Direct Photon Measurement by the PHENIX Experiment at RHIC

Veronica Canoa Roman
Stony Brook University
Extracting thermal photon requires the systematic uncertainty of decay photons and prompt photons subtractions less than 10%
Direct photon yield is well established

- pp consistent with pQCD
- AuAu follows Ncoll scaled pp above 4 GeV
- Significant excess below 3 GeV in Au+Au 200 GeV
- Excess has nearly exponential shape

Direct photon challenge

- Large yield and large anisotropy is observed -> challenge to theoretical models:
 - Large yield -> Early emission
 - Large v_2 -> Late emission
- We need new data from:
 - Large systems: Au+Au, Cu+Cu,
 - Asymmetric system: Cu+Au
 - Small systems: p+Au, d+Au, He+Au
Photon measurement techniques in PHENIX

- **Measuring energy deposited by photons in Calorimeter**
 - Good resolution at high pt
 - Low pt contaminated by hadrons

- **Internal photon conversions**
 - Measure virtual photons
 - Reduction in background from hadron decay by a factor of 5
 - Low pt reach is limited (~1 GeV) as well as high pt

- **External conversions**
 - Measure real photons
 - Extends pt < 1 GeV and good resolution
 - High pt reach is limited
Internal conversion method

\[\frac{d^2 N_{ee}}{dm_{ee} dp_T} \simeq \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \frac{dN_{\gamma}}{dp_T} \]

\[f_{incl}(m_{ee}) = (1-r)f_c(m_{ee}) + rf_{dir}(m_{ee}) \]

- All hadron contribution
- Direct photon contribution

\[r = \frac{\gamma^*_{dir}}{\gamma^*_{incl}} = \frac{\gamma_{dir}}{\gamma_{incl}} \]

\[dN^{dir}(p_T) = r \times dN^{incl}(p_T) \]

- Direct γ^* yield fitted in range [120, 300] MeV
 - -> insensitive to π^0 yield
• Clear direct photon signal in Cu+Cu data at 200GeV
• Inverse slopes consistent within large uncertainty with Au+Au
External conversion method

- Conversions at Hadron Blind Detector (HBD) backplane (~60 cm)

\[\gamma \rightarrow e^+ e^- \]

- Standard method assumes the origin in the event vertex -> Now momentum reconstruction with origin in HBD

- Sample purity 99 %

- Double ratio tagging method

\[R_\gamma = \frac{\gamma^{incl}}{\gamma^{hadron}} = \frac{\langle \epsilon_{\gamma} f \rangle}{\frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^0 \text{tag}}}} \]

- Condiciona tagging efficiency
- Measured raw yields
- Simulated based on hadron data

\[\gamma^{direct} = (R_\gamma - 1) \gamma^{hadron} \]
Conversions at Hadron Blind Detector (HBD) backplane (~60 cm)

\[\gamma \rightarrow e^+ e^- \]

- Standard method assumes the origin in the event vertex \(\rightarrow \) Now momentum reconstruction with origin in HBD

- Sample purity 99%

- Double ratio tagging method

- Condconditional tagging efficiency
- Measured raw yields
- Simulated based on hadron data
External conversion method

- Conversions at Hadron Blind Detector (HBD) backplane (~60 cm)
 \[\gamma \rightarrow e^+ e^- \]
- Standard method assumes the origin in the event vertex -> Now momentum reconstruction with origin in HBD
- Sample purity 99 %
- Double ratio tagging method

\[
R_\gamma = \frac{\gamma_{incl}}{\gamma_{hadron}} = \frac{\left(\frac{N_\gamma^{incl}}{N_\gamma} \right)}{\left(\frac{\gamma_{hadron}}{\gamma_{\pi^0}} \right)}_{Data}
\]

- Condicional tagging efficiency
- Measured raw yields
- Simulated based on hadron data

\[
\gamma_{direct} = (R_\gamma - 1) \gamma_{hadron}
\]
Conversions at Hadron Blind Detector (HBD) backplane (~60 cm)

\[\gamma \rightarrow e^+ e^- \]

- Standard method assumes the origin in the event vertex -> Now momentum reconstruction with origin in HBD
- Sample purity 99 %
- Double ratio tagging method

\[R_\gamma = \frac{N^{incl}_\gamma}{N^{hadron}_\gamma} = \frac{\left\langle \epsilon f \right\rangle^{incl}}{\left\langle \epsilon f \right\rangle^{hadron}} \]

- Condicional tagging efficiency
- Measured raw yields
- Simulated based on hadron data
Direct photon yield is well established

- pp consistent with pQCD
- AuAu follows Ncoll scaled pp above 4 GeV
- Significant excess below 3 GeV in Au+Au 200 GeV
- Excess has nearly exponential shape

• Clear direct photon signal in Au+Au at 62.4 GeV and 39 GeV
Possible increase of T_{eff} with increasing beam energy
• Similar increase with N_{part} for different systems
• Yield increases faster than reaction volume
Integrated yield vs N_{charge}

$Au+Au \rightarrow \gamma_{\text{dir}} + X, \ \mid y \mid < 0.35$

$\sqrt{s_{NN}} = 200 \text{ GeV} \quad PRC 91, 064904$

$\sqrt{s_{NN}} = 200 \text{ GeV} \quad PRL 104, 132301$

$\sqrt{s_{NN}} = 62.4 \text{ GeV} \quad PHENIX Prelim.$

$\sqrt{s_{NN}} = 39 \text{ GeV} \quad PHENIX Prelim.$

$Pb+Pb \rightarrow \gamma_{\text{dir}} + X, \ \mid y \mid < 0.5$

$\sqrt{s_{NN}} = 2760 \text{ GeV} \quad PLB 754, 235$

$Cu+Cu \rightarrow \gamma_{\text{dir}} + X, \ \mid y \mid < 0.35$

$\sqrt{s_{NN}} = 200 \text{ GeV} \quad PHENIX Prelim.$
Integrated yield vs N_charge

- Scaling direct photon yield with multiplicity in heavy ion collisions, $a \sim 1.2$
Scaling direct photon yield with multiplicity in heavy ion collisions, $\alpha \approx 1.2$
Integrated yield vs N_{charge}

- Scaling direct photon yield with multiplicity in heavy ion collisions, $a \sim 1.2$
- Similar scaling in pQCD contribution
Forward rapidity
Physics Motivation

- **An experimental door to gluon saturation:**
 - Using lower transverse momentum
 - Greater advantage at forward measurements
 - Tool -> nuclear modification factor
- **MPC_EX detector** capability to reconstruct direct photon (separate from decays) at forward rapidities. **Why real photons?**:
 - Sensitivity to gluons at LO
 - Clear kinematic relation

JHEP4(2001) 0 55

![Diagram showing direct-gamma, Compton (LO) and EIC at 140 GeV]
MPC-EX detector

• Array of PbWO4 Crystal both sides
 (-3.8< eta <-3.1 and 3.1<eta<3.9)

• Preceded by a pre-shower stage:

 - 8 layers of 24 SiW micro modules.

 - Each micro module has 2mm W plate+128 Si minipads (2x15 mm2) -> suitable for direct photon identification

• Data from d+Au collision at 200 GeV from 2016
MPCEX detector

- Array of PbWO4 Crystal both sides (-3.8 < \eta < -3.1 and 3.1 < \eta < 3.9)

- Preceded by a pre-shower stage:
 - 8 layers of 24 SiW micro modules.
 - Each micro module has 2mm W plate + 128 Si minipads (2x15 mm²) -> suitable for direct photon identification

- Data from d+Au collision at 200 GeV from 2016
MPCEX detector

- Array of PbWO$_4$ Crystal both sides (-3.8 < \(\eta\) < -3.1 and 3.1 < \(\eta\) < 3.9)

- Preceded by a pre-shower stage:
 - 8 layers of 24 SiW micro modules.
 - Each micro module has 2mm W plate+128 Si minipads (2x15 mm2) -> suitable for direct photon identification

- Data from d+Au collision at 200 GeV from 2016
MPC-EX detector

- Array of PbWO4 Crystal both sides (-3.8 < eta < -3.1 and 3.1 < eta < 3.9)

- Preceded by a pre-shower stage:
 - 8 layers of 24 SiW micro modules.
 - Each micro module has 2mm W plate + 128 Si minipads (2x15 mm²) -> suitable for direct photon identification

- Data from d+Au collision at 200 GeV from 2016
Summary and Outlook

• Well established measurements of low p_T direct photons in Au+Au at 200 GeV:
 - Large yield above expected in the low p_T region
 - Large anisotropy v_2 observed for the direct photons

• Theoretical picture still incomplete to describe large yield and v_2 simultaneously

• New results from Cu+Cu at 200 GeV and Au+Au at 62.4GeV & 39GeV
 - Possible increase of T_{eff} with beam energy
 - Scaling of direct photon yield with multiplicity in heavy ion collisions

• Future measurements from PHENIX:
 - Data from different collision geometry Cu+Au (2012)
 - Low momentum measurement of p+p (2015)
 - At forward rapidities direct photons and RdAu for d+Au(2016)