PHENIX results on the Lévy analysis of Bose-Einstein correlation functions

BGL 17 – 10th Bolyai-Gauss-Lobachevsky Conference

Máté Csanád for the PHENIX Collaboration

Eötvös University, Budapest, Hungary
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. Summary
The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- Charged pion ID with TOF, from ~ 0.2 to 2 GeV/c
- This analysis: PID also with EMCal
The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- Charged pion ID with TOF, from \(\sim 0.2 \) to 2 GeV/c
- This analysis: PID also with EMCal
PHENIX runs at a glance

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>510.0</td>
<td></td>
</tr>
<tr>
<td>500.0</td>
<td></td>
</tr>
<tr>
<td>200.0</td>
<td></td>
</tr>
<tr>
<td>130.0</td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

- ○ p+p
- ○ Au+Au
- ○ d+Au
- ○ Cu+Cu
- ○ U+U
- ○ Cu+Au
- ○ He+Au
- ○ p+Au
- ○ p+Al

Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. Summary
Bose-Einstein correlations in heavy ion physics

- Quantum statistics connects spatial and momentum space distributions
- Spatial source $S(x)$ versus momentum correlation function $C_2(q)$:
 \[
 C_2(q) \approx 1 + \left| \frac{\tilde{S}(q)}{\tilde{S}(0)} \right|^2, \quad \tilde{S}(q) = \int S(x)e^{iqx}d^4x, \quad q = p_1 - p_2
 \]
 - Final state interactions distort the simple Bose-Einstein picture
 - Coulomb interaction important, handled via two-particle wave function
 - Resonance pions: Halo around primordial Core

The out-side-long system, HBT radii

- $C(q)$ usually measured in the Bertsch-Pratt pair coordinate-system
 - out: direction of the average transverse momentum (K_t)
 - long: beam direction
 - side: orthogonal to the latter two

- $R_{\text{out}}, R_{\text{side}}, R_{\text{long}}$: HBT radii

- Out-side difference $\rightarrow \Delta \tau$ emission duration

- From a simple hydro calculation:

 $$R_{\text{out}}^2 = \frac{R^2}{1 + u_T^2 m_T / T_0} + \beta_T^2 \Delta \tau^2$$

 $$R_{\text{side}}^2 = \frac{R^2}{1 + u_T^2 m_T / T_0}$$

- RHIC: ratio is near one \rightarrow no strong 1st order phase transition

- Plus lots of other details (pre-eq flow, initial state, EoS, ...)

Example: recent PHENIX HBT measurements

- Corr. func. in Bertsch-Pratt system, radii from Gaussian fit
- Linear $1/\sqrt{m_T}$ scaling of HBT radii for all systems and energies
- Interpolation to common m_T, PHENIX and STAR consistent

HBT radii and the search for the critical endpoint

- Signals of QCD CEP: softest point, long emission
- $R_o^2 - R_s^2$: related to emission duration
- $(R_s - \sqrt{2} \cdot \bar{R})/R_l$: related to expansion velocity
- Non-monotonic patterns
- Indication of the CEP?
- Further detailed studies done
- Maybe Levy exponent α gives further insight?
Outline

1 The PHENIX experiment
2 Bose-Einstein correlations
3 Lévy-type HBT and the critical point
4 PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5 Summary
Lévy distributions in heavy ion physics

- Expanding medium, increasing mean free path: anomalous diffusion

- Lévy-stable distribution: \(L(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2}|qR|^\alpha} \)
 - Generalized Gaussian from generalized central limit theorem
 - \(\alpha = 2 \) Gaussian, \(\alpha = 1 \) Cauchy

- Shape of the correlation functions with Levy source:
 \[
 C_2(q) = 1 + \lambda \cdot e^{-(Rq)^\alpha} \quad \alpha = 2 : \text{Gaussian} \\
 \alpha = 1 : \text{Exponential}
 \]

- Critical behaviour \(\rightarrow \) described by critical exponents
- Spatial corr. \(\propto r^{-(d-2+\eta)} \rightarrow \) defines \(\eta \) exponent
- Symmetric stable distributions (Lévy) \(\rightarrow \) spatial corr. \(\propto r^{-1-\alpha} \)
- \(\alpha \) associated to critical exponent \(\eta \)

A possible way of finding the critical point

- QCD universality class ↔ 3D Ising

- At the critical point:
 - random field 3D Ising: \(\eta = 0.50 \pm 0.05 \)
 - 3D Ising: \(\eta = 0.03631(3) \)

- Modulo finite size effects

- Distance from the critical point?

- Motivation for precise Levy HBT!

- Change in \(\alpha_{\text{Levy}} \) ↔ proximity of CEP?

- Non-static system, finite size effects...
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. Summary
PHENIX Lévy HBT analysis

- Dataset used for the analysis:
 - Run-10, Au+Au, $\sqrt{s_{NN}} = 200$ GeV, $7.3 \cdot 10^9$ events
- Additional offline requirements:
 - Collision vertex position less than ± 30 cm
- Particle identification:
 - time-of-flight data from PbSc e/w, TOF e/w, momentum, flight length
 - 2σ cuts on m^2 distribution
- Correlation variable $|k|_{\text{LCMS}}$: $|p_1 - p_2|$ in longitudinally comoving frame
- Single track cuts:
 - 2σ matching cuts in TOF & PbSc for pions
- Pair-cuts:
 - A random member of pairs assoc. with hits on same tower were removed
 - customary shaped cuts on $\Delta \varphi - \Delta z$ plane for PbSc e/w, TOF e/w
- 1D corr. func. as a function of $|k|_{\text{LCMS}}$ in various m_T bins
 - Levy fits for 31 m_T bins (m_T in $[0.228, 0.871]$ GeV/c^2)
 - Coulomb effect incorporated in fit function
Example $C(|k|_{\text{LCMS}})$ measurement result

Measured in 31 $m_T^2 = m^2 + p_T^2$ bins for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs

MinBias Au+Au @ $\sqrt{s_{\text{NN}}} = 200$ GeV, $\pi^+\pi^+$, $p_T = 0.2-0.22$ GeV/c

- $\lambda = 0.72 \pm 0.02$
- $R = 8.74$ fm ± 0.24 fm
- $\alpha = 1.16 \pm 0.03$
- $\varepsilon = -0.102 \pm 0.005$
- $N = 1.0095 \pm 0.0005$
- $\chi^2/\text{NDF} = 93/97$
- conf. level = 0.5909

Physical parameters: R, λ, α; measured versus pair m_T
Example $C(|k|_{\text{LCMS}})$ measurement result

Measured in 31 $m_T^2 = m^2 + p_T^2$ bins for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs

\[\lambda = 0.72 \pm 0.02 \]
\[R = 8.74 \text{ fm} \pm 0.24 \text{ fm} \]
\[\alpha = 1.16 \pm 0.03 \]
\[\varepsilon = -0.102 \pm 0.005 \]
\[N = 1.0095 \pm 0.0005 \]
\[\chi^2/\text{NDF} = 93/97 \]

Confidence level $= 0.5909$

Physical parameters: R, λ, α; measured versus pair m_T
Similar decreasing trend as Gaussian HBT radii

Hydro predicts $1/R^2_{Gauss} = a + bm_T$

Hydro behaviour not invalid for R_{Levy}!

The linear scaling of $1/R^2$, breaks for high m_T
Correlation strength λ

From the Core-Halo model: $\lambda = \left(\frac{N_C}{N_C+N_H} \right)^2$

- Observed decrease (“hole”) at small $m_T \rightarrow$ increase of halo fraction
- Different effects can cause change in λ
 - Resonance effects, partially coherent pion production
- $\lambda/\lambda_{\text{max}}$ with smaller systematic uncertainties
- Precise measurement may help extract physics info
A possible (?) interpretation of $\lambda(m_T)$

- $\lambda(m_T)$ measures core/(core+halo) fraction
- May be connected to mass modifications (c.f. chiral restoration)
 - Decreased η' mass \rightarrow η' enhancement \rightarrow halo enhancement
 - Kinematics: η' decay pions will have low m_T \rightarrow decreased λ at small m_T
- Incompatibility with unmodified in-medium η' mass?

A possible (?) interpretation of $\lambda(m_T)$

- $\lambda(m_T)$ measures core/(core+halo) fraction
- May be connected to mass modifications (c.f. chiral restoration)
 - Decreased η' mass \rightarrow η' enhancement \rightarrow halo enhancement
 - Kinematics: η' decay pions will have low m_T \rightarrow decreased λ at small m_T
- Incompatibility with unmodified in-medium η' mass?

Levy exponent α

- Measured values far from Gaussian ($\alpha = 2$), also not expo. ($\alpha = 1$)
- Also far from the random field 3D Ising value at CEP ($\alpha = 0.5$)
- More or less constant (at least within systematic errors)
- Motivation to do fits with fixed $\alpha = 1.134$
- Note: $\alpha(m_T) = \text{const.}$ fit statistically not acceptable (only with syst.)
Levy scale parameter R with fixed $\alpha = 1.134$

- More smooth trend
- Remarkable linearity of $1/R^2$
- Hydro behavior valid, despite $\alpha < 2$
Levy scale parameter R with fixed $\alpha = 1.134$

- More smooth trend
- Remarkable linearity of $1/R^2$
- Hydro behavior valid, despite $\alpha < 2$
Newly discovered scaling parameter \hat{R}
Newly discovered scaling parameter \hat{R}

- Empirically found scaling parameter
- Linear in m_T
- Physical interpretation \rightarrow open question

PHENIX results

M. Csanád for PHENIX BGL17
Newly discovered scaling parameter \hat{R}

- $\alpha = 1.134$ fixed

- Empirically found scaling parameter

- Linear in m_T

- Physical interpretation \rightarrow open question
Outline

1. The PHENIX experiment
2. Bose-Einstein correlations
3. Lévy-type HBT and the critical point
4. PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, MinBias
5. Summary
Summary

- B-E correlation functions, run-10 200 GeV Au+Au, \(\sim 7 \) billion evts.
- Levy fits yield statistically acceptable description
- Fine \(m_T \) binned Levy source parameters (\(R, \lambda, \alpha \))
 - Nearly constant \(\alpha \), away from 2, 1 and 0.5 \(\leftrightarrow \) distance to CEP?
 - Linear scaling of \(1/R^2(m_T) \) \(\leftrightarrow \) hydro?
 - Low-\(m_T \) decrease in \(\lambda(m_T) \) \(\leftrightarrow \) resonances, \(\eta' \) in-medium mass?
- New empirically found scaling parameter \(\hat{R} = R/(\lambda \cdot (1 + \alpha)) \)

Thank you for your attention!

If you are interested in these subjects: come to the 17th Zimanyi-COST Winter School
Budapest, Hungary, Dec. 4. - Dec. 8. 2017
http://zimanyischool.kfki.hu/17/
Outline

6 Backup
Run4 preliminary & Gauss → Run10 preliminary & Lévy

\[\lambda (\pi^+ \pi^+) \text{ RUN4 200GeV Au+Au} \]

\[m^*_{\eta'} = \begin{array}{c} 958 \text{ MeV} \\ 600 \text{ MeV} \\ 500 \text{ MeV} \\ 400 \text{ MeV} \\ 300 \text{ MeV} \\ 200 \text{ MeV} \end{array} \]

Gauss fit

MinBias Au+Au @ \(\sqrt{s_{NN}} = 200 \text{ GeV} \)

\[\lambda_{max} = \langle \lambda \rangle_{(0.5-0.7) \text{ GeV/c}^2} \]

PRL105:182301(2010),
PRC83:054903(2011)

M. Csanád for PHENIX

BGL17
Correlation strength λ with fixed $\alpha = 1.134$

- More smooth trend
- Smaller systematic errors
- Saturation at large m_T
- Decrease ("hole") for smaller m_T values
Low energy comparison

STAR centrality dependent results (left) and the comparison of STAR results in different energy with NA44 data (right)
Lévy source function and kinematic variables

- Basic two-particle variables
 \[K^\mu = \frac{p_1^\mu + p_2^\mu}{2}, \quad q^\mu = p_1^\mu - p_2^\mu, \quad q_{inv} = \sqrt{-q^\mu q_\mu} \]
 \[|k| = \frac{1}{2} \sqrt{q_{out}^2 + q_{side}^2 + q_{long}^2} \text{ instead of } q_{inv} \text{ - better} \]

- \(C_2(q_{inv}) \) - Lorentz invariant 1 dimensional function

- Anomalous diffusion, generalized central limit theorem: Levy

 \[\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2} |qR|^\alpha} \]
 \[S(r) = (1 - \sqrt{\lambda})\mathcal{L}(\alpha, R_H, r) + \sqrt{\lambda} \cdot \mathcal{L}(\alpha, R_C, r) \]

- Shape of the correlation functions with Levy source \((R_H \to \infty) \):
 \[C_2(|k|) = 1 + \lambda \cdot e^{-(2R|k|)^\alpha} \]
Lévy exponent α at 200 GeV

- Slightly non-monotonic behavior as a function of m_T
- Average $\langle \alpha \rangle$ non-monotonic behavior versus N_{part}
- $\alpha = \langle \alpha \rangle$ constant fits were performed
Lévy exponent α at 62 and 39 GeV

- Lévy exponent α: no significant change vs $\sqrt{s_{NN}}$ at 39-62-200 GeV
- Usual values between 1 and 1.5
- Non-monotonicity in m_T
Lévy scale R: similar trends for all $\sqrt{s_{NN}}$ and cent.

- For $\sqrt{s_{NN}} = 200$ GeV:
 - Linear fit $\pi^-\pi^+\pi^+$
 - Data points for different centrality classes (0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%)
 - α free

- For $\sqrt{s_{NN}} = 62$ GeV, $\pi^-\pi^+\pi^+$:
 - Similar trends for all $\sqrt{s_{NN}}$

- For $\sqrt{s_{NN}} = 39$ GeV, $\pi^-\pi^+\pi^+$:
 - α fixed

M. Csanád for PHENIX
“Hole” in λ: all energies and centralities

PHENIX Au+Au $\sqrt{s_{NN}} = 200$ GeV

- $0\% - 10\%$
- $10\% - 20\%$
- $20\% - 30\%$
- $30\% - 40\%$
- $40\% - 50\%$
- $50\% - 60\%$

PHENIX Au+Au $\sqrt{s_{NN}} = 39$ GeV

- $0\% - 10\%$
- $10\% - 20\%$

PHENIX Au+Au $\sqrt{s_{NN}} = 62$ GeV

- $0\% - 10\%$
- $10\% - 20\%$
\hat{R} scaling for all energies & centralities

$\hat{R} = \frac{R}{\lambda(1+\alpha)}$

$\pi^-\pi^+\pi^\pm\pi^\mp$

$\tau = \frac{R}{\lambda(1+\alpha)}$

$\pi^-\pi^+\pi^\pm\pi^\mp$

PHENIX Au+Au $\sqrt{s_{NN}} = 200$ GeV

α free linear fit

PHENIX Au+Au $\sqrt{s_{NN}} = 200$ GeV

α fixed linear fit

$\delta R^1/R^1$

$\delta R^2/R^2$

rel. syst. uncertainties

rel. syst. uncertainties

PHENIX preliminary

M. Csanád for PHENIX

BGL17