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" Two-Particle Correlation Results from the PHENIX Silicon

Vertex Detector in Au+Au collisions at 200 GeV
\by Theo Koblesky (University of Colorado) for the PHENIX Collaboratio
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/ Motivation \
The VTX (Silicon Vertex Detector) is a recent

detector upgrade to PHENIX which extends the
rapidity coverage out to 1 unit. This coverage is
useful for a two-particle correlation analysis using
charge particle tracks through the VTX only.
SPHENIX is a majoy upgrade that includes
increasing the tracking layers from 4 to 6. For both
cases, a robust tracking algorithm is required in
order to make these measurements with either the
VTX or sPHENIX. A novel and promising tracking
algorithm which makes use of the Hough

Transform developed by Alan Dion is available
publically at Ref [1].

X is composed of 2
inner layers of silicon pixels

and 2 outer layers of silicon
strip-pixels.

The proposed sPHENIX
upgrade has 6 layers for
tracking over the full
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/ Introduction to Trackin
The basic goal of tracking is to associate
detector hits to reconstruct true particle
tracks. Ghost tracks are false associations
made by the tracking algorithm which result in
a reconstructed track not based on a true
particle track. These tracks can be reduced
through chi squared minimization filtering or
similar methods. The goal of any tracking
algorithm is to minimize the number of ghost
tracks and maximize the number of real tracks
found, while making maximal efficiency of

computational resources such as CPU &
memory.
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Brute Force Trackin

The simplest and most efficient tracking algorithm
possible is to make track candidates out of every
possible combination of hits in the detector. This

method guarantees to reconstruct every real
track passing through the detector, as well as a
large number of fake tracks. While brute force
tracking may be crude, it is useful as a baseline
which other tracking algorithms can be compared
with. For example, the asymptotic scaling of brute
force tracking is O(n'a¥e™s) in big O notation. More
sophisticated tracking algorithms will want to
reduce the asymptotic scaling while maintaining
high track finding efficiency.
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The Hough Transform

The Hough Transform takes a set of
points and an unknown geometric
relation between them and
transforms them from Coordinate

y

Parameter Space
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Geometric Relation:
y = mx+b
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Space to Parameter Space. For
helical charged tracks, cylindrical
coordinates is the Coordinate
Space and the geometric relation
between the points is a helix.
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Computational Limitations

Piece of 5D L1 Cache

or peak
marks correct
parameters

The required fineness of binning
5D Parameter Array makes it too
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Hough Transform -

-

entire array into the CPU cache
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fit into the CPU’s local cache. Random

filling of the cache with pieces of the
array stored in memory. Not fitti

down the algorithm considerably.
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Recursive Zooming

To solve this problem, the Parameter
Array is made so that it always fits in the
cache. Initially the array is constructed

necessary level of k = Vn, we find a peak
bin and recursively create another array
with that bin or “zoom into it”. By only
looking at certain pieces of the array at a
time, it always fits in the cache.
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