of finding the critical point

- QCD universality class ↔ 3D Ising

- At the critical point:
 - random field 3D Ising: $\eta = 0.50 \pm 0.05$
 - 3D Ising: $\eta = 0.03631(3)$

- Modulo finite size effects
- Distance from the critical point?
- Motivation for precise Levy HBT!
- Change in α_{Levy} ↔ proximity of CEP?
- Non-static system, finite size effects...
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. PHENIX Lévy HBT results: $\sqrt{s_{NN}}$ & centrality dependence
6. Summary

Sándor Lökös for PHENIX

Eötvös University
PHENIX Lévy HBT analysis

- Dataset used for the analysis:
 - Run-10, Au+Au, $\sqrt{s_{NN}} = 200$ GeV, $7.3 \cdot 10^9$ events
 - Minimum bias results so far

- Additional offline requirements:
 - Collision vertex position less than ± 30 cm

- Particle identification:
 - time-of-flight data from PbSc e/w, TOF e/w, momentum, flight length
 - 2σ cuts on m^2 distribution

- Single track cuts:
 - 2σ matching cuts in TOF & PbSc for pions

- Pair-cuts:
 - A random member of pairs assoc. with hits on same tower were removed
 - customary shaped cuts on $\Delta \varphi - \Delta z$ plane for PbSc e/w, TOF e/w

- 1D corr. func. as a function of $|k|_{LCMS}$ in various m_T bins
 - Levy fits for 31 m_T bins with Coulomb effect incorporated
 - Coulomb effect incorporated in fit function
Example $C(|k|_{\text{LCMS}})$ measurement result

Measured in 31 $m_T^2 = m^2 + p_T^2$ bins for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs

MinBias Au+Au @ $\sqrt{s_{\text{NN}}} = 200$ GeV, $\pi^+\pi^+$, $p_T = 0.2-0.22$ GeV/c

- $\lambda = 0.72 \pm 0.02$
- $R = 8.74$ fm ± 0.24 fm
- $\alpha = 1.16 \pm 0.03$
- $\varepsilon = -0.102 \pm 0.005$
- $N = 1.0095 \pm 0.0005$

$\chi^2/\text{NDF} = 93/97$

Conf. level = 0.5909

Physical parameters: R, λ, α; measured versus pair m_T
Example \(C(\|k\|_{\text{LCMS}}) \) measurement result

Measured in 31 \(m_T^2 = m^2 + p_T^2 \) bins for \(\pi^+\pi^+ \) and \(\pi^-\pi^- \) pairs

Physical parameters: \(R, \lambda, \alpha \); measured versus pair \(m_T \)
Levy scale parameter R

- Similar decreasing trend as Gaussian HBT radii
- Hydro predicts $1/R^2_{\text{Gauss}} = a + bm_T$
- Hydro behaviour not invalid for R_{Levy}
- The linear scaling of $1/R^2$, breaks for high m_T
Levy scale parameter R

- Similar decreasing trend as Gaussian HBT radii
- Hydro predicts $1/R^2_{\text{Gauss}} = a + bm_T$
- Hydro behaviour not invalid for R_{Levy}
- The linear scaling of $1/R^2$, breaks for high m_T
Correlation strength λ

- From the Core-Halo model: $\lambda = \left(\frac{N_C}{N_C + N_H} \right)^2$
- Observed decrease ("hole") at small $m_T \rightarrow$ increase of halo fraction
- Different effects can cause change in λ
 - Resonance effects, partially coherent pion production
- $\frac{\lambda}{\lambda_{\text{max}}}$ with smaller systematic uncertainties
- Precise measurement may help extract physics info

Sándor Lőkös for PHENIX

Eötvös University
A possible (?) interpretation of $\lambda(m_T)$

- $\lambda(m_T)$ measures core/(core+halo) fraction
- May be connected to mass modifications (c.f. chiral restoration)
 - Decreased η' mass \rightarrow η' enhancement \rightarrow halo enhancement
 - Kinematics: η' decay pions will have low m_T \rightarrow decreased λ at small m_T
- Incompatibility with unmodified in-medium η' mass?

A possible (?) interpretation of $\lambda(m_T)$

- $\lambda(m_T)$ measures core/(core+halo) fraction
- May be connected to mass modifications (c.f. chiral restoration)
 - Decreased η' mass \rightarrow η' enhancement \rightarrow halo enhancement
 - Kinematics: η' decay pions will have low m_T \rightarrow decreased λ at small m_T
- Incompatibility with unmodified in-medium η' mass?

\minbias Au+Au @ $\sqrt{s_{NN}} = 200$ GeV

λ/λ_{\max} vs. m_T [GeV/c2]

$\lambda_{\max} = \langle \lambda \rangle_{(0.5-0.7)}$ GeV/c2

$m_{\eta'} = 958$ MeV
$m_{\eta'} = 900$ MeV
$m_{\eta'} = 700$ MeV
$m_{\eta'} = 500$ MeV
$m_{\eta'} = 250$ MeV
$m_{\eta'} = 50$ MeV
Levy exponent α

The measured value is far from Gaussian ($\alpha = 2$) and expo. ($\alpha = 1$)

Also far from the rfd.3D Ising value at CEP ($\alpha = 0.5$)

More or less constant (at least within systematic errors)

Motivation to do fits with fixed $\alpha = 1.134$

Note: $\alpha(m_T) = \text{const.}$ fit statistically not acceptable (only with syst.)
Levy scale parameter R with fixed $\alpha = 1.134$

- More smooth trend
- Remarkable linearity of $1/R^2$
- Hydro behavior valid, despite $\alpha < 2$
Levy scale parameter R with fixed $\alpha = 1.134$

- More smooth trend
- Remarkable linearity of $1/R^2$
- Hydro behavior valid, despite $\alpha < 2$
Newly discovered scaling parameter \hat{R}

- $R(m_T)$
- $\lambda(m_T)$
- $\alpha(m_T)$

MinBias Au+Au @ $1.96\ TeV = 200$ GeV

PHENIX results

$\sqrt{s_{NN}}$ & centrality dep.

Summary
Newly discovered scaling parameter \hat{R}

- Empirically found scaling parameter
- Linear in m_T
- Physical interpretation $→$ open question

$\minBias Au+Au @ \sqrt{s_{NN}} = 200$ GeV

$R(m_T)$

$\lambda(m_T)$

$\alpha(m_T)$

$\frac{1}{\hat{R}[1/fm]} = \frac{\lambda \cdot (1 + \alpha)}{R}$
Newly discovered scaling parameter \hat{R}

- $\alpha = 1.134$ fixed
- Empirically found scaling parameter
- Linear in m_T
- Physical interpretation \rightarrow open question
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. PHENIX Lévy HBT results: $\sqrt{s_{NN}}$ & centrality dependence
6. Summary
Lévy exponent α at 200 GeV

- Slightly non-monotonic behavior as a function of m_T
- Average $\langle \alpha \rangle$ non-monotonic behavior versus N_{part}
- $\alpha = \langle \alpha \rangle$ constant fits were performed
Lévy exponent α at 62 and 39 GeV

- Lévy exponent α: no significant change vs $\sqrt{s_{NN}}$ at 39-62-200 GeV
- Usual values between 1 and 1.5
- Non-monotonicity in m_T
Lévy scale \(R \): similar trends for all \(\sqrt{s_{NN}} \) and cent.
“Hole” in λ: all energies and centralities

\begin{align*}
\text{PHENIX Au+Au & $\sqrt{s_{_{\text{NN}}}} = 200$ GeV} \\
\lambda & \text{ vs. } m_T \text{ [GeV/c}^2] \\
\end{align*}

\begin{align*}
\text{PHENIX Au+Au & $\sqrt{s_{_{\text{NN}}}} = 62$ GeV, $\pi^+\pi^+\pi^+$} \\
\end{align*}

\begin{align*}
\text{PHENIX Au+Au & $\sqrt{s_{_{\text{NN}}}} = 39$ GeV, $\pi^+\pi^+\pi^+$} \\
\end{align*}

\begin{align*}
\text{rel. syst. uncertainties} \\
\end{align*}
\hat{R} scaling for all energies & centralities

PHENIX Au+Au $\sqrt{s_{NN}} = 200$ GeV

- $0-10\%$,
- $10-20\%$,
- $20-30\%$,
- $30-40\%$,
- $40-50\%$,
- $50-60\%$,

Linear fit: $\hat{R} = \frac{R}{\lambda(1+\alpha)}$

PHENIX Au+Au $\sqrt{s_{NN}} = 62$ GeV, $\pi\pi+\pi^+\pi^+$

- $0-10\%$,
- $10-20\%$,
- $20-30\%$,
- $30-40\%$

Linear fit: $\hat{R} = \frac{R}{\lambda(1+\alpha)}$

PHENIX Au+Au $\sqrt{s_{NN}} = 39$ GeV, $\pi\pi+\pi^+\pi^+$

- $0-20\%$,
- $20-40\%$

Linear fit: $\hat{R} = \frac{R}{\lambda(1+\alpha)}$

Sándor Lőkös for PHENIX

Eötvös University
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. PHENIX Lévy HBT results: $\sqrt{s_{NN}}$ & centrality dependence
6. Summary
Summary

- B-E correlation functions, run-10 200 GeV Au+Au, \(\sim 7 \) billion evts.
- Levy fits yield statistically acceptable description
- Fine \(m_T \) binned Levy source parameters (\(R, \lambda, \alpha \))
 - Nearly constant \(\alpha \), away from 2, 1 and 0.5 \(\leftrightarrow \) distance to CEP?
 - Linear scaling of \(1/R^2(m_T) \) \(\leftrightarrow \) hydro?
 - Low-\(m_T \) decrease in \(\lambda(m_T) \) \(\leftrightarrow \) resonances, \(\eta' \) in-medium mass?
- New empirically found scaling parameter \(\hat{R} = R/(\lambda \cdot (1 + \alpha)) \)
- Centrality and \(\sqrt{s_{NN}} \) dependence also explored
 - No \(\alpha \) decrease down to \(\sqrt{s_{NN}} = 39 \) GeV
 - Non-monotonic \(\alpha \) vs \(N_{\text{part}} \) dependence
 - “Hole” in \(\lambda(m_T) \) present down to \(\sqrt{s_{NN}} = 39 \) GeV (c.f. SPS result!)
 - No change in \(1/R^2 \) and \(\hat{R} \) scaling

Let me invite you to 17th Zimanyi-COST Winter School
Budapest, Hungary, Dec. 4. - Dec. 8. 2017
http://zimanyischool.kfki.hu/17/
Outline

7 Backup
Run4 preliminary & Gauss → Run10 preliminary & Lévy

\(\lambda (\pi^+ \pi^+) \) \text{ RUN4 200GeV Au+Au }
Correlation strength λ with fixed $\alpha = 1.134$

- More smooth trend
- Smaller systematic errors
- Saturation at large m_T
- Decrease ("hole") for smaller m_T values
STAR centrality dependent results (left) and the comparison of STAR results in different energy with NA44 data (right)
Lévy source function and kinematic variables

Basic two-particle variables

\[K^\mu = \frac{p_1^\mu + p_2^\mu}{2}, \quad q^\mu = p_1^\mu - p_2^\mu, \quad q_{\text{inv}} = \sqrt{-q^\mu q_\mu} \]

- \(C_2(q_{\text{inv}}) \) - Lorentz invariant 1 dimensional function
- \(|k| = \frac{1}{2} \sqrt{q_{\text{out}}^2 + q_{\text{side}}^2 + q_{\text{long}}^2} \) instead of \(q_{\text{inv}} \) - better
- \(C_2(|k|) \) - 1 dim. function
- Generalized Gaussian - Levy-distribution
 - Anomalous diffusion
 - Generalized limit theorem

\[\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2} |qR|^\alpha} \]

\[S(r) = (1 - \sqrt{\lambda}) \mathcal{L}(\alpha, R_H, r) + \sqrt{\lambda} \cdot \mathcal{L}(\alpha, R_C, r) \] (1)

- Shape of the correlation functions with Levy source \((R_H \to \infty)\):

\[C_2(|k|) = 1 + \lambda \cdot e^{-(2R|k|)^\alpha} \] (2)