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Goal to extract system properties: 
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in Heavy Ion Collisions
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from ALICE, Phys.Lett. B719 (2013) 29-41

pair excess in central events well-described by small order moments
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Physical Mechanisms �4

competing theoretical descriptions of the effect...

so is this phenomena present at RHIC energies?

Hydrodynamics
(final state re-scattering and	



thermal expansion)

Bozek, PRC, 85, 014911

CGC/Glasma
(correlated emission off a flux tube)

jet

glasma

Dusling & Venugopalan, 1211.3701, 1302.7018
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RHIC
LHC

New York
Switzerland

p+p          62 - 510

d+Au        200 
Cu+Cu     22 - 200

Cu+Au     200

Au+Au     7 - 200

U+U         193

→ →

PHENIX

STAR

beam energy (GeV)

p+p          7000-8000

p+Pb        5020

Pb+Pb      2760

beam energy (GeV)today’s  
topic

1.2 km

8.6 km
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the centrality difference is well-described by a 2nd-order moment

← difference
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, ⟨Npart⟩, the number of participants
in the incident gold, ⟨NAu

part⟩, and the deuteron, ⟨Nd
part⟩,

nuclei, as well as the number of binary collisions, ⟨Ncoll⟩,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, ⟨Npart⟩, the number of participants
in the incident gold, ⟨NAu

part⟩, and the deuteron, ⟨Nd
part⟩,

nuclei, as well as the number of binary collisions, ⟨Ncoll⟩,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, ⟨Npart⟩, the number of participants
in the incident gold, ⟨NAu

part⟩, and the deuteron, ⟨Nd
part⟩,

nuclei, as well as the number of binary collisions, ⟨Ncoll⟩,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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tension between studies 
covered by correlated 
systematic	


!
still larger than LHC 
values after improving 
jet separation 	


!
Reason? - deuteron gives 
larger eccentricities
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larger 2nd order eccentricity is expected from deuteron projectile

only small 3rd order is expected

dp
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system size conversion of eccentricity 
into anisotropy similar to world data

PHENIX, PRL 111, 212301

this  
result
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Large η-gap results Quark-scaling test

mass ordering	


a hydro hallmark!

almost scales with 
quark content

using identified pions and protons



Higher Moments �15

no significant 3rd order contribution measured

3rd order

2nd order

PHENIX, PRL 111, 212301
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Future �16

Nagle, et al (MM), arXiv:1312.4565

He3+Au provides an larger, intrinsic triangular collision geometry

could run with p+A at RHIC as early as 2015

He3+Au

d+Au and p+Au
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Summary �17

We have observed a 	


strong 2nd-order moment difference  
between central and peripheral d+Au events	


!
This feature extends across rapidity	


!
These data show qualitative features of hydrodynamic models 	


and eccentricity scaling	


!
The particle content (π±,p) of the signal also shows hydrodynamic features	


!
RHIC can run p+Au, He3+Au and test a change in eccentricity directly, ~2015
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BACKUP SLIDES
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Quark-Gluon Plasma (QGP)



Heavy Ion Collisions �20

TC ⇡ 170MeV
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← RHIC Au+Au

← LHC  Pb+Pb

Lattice QCD Calculations 
Energy density indicates partonic degrees 
of freedom open at Tc ≈ 170 MeV


!
Ideal gas of quarks and gluons at 
arbitrarily large T


!
(Data) Strongly-coupled fluid near TC

QCD Phase Diagram 
Quark-gluon plasma above a few 1012 K


!
Reachable by collider facilities


!
Critical point being sought
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Space-Time Evolution �21

Thermalization (~0.6 fm/c)

Nuclear Crossing (~0.1 fm/c)

Phase Transition (~4 fm/c)

QGP

Hadron Gas

Chemical Freeze Out (~7 fm/c)

Kinetic Freeze Out (~10-15 fm/c)

*values for RHIC at 200 GeV



Event Geometry Controls �22

Impact parameter studied via 
centrality selection

!

Large impact parameter

 → peripheral events, ≲100%

Small impact parameter

 → central events, ≳0%

!

Measured at large pseudorapidity

Tool: Glauber Monte Carlo simulation

!
Simple geometric description of A+A

!
Includes statistical fluctuations

!
Number of Participating Nucleons, Npart 

~ system size

!
Number of Binary Scatterings, Ncoll 

~ hard process cross-section


PHOBOS Glauber MC 



Centrality in d+Au �23



Centrality Bias in d+Au �24



PHENIX Detector �25



PHENIX Detector �25



Previous PHENIX studies �26
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FIG. 1: Measured pseudorapidity distributions of charged
particles from d + Au collisions at

√
s

NN
= 200 GeV as a

function of collision centrality. Shaded bands represent 90%
confidence level systematic errors and the statistical errors are
negligible. The minimum-bias distribution is shown as open
diamonds [10].

in the primary event trigger and in the offline event
selection.

The centrality determination was based on the ob-
served total energy deposited in the Ring counters, ERing,
which is proportional to the number of charged particles
hitting these detectors. The choice of this centrality
measure was based on extensive studies utilizing both
data and Monte Carlo (MC) simulations that sought to
minimize effects of auto-correlations on the final dNch/dη
result. These effects can be significant when using other
centrality measures [10], resulting in enhancements (sup-
pressions) in the reconstructed midrapidity yields of up
to ∼ 30% for central (peripheral) collisions. The MC
simulations used in the study included both HIJING
[11] and AMPT [12] event generators coupled to a full
GEANT [13] simulation of the PHOBOS detector.

Four additional centrality measures, discussed in Ref.
[10], were created in order to study the detailed effects
of auto-correlation biases. Ratios of the reconstructed
dNch/dη distributions obtained from the five centrality
measures for data and, independently, for the MC simula-
tions were found to agree, giving confidence in the entire
methodology. This information, together with knowledge
of the unbiased MC simulated “truth” distributions, pro-
vided a clear choice of the centrality measure based on
the Ring detectors as that which yielded the least bias
on the measurement. It is important to note that this
study only provided guidance with respect to the choice
of ERing for the experimental centrality measure, and the
final experimental dNch/dη results do not rely in any way

on the detailed shape of the dNch/dη distributions from
the MC simulations.

The multiplicity signals of ERing were divided into five
centrality bins, where each bin contained 20% of the
total cross section. For this to be done correctly, the
trigger and vertexing efficiency had to be determined for
each bin. Knowledge of the efficiency as a function of
multiplicity allowed for the correct centrality bin deter-
mination in data as well as the extraction of the corre-
sponding efficiency-averaged number of participants. A
comparison of the data and the MC simulations yielded
an overall efficiency of ∼ 83%.

Results of the Glauber calculations implemented in the
MC were used to estimate the average total number of
nucleon participants, ⟨Npart⟩, the number of participants
in the incident gold, ⟨NAu

part⟩, and the deuteron, ⟨Nd
part⟩,

nuclei, as well as the number of binary collisions, ⟨Ncoll⟩,
for each centrality bin (see Table I).

The details of the analysis leading to the measurements
of dNch/dη can be found in Ref. [14]. The measured
dNch/dη was corrected for particles which were absorbed
or produced in the surrounding material and for feed-
down products from weak decays of neutral strange par-
ticles. Uncertainties in dNch/dη associated with these
corrections range from 6% in the Octagon up to 28% in
the Rings. These uncertainties dominate the systematic
errors.

Figure 1 shows the pseudorapidity distributions
of primary charged particles for d + Au collisions
at

√
s

NN
= 200 GeV in five centrality bins and for

minimum-bias events. A detailed discussion of our
minimum-bias distribution can be found in Ref. [10]. As
a function of collision centrality, the integrated charged
particle multiplicity in the measured region (|η| ≤ 5.4)
and the estimated total charged particle multiplicity
extrapolated to the unmeasured region using guidance
from the shifted p+nucleus data (see Fig. 2) are pre-
sented in Table I. The centrality bins 0-20% and 80-
100% correspond to the most central and the most pe-
ripheral collisions, respectively. The pseudorapidity is
measured in the nucleon-nucleon center-of-mass frame; a
negative pseudorapidity corresponds to the gold nucleus
direction. For the most central collisions, the mean η
of the distribution is found to be negative, reflecting
the net longitudinal momentum of the participants in
the laboratory (NN) frame. For more peripheral col-
lisions, the mean η tends to zero as the distribution
becomes more symmetric. For measurements of d+Au in
the nucleon-nucleon center-of-mass system the Jacobian
between dNch/dy and dNch/dη naturally produces the
“double-hump” structure in dNch/dη even if there is no
structure in dNch/dy.

Now, we compare our d + Au results with p + A data
obtained at lower energy, and discuss the energy and
centrality dependence of the data. Figure 2 compares
dNch/dη distributions of d + Au to p + Emulsion (Em)
collisions at five energies [15, 16], in the effective rest
frame of both the projectile “beam” (a) and target (b).
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Focus: dijet at small x in Au



Transverse Momentum �27

“associated partner” pT

“trigger” p
T

this result

possible pair combinations

cross-
check 
only

some examples...

a similar effect found across multiple pT values

PHENIX, PRL 111, 212301

Pair amplitude modulation:



Eta Gap Cross Check �28

Extract flow moments and test eta-separation and subtraction with a variety of 	


different pseudorapidity separations



Factorization Cross Check �29

Extract flow moments to test factorization with a 	


different trigger pT



Luminosity Cross Check �30

Extract flow moments and test double-interaction 
contamination with a	



different beam luminosity



Charge Sign Cross Check �31

Jet pair correlations 
have a well-known 
charge-ordering and 
remaining 
contamination should 
show this signature	


!
Not clear if the signal 
also has a correlation 
of this kind, we 
assume a worst case 
scenario



p+p analysis cross check �32


