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A

Direct Jet Reconstruction in Proton–Proton and Copper–Copper Collisions at
p
sNN = 200 GeV

Yue Shi Lai

Collision of heavy nuclei at the Relativistic Heavy Ion Collider (RHIC) recreates the state of high tempera-

ture quark–gluon plasma that existed shortly a
er the Big Bang. Measurement using single particle spectra

and two-particle correlation shows that this medium is largely opaque to the transit of a high energy quark

or gluon. Reconstructing the kinematics of these quarks and gluons can provide additional constraints for

the property of their interaction with the medium. While the direct reconstruction of quantum chromody-

namics jets, the final state showers of quarks and gluons, has become an indispensable tool at hadron and

electron accelerator experiments, the application of this technique to heavy ion collisions at the RHIC en-

ergy has been considered a hard problem. �e relatively low yield of high transverse momentum jets would

have to be detected within a large, fluctuating background that can give rise to a false jet signal. At the RHIC

PHENIX experiment, jet reconstruction also has to cope with the limited aperture of the central arm spec-

trometers. To overcome both problems, which can distort the jet signal in the traditional reconstruction

algorithms, this thesis develops an algorithm that reconstructs the jets as maxima of the Gaussian filtered

event transverse momentum distribution. �e Gaussian angular weighting causes the algorithm to become

more sensitive to the jet core versus the jet periphery. It is then combined with a fake jet rejection discrim-

inant to remove the background fluctuation from the jet signal. �is algorithm is used to obtain the first jet

measurement in heavy ion environment at PHENIX, using data from the 2004/2005 RHIC run. �e result

includes the proton–proton inclusive jet spectrum, the proton–proton fragmentation function, the copper–

copper jet nuclear modification factor, the copper–copper jet central-to-peripheral modification factor, and

the copper–copper dijet azimuthal correlation. �e measured copper–copper jet nuclear modification factor

shows that there is a significant initial state effect to the jet suppression. �e observation of no broadening in

the copper–copper dijet azimuthal correlation indicates that the traditional energy loss picture via multiple

so
 scattering may not be applicable to the quark–gluon plasma.
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CommonAbbreviations

AdS/CFT Anti de Sitter/conformal field theory

AGS lternating Gradient Synchrotron

ASIC Application-specific integrated circuit

ATLAS A Toroidal LHC ApparatuS

ATP Assembly Trigger Processor

BBC Beam–beam counter

BNL Brookhaven National Laboratory

CERN European Organization for Nuclear Research1

 CERN Program Library

CGS Centimeter–gram–second

CMB Cosmic microwave background

CODATA Committee on Data for Science and Technology

CPU Central processing unit

DAQ Data acquisition

DC Dri
 chamber

DCM Data Collection Module

DIS Deep inelastic scattering

DST Data summary tape

EMCal Electromagnetic calorimeter

ERT EMCal/RICH trigger

EvB Event Builder

FEM Front End Module

1historically: Conseil Européen pour la Recherche Nucléaire (European Council for Nuclear Research)
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FIR Finite impulse response (filter)

FNAL Fermi National Accelerator Laboratory (Fermilab)

FODO Focusing quadrupole–dri
 space–defocusing quadrupole–dri
 space

 GEometry ANd Tracking

GL1 Global Level-1 (trigger)

GSVD Generalized (quotient) SVD

HEP High energy physics

 Hadron Emission Reactions With Interfering Gluons

 Heavy Ion Jet INteraction Generator/he yi jing (核易经)

IEEE Institute of Electrical and Electronics Engineers

IIR Infinite impulse response (filter)

IR Infrared

Interaction region (experiment)

IRC Infrared/collinear

ISR Intersecting Storage Ring

 Linear Algebra PACKage

ΛCDM Cosmological constant–cold dark matter

LHC Large Hadron Collider

LINAC Linear accelerator

LL1 Local Level-1 (trigger)

LO Leading order

LP Linear programming

MB Minimum bias

MIP Minimum ionizing particle

MWPC Multiwire proportional chamber

NLO Next-to-leading order

OPPIS Optically pumped polarized ion source

PC Pad chamber

PbGl Pb (lead) glass

PbSc Pb (lead) scintillator
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PHENIX Pioneering High-Energy Nuclear Interaction eXperiment

 PHENIX Integrated Simulation Application

PMT Photomultiplier tube

PQCD Perturbative QCD

PRDF PHENIX Raw Data Format

PRNG Pseudorandom number generator

PSS Phase space splicing

QCD Quantum chromodynamics

QED Quantum electrodynamics

QGP Quark–gluon plasma

RICH Ring imaging Cherenkov detector

RHIC Relativistic Heavy Ion Collider

SEB Sub Event Buffer

SM Standard Model

SIMD Single instruction, multiple data

SISCone Seedless/infrared safe cone (algorithm)

SPS Super Proton Synchrotron

SSE Streaming SIMD Extension

SUSY Supersymmetry

SVD Singular value decomposition

TOF Time of flight

UV Ultraviolet

WCM Wall current monitor

ZDC Zero degree calorimeter
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Mathematical Notation

& Bitwise and

| Bitwise or

||x||A =
p

xTA−1x, the Mahalanobis distance

bxc �e floor function of x, the greatest integer ≤ x
.n/ n-th iteration

^ Logical and

_ Logical or

A†
MP �e Moore–Penrose pseudoinverse of A (from the singular value decomposition)

A†
B �e B-weighted pseudoinverse of A (from the generalized singular value decomposition)

.nM . . .n1n0.n−1 . . .n−N /b

≡
PM

k=−N nkb
k , the radix-b number representation

αs �e quantum chromodynamics coupling constant

cpe clock per element

β = v/c, velocity (in natural units)

β function (renormalization)

β∗ Betatron amplitude function

Cov.x/ Covariance

d Number of dimensions

Distance

D.z/,D.x,Q2/Fragmentation function

diag.x/ Diagonal matrix

ds Line element

� Efficiency (experimental)
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ε Emittance (accelerator physics)

�A Achievable machine accuracy

�M Machine precision

η Pseudorapidity

Infinitesimal (dimensional renormalization)

f.x,Q2/ Parton distribution function

fch Charged fraction

h.. . ./ �e impulse response

H.. . ./ �e complex transfer function

i ≡
p
−1, the imaginary unit

jT �e transverse (to jet axis) momentum vector

K =
R

B × d l, the effective field integral

ℒ Lagrangian (quantum chromodynamics)

Luminosity (accelerator physics)

= min! Minimize

ℳ Invariant matrix element

MS Modified minimal subtraction scheme

Nc Number of color charges

p �e (four) momentum

P.x/ Probability

P.x|y/ Conditional probability

pT ≡
q
p2x + p2y , the transverse momentum

ϕ Azimuth

ϕ∗ ≡ ϕ − 2πb.ϕ + π//.2π/c, the angular range reduced azimuth

∆ϕ ≡ .ϕ2 − ϕ1/∗, the (angular range reduced) pair azimuthal opening angle

Ψ Reaction plane

RAA �e nuclear modification factor, ratio between heavy ion and p + p cross sections

RCP �e central to peripheral collision modification factor

s = .p1 + p2/2 = .p3 + p4/2, the square of the center-of-mass energy

S =
R
ℒdt , the action
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σ Cross section

Standard deviation

SU.n/ Special unitary group of degree n

T Temperature

AT Transpose of matrix A

Tk.x/ Chebyshev polynomial of the first kind

ulp unit in the last place

Var.x/ Variance

z ≡ p||/pjet, the longitudinal momentum fraction (kinematics)

Complex argument of the Z-transform (digital filter)
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Chapter 1

Introduction

�e strong interaction, which governs the structure of nucleons, describes quarks as bound particles in virtu-

ally all conditions on Earth, while only in highly energetic conditions – e.g. scattering of nucleons, or heated

to sufficiently high temperature – they would emerge as particles no longer bound inside the nucleons. From

the Big Bang cosmology, it is expected that the nucleons as we know them today, froze out of such a hot

“soup” of freely roaming quarks and gluons (other unstable hadrons, such as mesons, would also freeze out,

but decay eventually), until no outward charge of the strong interaction – “color” – remains. Since this soup is

theoretically the strong interaction equivalent of an electromagnetic plasma (the “electron–photon plasma”),

it was coined as the quark–gluon plasma (QGP, a term introduced by E. V. Shuryak [14]).

Using collision of nuclei to recreate this phase of matter has been proposed as far back as the Berkeley

Bevalac [15]. �e Relativistic Heavy Ion Collider (RHIC) is the first accelerator systematically designed to

produce such a state and study its properties. �is was made possible by an accelerator that can collide inde-

pendent beam types and directly compare the baseline, “cold” nucleus on nucleus collisions, with the “hot”

nucleus–nucleus collisions, where the emergence of the QGP is expected.

For the very same reason that hadrons would freeze out from QGP when the universe cools, the so pro-

duced, naked quarks and gluons would “hadronize” by converting the excess energy into a spray of particles,

which carries roughly the momentum of the originating quark or gluon. In collisions of protons and elec-

trons, when in one of the rare occasions, the quarks and gluons in the colliding nucleons scatter energetically,

this process becomes quite evident as a collimated spray of particles, coined a “jet” (S. D. Drell, J. D. Levy,

and T.-m. Yan [16]). While in the collisions of protons and electrons, the jet is cleanly observable, the large

number of interaction involved in the collision of nuclei typically produces 200 particles per unit spherical

angle. Simply by Poisson fluctuation, the detection is more or less a game of luck, unless more sophisticated

techniques are applied to clear the vision.

Several of the techniques developed to work around this problem is to detect the jet statistically. �is has
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been applied successfully to RHIC in the form of single particle yield [17] and two particle correlation [18].

�ese observations have been as signature of jet quenching. �e later paper summarizes the predominant

view regarding jet reconstruction at RHIC:

“�e traditional identification of jets through hadronic calorimetry and cluster algorithms is

problematic in Au Au collisions at RHIC, since low-energy jets (< 10–20GeV) are overwhelmed

by other produced particles in the underlying event and high-energy jets are p relatively rare at
p
sNN = 200 GeV. Instead, we study hard-scattered single partons and parton pairs through

angular correlations of high-pT hadron pairs.”

�e obstacle that prevented full jet measurement for nearly a decade at RHIC is the low jet yield with a

comparably high background that fluctuate significantly. Naïve application of jet algorithm to heavy ion col-

lisions in fact predates RHIC and should be well-known to anyone with memory dating back to the Fermilab

E557 Collaboration. When RHIC was designed, people (still remembering the impact of the hard-to-remove

fluctuation, as opposed to the energy offset from the underlying event, which is not the main issue) looked

at the Poisson fluctuation of central
p
sNN = 200 GeV Au + Au collisions and (still) saw the hopelessness to

extract jets reliably. While I will partially contradict this conclusion, by showing that there are phase spaces

where it is feasible, the conclusion remains correct that a naïve application of jet algorithm to RHIC will cause

problems even with
p
sNN = 200 GeV and light ions.

�is thesis is therefore most likely the first that studies the jet quenching in heavy ion colliders using jet

reconstruction – and with advent of LHC, and the tools now established for RHIC herein, there will be many

to come.
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Chapter 2

Quark–Gluon Plasma

�is thesis is mostly concerned with both the isolated and bulk property of quarks and gluons, which, to

our present understanding (and collider energy reach), are both fundamental and point-like constituents of

matter.

�e discovery of quarks and gluons as the composition of baryons by M. Gell-Mann and K. Nishijima

follows a long historical succession that started as schools of atomism in Ancient Greece [19] and India [20],

and includes their spread to medieval Europe to Central Asia [21]. �e chemical composition of matter and

the existence of atoms was discovered in the 18th and 19th century Europe by A. Lavoisier [22], J. Dalton [23],

and D. Mendeleev [24]. With the rise of modern physics, e−, p, and n as subatomic particles were discovered

by J. J. �omson [25], E. Rutherford [26], and J. Chadwick [27] in 1897, 1919, and 1932, respectively.

Property of hadrons at high temperature has been studied even before discovery of the flavor quantum

numbers. �e discovery of large number of hadronic resonances led R. Hagedorn to develop the statistical

bootstrap model (SBM). Under the assumption of “infinitly composed particles”, the asymptotic hadronic

state density becomes [28]

dn.m/ ∼
A

m5/2 exp
�
m
TH

�
dm, A constant (2.1)

Calculating the partition function by

h�i ≈ A
�
T
2π

�3/2 THT
TH − T

exp .−m0/ ln Z.V,T/ (2.2)

gives as corollary of SBM the divergence of the partition function at the finite Hagedorn temperature TH , i.e.

approaching TH would require increasing energy to produce hadronic resonances, leading to infinite energy

at TH , which therefore would be the upper bound of any equilibrium temperature. Using spectra from
p
s =

12.5–30 GeV p + p collisions, Hagedorn obtained TH ≈ 160 MeV. �is gives the first hint that for hadronic

matter, something nontrivial may occur when heated to this temperature.
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In following, I will review the basic theoretical ingredients that provides (or are hopeful candidates for)

predictions in jet production and jet interaction with the QGP.

2.1 QCD

QCD is a theory of quantized Yang–Mills field described by the Lagrangian

ℒQCD = −
1
4

X
a
FaµνF

aµν +
X
f

Nqa
�
iγµDµ − m f

�
ab qb , (2.3)

consisting of the Klein-Gordon Lagrangian for the field tensor of the spin-1 gluons

Faµν.x/ = ∂µAaν.x/− ∂νAaµ.x/+ gs f abcAbµ.x/A
c
ν.x/, (2.4)

and the Dirac Lagrangian for the spin- 12 , non-Abelian quark field q f . �e structure constant f abc arises from

the fundamental representation of the SU.Nc/ group

Œt a , t b � = if abct c , (2.5)

while the covariant derivative is defined as

.Dµ/ab = ∂µδab + igsAaµ.x/t
a , (2.6)

and the QCD coupling is

αs =
g2s
4π

(2.7)

Symmetry with respect to the color charges of the quark and gluon fields give rise to the SU.Nc/ group

in QCD. Up to the fourth order for QCD, the following invariants can be derived (which we will encounter

later)

TF =
1
2

NA = N2
c − 1 CA = Nc CF =

N2
c − 1
2Nc

dabcdA dabcdA
NA

=
N2
c .N2

c + 36/
24

dabcdF dabcdA
NA

=
Nc.N2

c + 6/
48

(2.8)

dabcdF dabcdF
NA

=
N4
c − 6Nc + 18

96N2
c

For small coupling, Feynman rules can be derived by varying ℒQCD in momentum space. �e quark

propagator is obtained by setting ∂α = −ipα, while the gluon propagator requires the selection of a gauge.
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QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Figure 2.1: �e running QCD coupling constant αs.Q2/ fitted to the experimental values as function of momentum

transfer Q, and with the fitted value αs.MZ/ at the Z0 mass shown. From [1].

Feynman rules arises for quark–gluon scattering, and due to the self-interaction with non-Abelian fields, both

three and four vertices gluon interaction. Unlike quantum electrodynamics (QED), these additional gluon

interactions can propagate non-physical degrees of freedom, and therefore the additional (gauge dependent)

rule corresponding to the Fadeev–Popov ghost interacting with the gluon field has to be observed.

2.1.1 Asymptotic Freedom

Like in any quantized, interacting field, loop contribution gives aQ2-dependent renormalization to the prop-

agator. �e coupling of a perturbative field theory follows the renormalization group equation

Q2 ∂α
∂Q2 = β.α/ = −

∞X
k=0

βk
� α
4π

�k+2
(2.9)

where βk is the .k+ 1/-loop contribution to the β function. Due to exact cancellations, β0, β1 are renormal-

ization scheme independent, while the higher loop orders are not.

In QED, the one and two-loop contribution to the β function for n fermions at the one-loop order

βQED.α/ =
4
3

� α
4π

�2
+ 4n

� α
4π

�3
+ O.α4/ (2.10)
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are all negative (by convention of (2.9)), which is a consequence of the charge screening: At high
p
Q2,

more of the bare charge is probed, thus the increasing coupling strength. �e QCD analogue of the Gauss’s

and Faraday’s law can be obtained by summing over the spatial components of the covariant derivative (and

disregarding for a moment the SU.Nc/ structure):

r � E + igs.A � E − E � A/ =
q
�0

r � B + igs.A � B − B � A/ = 0
(2.11)

where the extra commutator term to the color field A results from the requirement of gauge covariance [29].

�e additional term from a point color charge to a radial divergence in (2.11) suggests that the point charge

will lead to a nonradial charge separation and screening, which is very unlike QED. Gerard ’t Hoo
 was the

first to provide heuristic argument for a β0 > 0 and thus a negative slope. D. Gross, F. Wilczek, and D.

Politzer, and obtained

β0 =
11
3
CA −

4
3
TFn f , (2.12)

with n f being the number of quark flavors, and the gluon loop therefore providing the negative slope of the β

function, which results in the asymptotic freedom of QCD. �e QCD beta function up to the fourth loop in

MS has been evaluated by W. E. Caswell, D. R. T. Jones, E. Egorian, and O. V. Tarasov (two-loop) [30], O. V.

Tarasov, A. A. Vladimirov, A. Y. Zharkov, S. A. Larin, and J. A. M. Vermaseren (three-loop) [31], and T. van

Ritbergen, J. A. M. Vermaseren, and S. A. Larin (four-loop) [32]

β1 =
34
3
C2A − 4CFTFn f −

20
3
CATFn f (2.13)

β2 =
2857
54

C3A + 2C2FTFn f −
205
9
CFCATFn f −

1415
27

C2ATFn f +
44
9
CFT2Fn

2
f

+
158
27

CAT2Fn
2
f (2.14)
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β3 =
�
150653
486

−
44
9
ζ.3/

�
C4A +

�
−
39143
81

+
136
3
ζ.3/

�
C3ATFn f

+
�
7073
243

−
656
9
ζ.3/

�
C2ACFTFn f +

�
−
4204
27

+
352
9
ζ.3/

�
CAC2FTFn f

+ 46C3FTFn f +
�
7930
81

+
224
9
ζ.3/

�
C2AT

2
Fn

2
f +

�
1352
27

−
704
9
ζ.3/

�
C2FT

2
Fn

2
f

+
�
17152
243

+
448
9
ζ.3/

�
CACFT2Fn

2
f +

424
243

CAT3Fn
3
f +

1232
243

CFT3Fn
3
f

+
�
−
80
9

+
704
3
ζ.3/

�
dabcdA dabcdA

NA
+
�
512
9

−
1664
3

ζ.3/
�
dabcdF dabcdA

NA
n f

+
�
−
704
9

+
512
3
ζ.3/

�
dabcdF dabcdF

NA
n2f , (2.15)

with ζ.3/ = 1.20206 . . . being the Riemann ζ function (which comes from momentum integration and

appears in intermediate diagrams at lower loop order – and even for the QED β function – but they usually

cancel out until higher loop orders). Evaluation of β3 involves approximately 50 000 diagrams (which, with

no interference terms, is still quite manageable compared e.g. to scattering processes to the four-loop order).

Figure 2.1 shows a current fit of the running QCD coupling constant αs.Q2/ against the experimental

values as function of momentum transfer Q.

2.1.2 Lattice QCD

Lattice gauge theory is the formulation of d = 4 quantum field theory as a Euclidean theory on discrete space

time

SQCD 7! iS(eucl)
QCD = S(eucl)

G + S(eucl)
F (2.16)

�e space time discretization is performed by the substitution

xµ 7! anνZ
dDx 7! aD

X
n

� 7!
1
a2
O�

D 7!
Y
n
d.

(2.17)

where a is the lattice spacing.

�e next step now is to obtain the lattice QCD action, where the quantized theory is given as the partition
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function

Z =
Z
ŒdU�Œd Nq dq � expŒ−SG.U/− SF. Nq, q,U/� (2.18)

�e evaluation of the partition function by analytical integration is not feasible. However, using Monte Carlo

integration and massively parallel processing, it is possible to evaluate Z for small time/spatial grids on the

order of Nt ∼ Ns ∼ 10. �e

QCD calculation using the lattice is however very costly in both (increasing) size and (decreasing) lattice

spacing. Generally, the computational cost behaves as

cost ∼
�
L
a

�4 1
mπa2

. (2.19)

2.1.2.1 Gauge Actions

Starting with the Wilson line

Uµ.n/ ≡Un,n+µ = expŒigaAµ.n/� =U †
−µ.n + Oµ/ (2.20)

the “plaquette operator” constructs the most trivial, local gauge invariant operator as

Uµν.n/ =Uµ.n/Uν.n + Oµ/U †
µ .n + Oµ + Oν/U †

ν .n/. (2.21)

It follows that

Uµν.n/ = expŒiga2Feµν.n/� (2.22)

where

Feµν.n/ =
N2
c−1X
a=1

λa

2
Faµν (2.23)

denotes the gluon field strength tensor representation in the SU.Nc/ algebra. Evaluating the discrete deriva-

tive (while keeping track the noncommutative part) gives

Feµν.n/ = 1
a
fŒAeν.n + Oµ/− Aeν.n/�− ŒAeµ.n + Oν/− Aeµ.n/�+ igŒAeµ , Aeν �g (2.24)

Comparing against the gluon action while keeping track of the color factors and the trace gives

lim
a!0

2Nc

g2
X
n

X
µ<ν

�
1−

1
2Nc

TrŒUµν.n/+U †
µν.n/�

�
=

a4

2
Tr
X
n,µ,ν

Feµν.n/Feµν.n/ (2.25)

where the summation over .n, µ, ν/ with µ < ν is the distinct plaquettes, and therefore the Wilson gauge

action is

SSU.Nc/
G ŒU� =

2Nc

g2
X

plaquette

�
1−

1
2Nc

TrŒUµν.n/+U †
µν.n/�

�
(2.26)
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2.1.2.2 Fermion Actions

Naive discretization the continuum fermion action on the lattice results in the effect of fermion doubling.

Wilson fermion action avoids the doubling by introducing a second derivative, chiral symmetry breaking

term

S.W/F = SF −
r
2

X
n
Nqe.n/.a2�/qe.n/ (2.27)

where r is the Wilson parameter. For the fermion fields, we need additionally the following substitution that

preserve proper integral measure:

m 7!
1
a
m

qα.x/ 7!
1
a3/2

qα.na/

∂µqα.x/ 7!
1
a5/2

∂µqα.na/.

(2.28)

�e Wilson fermion action

S.W/F = .m + 4r/
X
n
Nqe.n/qe.n/

−
1
2

X
n,µ
Œ Nqe.n/.r − γµ/Ueµ.n/qe.n + Oµ/+ Nqe.n + Oµ/.r + γµ/Ue†

µ.n/qe.n/�
(2.29)

Another widely used alternative is the formulation of the Kogut–Susskind staggered fermion action. �is

method also removes the fermion doubling via the breaking of chiral symmetry. To obtain the staggered

fermion action, a local change of variable is performed, such that on each site, only one field component can

be selected and kept.

2.1.2.3 Finite Temperature

Renormalization group on the lattice gives the necessary relation to relate the temperature with the coupling

as

T ≈
ΛLAT

Nt
exp

�
1

2β0 g2.a/

�
(2.30)

where ΛLAT is a scale set by experimental comparison, and β0 is the one-loop β function. Pressure on the

lattice can the be obtained via the pressure

P =
T
V

ln Z (2.31)
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Figure 2.2: Entropy density s divided by the third power of the temperature T as function of T for QCD using lat-

tice calculation and different staggered fermion actions and temporal extents Nτ . �e transition temperature region

185MeV < T< 195MeV is shown using the two vertical lines, and entropy density in the Stefan–Boltzmann limit sSB

is indicated to the right. From [2].
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Figure 2.3: �e temperature T vs. baryon chemical potential µ phase diagram of three-flavor quark matter using the

Nambu–Jona–Lasinio model, from [3]. �e phases are: χSB – chiral symmetry breaking, NQ – normal quark, 2SC –

two-flavor color-superconducting, uSC – up-quark super-conducting, CFL – color-flavor locked, g2SC – gapless 2SC,

guSC – gapless uSC, gCFL – gapless CFL.
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and once there, the energy density ε as the crucial indicator of deconfinement is obtained via the entropy

s =
∂P
∂T

ε + P = sT
(2.32)

Figure 2.2 shows a lattice QCD calculation of the entropy density s as function of temperatureT , together

with the entropy density in the Stefan–Boltzmann limit sSB and the transition temperature region 185MeV <

T< 195 MeV.

2.1.3 �e QCD Phase Diagram

Lattice calculation at µB = 0 firmly establishes a phase cross over at Tc ≈ 170MeV for the N f = 3 and finite

quark masses.

Finite baryon chemical potential µB in lattice QCD calculation causes imaginary contribution to appear

in the fermion actions. �is inhibits a direct calculation, and one has to resort to (costly) indirect techniques

such as Taylor series expansion or analytic continuation.

�e next interesting object in terms of increasing µB on the QCD phase diagram is the critical point, which

however proved difficult to locate. Lattice results vary from µB = 200–700 MeV, while up to µB = 1.4 GeV

have been obtained by Model-based calculation e.g. using the Nambu–Jona–Lasinio (NJL) model [3].

Figure 2.3 shows the temperature T vs. baryon chemical potential µ phase diagram of three-flavor quark

matter using the Nambu–Jona–Lasinio model.

Further along the direction of increasing µB , the chiral symmetry broken matter hits a phase boundary at

smallT . Recent lattice QCD calculation provides a rough estimate for the a phase boundary at µB ≈ 300MeV.

Due to the difficulty in lattice calculation at high µB , little of the µB > 400 GeV structure of QCD phase

diagram is known. However, the formation of color Cooper pairs resulting in a color-flavor-locked (CFL)

phase at very high µB , and intermediate phases between the boundary of the χSB and CFL has been predicted

using weak coupling QCD, Dyson–Schwinger equation, and the NJL model.

�e large µB region of the QCD phase diagram is mostly relevant to the study of compact objects, where

neutron stars can have core that is a color superconductor, and (depending on the actual location of the phase

boundary) possibly QGP can occur shortly a
er a supernova, when the neutron star is still hot. Quark stars

as purely quark matter stellar objects have also been proposed by Itoh 1970 and Witten 1984. Galactic objects

such as RX J1856.5–3754 [33], 3C 58 [34], and XTE J1739–285 [35] have been conjectured to be quark stars,

although the reliability of the measurement and the underlying model assumptions have been questioned.
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But since my measurement is quite far from the large µB region, I will not explore the formalisms associ-

ated with this QCD phase region further.

2.2 QGP in the Early Universe

�e current body of cosmological observational is well explained by the ΛCDM model, which derives its

name from its description of the content of the universe using the cosmological constant (Λ) and the cold

dark matter (CDM), in addition to baryonic (or “ordinary”) matter. Among the six free parameters of ΛCDM

are the physical baryon density 100Ωbh2 ≈ 2.3, the physical CDM density Ωch2 ≈ 0.11, the cosmological

constant ΩΛ ≈ 0.73, with the contribution of the cosmological constant and CDM to the geometry of the

universe therefore far exceeding that of the ordinary matter (h = H0/.100 km s−1 Mpc−1/ is the scaled value

of the Hubble constant H0). Metric expansion of space results in the early universe to undergo a phase where

T> Tc, from which the baryon content in today’s universe is formed. �e point of time relative to the present

universe can be dated by fitting the six ΛCDM parameters against the observational data of the cosmic mi-

crowave background (CMB), the baryon acoustic oscillation (BAO), and the Hubble constantH0. Maximum-

likelihood fit using these data dates the quark epoch to be τ0 = 13.76± 0.11 Gyr = 4.342± 0.035× 1017 s

before present [36]. �e one other strong evidence for ΛCDM model is the Big Bang nucleosynthesis (BBN),

which is not used to extract cosmological parameters (due to the uncertainty of nuclear reaction cross sec-

tions), but for light elements, still reproduces well the observed stellar composition.

Witten proposed early on the possibility of detecting the signature of the cosmological quark phase, if

the hadronization is a first order phase transition [37]. Today, it is known from lattice QCD calculation that

for µq = 0, the SM hadronization occurs via a phase cross over. However, beyond SM scenarios has been

proposed where particle properties in the early universe causes µq > 0 and thus a first order phase transition

can occur. �ree large categories of signature has been proposed:

• Relic objects, e.g. strangelets, magnetic fields, black holes

• Density perturbations, e.g. in the cold dark matter

• Primordial gravitational waves

Today, no corresponding relict objects, or have density perturbation been observed. Calculations show

that a phase cross over generally results in insufficient perturbation to generate any relic objects or observable
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Figure 2.4: �e scaled relative spectral density Ωh.τ0 , k//10−10 of the primordal gravitational wave as function of the

comoving wave number k (or in the observed frequency at present, ν = kc/2π). Arrows indicate the feature in the

spectrum due to the electron annihilation, QGP phase transition, and the breaking of supersymmetry (SUSY), where

the standard model (SM) spectrum envelope is marked using dashed line. �e arrow to the le
 indicates the envelope

when the free-streaming neutrino, that decouples from the photons at T ≈ 2 MeV, is ignored. From [4].

density fluctuations. Alternatively, constraints for the hadronization can be derived based on the fact that no

relic objects or cold dark matter fluctuations have been observed.

Since the hadronization occurred before the recombination, any direct signature of the QGP in early uni-

verse lies beyond the surface of last scattering at T ≈ 0.3 eV, and is therefore inaccessible to electromagnetic

detection. �is leaves the primordial gravitational wave to be the other signature carried by a long range

force. Red shi
 of the primordial gravitational wave to today would give a detectable signature of the QGP

at ν ≈ 10−7 s−1. Precise calculations gives the necessary sensitivity for the relative spectral energy density

to be Ωh < 10−15 [4], where the Ωh is the Fourier transform of the 0, 0 component of the energy–stress

tensor of the gravitational field divided by the critical density of the universe. �e necessary sensitivity paired

with the extremely low frequency is unfortunately out of the reach with the vibrational background in today’s

terrestrial interferometers, but satellite-based interferometers have been proposed with a sufficient sensitivity

for detection.

Figure 2.4 shows the relative spectral density Ωh.τ0 , k/ of the primordal gravitational wave as function

of the comoving wave number k, along with the position of the features in the spectrum due to the electron
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annihilation, QGP phase transition, and the breaking of supersymmetry (SUSY).

2.3 Jets in Perturbative QCD

�e asymptotic freedom of a theory such as QCD allows the short distance interaction in high energy collision

to be factorized from the binding structure of hadrons. Two body scattering of quarks and gluons at the center

of mass (CM) energy
p
Os samples a relative momentum fraction of x = Os/s of the total scattering CM energy

p
s.

Early deep inelastic scattering (DIS) experiments show that modulo a kinematic factor, the proton struc-

ture dependent part of the cross section is a function of mostly x, which is the Bjorken scaling. �e (largely)

kinematic independence of the proton structure justifies the parton model, where the gluons and valence

quark density in momentum space is largely a function of x only. �is allows a set of parton distribution

functions (PDF) to be derived that empirically describes the nonperturbative structure of hadrons.

However, due to the collinear splitting of quarks and gluons, the PDF has a slow evolution with respect to

the momentum transferQ2, which is denoted as the scaling violation. �is is similar to the QED resummation

of logarithmic electron mass enhancement, and can be described using a set of evolution equation derived by

Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, and collectively called the DGLAP equation [38].

2.3.1 Leading Order Jet Production

�e scattering cross section of the individual parton subprocesses in leading order (LO) is related to the

invariant matrix elements ℳ by isolating the momentum conserving δ function

E3 E4 d6Oσ
d3p3 d3p4

=
1
2 Os2

1
16π2

X
|ℳ|2δ4.p1 + p2 − p3 − p4/. (2.33)

�e flavor and color averaged square of QCD matrix elements of the relevant subprocesses have been calcu-

lated as [39]:

q jqk ! q jqk ,
q j Nqk ! q j Nqk
. j ≠ k/

:
X

|ℳ|2 =
4
9
Os2 + Ou2

Ot2
(2.34)

q j Nq j ! qk Nqk
. j ≠ k/

:
X

|ℳ|2 =
4
9
Ot2 + Ou2

Os2
(2.35)

q jq j ! q jq j :
X

|ℳ|2 =
4
9

 
Os2 + Ou2

Ot2
+
Os2 + Ot2

Ou2

!
−

8
27
Os2

Ou Ot
(2.36)
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Figure 2.5: Leading order, O.α2s /QCD scattering Feynman diagrams, from [5].

q j Nq j ! q j Nq j :
X

|ℳ|2 =
4
9

 
Ou2 + Os2

Ot2
+
Ou2 + Ot2

Os2

!
−

8
27
Ou2

Os Ot
(2.37)

q Nq! gg :
X

|ℳ|2 =
32
27
Ou2 + Ot2

Ou Ot
−
8
3
Ou2 + Ot2

Os2
(2.38)

gg ! q Nq :
X

|ℳ|2 =
1
6
Ou2 + Ot2

Ou Ot
−
3
8
Ou2 + Ot2

Os2
(2.39)

qg ! qg :
X

|ℳ|2 =
Ou2 + Os2

Ot2
−
4
9
Ou2 + Os2

Ou Os
(2.40)

gg ! gg :
X

|ℳ|2 =
9
2

 
3−
Ou Ot
Os2 −

Ou Os
Ot2

−
Os Ot
Ou2

!
(2.41)

For p + p scattering, the matrix elements have to be convolved with the PDFs to

d3σ
dy3 dy4 dp2T

=
1

16π2
X

i, j,k,l=q, Nq,g

fi.x1 , µ2/
x1

f j.x2 , µ2/
x2

X
|ℳ.ij! kl/|2

1
1+ δkl

(2.42)

In the simple form of zero mass quarks, the inclusive jet cross section is the the integration

Ed3σ
d3p =

1
s

1
16π2

X
i, j,k,l=q, Nq,g

Z 1

0

dx1
x1

Z 1

0

dx2
x2

fi.x1 , µ2/ f j.x2 , µ2/×

×
X

|ℳ.ij! kl/|2
1

1+ δkl
δ. Os+ Ot + Ou/

(2.43)
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Figure 2.6: Diagrams of the O.α3s / virtual corrections to the gg ! gg scattering. From [5].

Figure 2.5 shows the LO Feynman diagrams that contribute to the QCD 2! 2 hard scattering.

2.3.2 Next-To-Leading Order Jet Production

�e next-to-leading order (NLO) calculation of jet production includes parton–parton subprocesses to the

orderO.α3s /. Key difference to the leading-order calculation arises from the divergences in the loop-integrals,

the phase space integration, and practical issues from the computational complexity.

�e NLO cross section

d OσNLO
ij = d Oσvirt

ij + d Oσ real
ij (2.44)

consists of d Oσvirt
ij being the O.α3s / one loop virtual corrections to the tree level diagrams for the Born ampli-

tude, and d Oσ real
ij as the real n = 2 plus one parton emission on top of the Born amplitude. For the virtual

contributions, the O.α3s / cross section arises from interference terms of one LO diagram with one NLO di-

agram. As an example, figure 2.6 shows the diagrams of the virtual correction to the gg ! gg scattering,

and figure ... lists the O.α3s / interference topologies. �e NLO 2! 2 and 2! 3 matrix elements are usually

too extensive to perform purely manually, and typically computer algebra systems are being used. And since

their algebraic results are also too unwieldy to be reproduced in their entirety here, and readers are referred

to ....

As illustration, figures 2.6 and 2.7 show the gg ! gg part of the NLO Feynman diagrams and interference

terms to the amplitudes, that contribute to the virtual correction of the QCD 2! 2 hard scattering.

�e two sets of NLO matrix elements by themselves diverge in d = 4 dimensions. Individual virtual

correction diagrams contain ultraviolet (UV), infrared (IR) and collinear divergences. �e existence of UV

divergences is intrinsic to the short distance behavior of the field theory and can be absorbed by subtraction
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Figure 2.7: Independent topologies for the gg ! gg virtual correction amplitudes. From [5].

using the given renormalization scheme. (Disregard for a moment the initial state IR divergence) the IR and

collinear divergences in the virtual correction cancel with their n+1 diagram counterparts that arises during

the .n + 1/-body phase space integration (the Kinoshita–Lee–Nauenberg theorem [40]). �e existence of

these phase space divergences can be illustrated by e.g. examining the interference topology for the off-shell

decay part g∗ ! q Nqg of the NLO jet production diagrams. Figure 2.8 shows this interference term. �e two

quark propagators give rise to the factor

1
.p1 + p3/2

1
.p2 + p3/2

=
1
s4

1
.1− x1/.1− x2/

=
1
s4
1
x3

�
1

1− x1
+

1
1− x2

� (2.45)

�e limits x1 ! 1 or x2 ! 1 represent the collinear divergences, while x3 ! 0 is the IR divergence. Only

remaining now is the initial state IR divergence, which is absorbed into the PDF (“mass factorization”) [41].

When performing the phase space integration analytically, these divergence can be dimensionally regu-

larized by going into d = 4− 2� dimensions, and the single or double poles/logarithms cancel for physical

quantities. But generally, for N ≥ 3 final states, the analytical phase space integration is algebraically difficult,

and a Monte Carlo integration is therefore o
en preferred. And for jet production calculations, this approach

further allows the final state to be defined using jet reconstruction algorithms. For Monte Carlo phase space
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Figure 2.8: An interfering diagram of the 3-body g∗ ! q Nqg decay with the two three-body divergence propagators

.p1 + p3/−1 and .p2 + p3/−1.

integration, two main methods have been developed. �e phase space slicing (PSS) [42] splits the diver-

gent integral into small region around IR and collinear poles that can be approximated analytically, and will

contain dimensional poles in � and logarithms in the cutoffs δs, δc. �e remaining regions are integrated

numerically, which will give a finite but cutoff dependent result. Using a 1-dimensional example,

I =
Z 1

0
dx x�−1 f.x/ (2.46)

for δ ⪡ 1 can be approximated by

I ≈ f.0/
Z δ

0
dx x�−1 +

Z 1

δ
dx x�−1 f.x/

=
f.0/
�

+ f.0/ log δ +
Z 1

δ

dx
x
f.x/.

(2.47)

�erefore, for sufficiently small δs, δc, this approximation “converges” to the actual, finite part plus any di-

vergences, while the divergences are confined in the analytically integrated region and cancel. �e Catani–

Seymour subtraction method [43] schematically introduces a cancellation term

d Oσ sub
ij =

X
dipole

d OσLO
ij ⊗ dVij,k (2.48)

such that d Oσ sub
ij is one parton phase space integrable, with the splitting functionVij,k embodying the contri-

bution of introducing an additional leg k into the diagram. Catani and Seymour derived a set of process-

independent expression for Vij,k . �en, (2.44) phase space integrated becomes (modulo the initial state di-

vergence)

OσNLO
ij =

Z
Sn+1

�
d Oσvirt

ij − d Oσ sub
ij

�
�!0

+
Z
Sn

�
d Oσ real

ij +
Z
S1
d Oσ sub

ij

�
�!0

(2.49)
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and both integrals are finite, and therefore can be directly evaluated using Monte Carlo techniques. �e NLO

event generator  is an example of Monte Carlo integration using PSS, while ++ implements the

Catani–Seymour subtraction method.

�e absorption of the initial state divergence into the PDF is done by the defining the scale independent

PDF (e.g. [43; 44])

Qf .a, x; �, µ2F / =
X
b

Z
dz
z
f.b, x/z/

�
δabδ.1− z/−

.4πµ2/µ2F /
�

�Γ.1− �/

αs
2π

P.1/a/b .z/+ Ka/b.z/+ O.α2s /
�

(2.50)

which is essentially the DGLAP evolution, only with an additional .4πµ2/µ2F /
�/Γ.1− �/ phase space factor to

allow it to absorb the d− 2 angular integration of the additional emission. �e finite correction term Ka/b.z/

is renormalization scheme dependent, and for the MS scheme, Ka/b.z/ = 0. �e resulting NLO cross section

is finite, but depends on the factorization scale. �erefore, for the validity of NLO results, the sensitivity

to the factorization scale must be checked. Typically, the residual factorization scale dependence due to is

determined by a scan of cross section at µF = 1
2 max pjet

T , µF = max pjet
T , and µF = 2max pjet

T , and quoted

as the systematic uncertainty of the NLO calculation.

2.3.3 Units

A
er momentum integration in the (particle physics) natural unit system with ħ = c = 1 and GeV, the

obtained cross section is expressed in GeV−2. To obtain a cross section in the SI derived barn, this has to

be multiplied by the additional factor ħ2c2/.GeV b/, which is numerically the inverse of the the Josephson

constant KJ = 2e/h modulo exact constants, and is presently also best constrained by measurements using

the Josephson effect [45]. CODATA 2010 [46] global fit results in the equivalent values

KJ = 483 597.870± 0.011 GHz V−1

ħc = 197.326 971 8± 0.000 004 4 MeV fm,
(2.51)

which gives

ħ2c2 = 389 379.338± 0.017 GeV2 nb. (2.52)

2.4 Jet Fragmentation

Quenched lattice QCD calculation shows that unlike QED, the q Nq binding potential changes from approx-

imately Coulomb into being proportional to the separation. While the quenched QCD does not contain
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dynamic light quarks to act to produce screening effects, full QCD calculation on the lattice indeed show that

the q Nq potential in fact does not increase indefinitely, but rather quickly level off beyond 1 fm separation [47].

In the discussion of jet production we have seen that the QCD production cross section factorizes into

schematically the convolution

σp+p!jets = fparton/p.x,Q2/⊗ σparton.Q2/ (2.53)

QCD factorization also separates the nonperturbative, long distance interaction in forming the hadrons, and

the hadronic cross section becomes

σp+p!h+X = fparton/p.x,Q2/⊗ σparton.Q2/⊗ Dh/parton.z,Q2/ (2.54)

with D.z,Q2/ being the fragmentation function.

Similar as the parton distribution function f.x,Q2/, the fragmentation function exhibits scaling violation

due to parton splitting, and therefore also evolves according to the DGLAP equation. Since D.x,Q2/ cannot

be derived from perturbation theory and has to be measured at a specific scale, and is typically parametrized

in the form

D.x,Q2
0/ = Nxα.1− x/β

�
1+

γ
x

�
(2.55)

2.4.1 Lund string model

�e Lund string model is an model of fragmentation based on the observation that in the absence of dynamic

quarks and screening effects, the far field q Nq binding potential is approximately proportional to the separation.

While this observation and motivation of the Lund model was originally due to meson mass spectra, this

behavior can be made today rigorously using quenched QCD calculations on the lattice.

As q and Nq move apart, the potential energy in the string increases, and break with the production of

a pair Nq0 and q0, where the mechanism of the string breaking motivated by a tunneling process. Each of

the created quarks therefore having a Gaussian mT spectrum, which also causes a suppressed heavy quark

production. �e split bound with the original string now become q Nq0 and q0 Nq. In the Lund string model,

strings can additionally have gluon “kinks”, i.e. a configuration qg . . . g Nq, with the gluons ultimately split into

diquarks. Baryon production can be either modeled by splitting by diquarks q Nq ! qq0q00 + Nq00 Nq0 Nq, or the

popcorn model, where virtual color fluctuation appear on the string q Nq! qq0 Nq0 Nq, and a later string breaking

creates two three-quark configurations. Depending whether the string breaking continues until only on-shell

hadrons are le
, with these hadron being a string strip with two quarks at each end.
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Figure 2.9: Diagram of string fragmentation, where the “repetition of strips” indicate string dynamics, and Ci and Ri

are the first generation cuts and resonances. From [6].

�e fragmentation function modeled by the Lund model is itself controlled by the scaling function

fαβ.z,m2
h,⊥/dz = Nαβ

dz
z
zaα

�
1− z
z

�aβ
exp

 
−
bm2

h,⊥
z

!
(2.56)

which describes the probability to find a hadron containing the original quark. �e transverse mass term

in the Gaussian broadening term is m2
⊥ = m2 + p2⊥. �e index α, β potentially allows a differing quark

vs. diquark scaling, although it is not needed to describe the present data. Since the normalization N is

fixed by the exponent a via the normalization
R 1
0 dz fαβ.z,m

2
h,⊥/ = 1, this leaves only the a (PARJ(41) in

/), b (PARJ(42)) as the free parameters of the Lund model. Phenomenologically, there is no

need to select flavor dependent scaling. Fits to ALEPH, L3, and OPAL data show that a ≈ 0.11–0.50, and

b ≈ 0.34–0.9 GeV−2, while a = 0.30, b = 0.58 GeV−2 is the / default.

Figure 2.9 shows a diagram of string fragmentation.

2.4.2 Cluster fragmentation

�e cluster fragmentation is a method of forcibly splitting the parton via QCD branching, and iteratively per-

form cluster fissions. While the intermediate color connections can be regarded as group theoretic strings,

there is no string dynamics in the cluster fragmentation. Notably, the event generator  (Hadron Emis-

sion Reactions With Interfering Gluons) implements the cluster fragmentation scheme.

Free parameters in the cluster fragmentation are the effective gluon mass during hadronization Mg (vari-

able RMASS(13) in ), and the maximum cluster mass parameter Mmax (CLMAX). And additional pa-
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Figure 2.10: Diagram of cluster fragmentation, showing the temporal evolution from the formation of color singlet

clusters and decay to resonances. From [7].

rameter CLPOW = 2 has effect on the ratio of heavy to light quarks, and is mostly le
 unchanged in tunes.

�e string fission of clusters is controlled by the mass scale M f , with clusters having a mass

MC > MCLPOW
f = MCLPOW

max + .m1 + m2/
CLPOW (2.57)

split into either u Nu, d Nd , s Ns. �e masses m1, m2 are that of the original quarks. ALEPH, L3, and OPAL fits

show that Mg ≈ 0.65–0.83, and Mmax ≈ 3.00–3.78GeV−2. At the end of cluster fragmentation, clusters have

the quark content of the form q1 Nq2. A nondynamic quark/antiquark flavor pair q3 Nq3 or diquark pair d3 Nd3 is

chosen at random to decay the cluster via two-meson or baryon/antibaryon decay.

Figure 2.10 shows a diagram of the temporal sequence of cluster fragmentation.

2.5 Jet Phenomenology

Particle production with a pT spectrum deviating from a thermal shape was first observed at the CERN

Intersecting Storage Ring (ISR) at
p
s = 63GeV. �e first experiment that attempted to reconstruct jet using

a clustering algorithm was the British–French–Scandinavian Collaboration at the Split Field Magnet (SFM).

Two methods were developed, Since jet production at such a low
p
s is exceedingly rare, direct measurement

of jets at the ISR proved to be difficult until calorimetric triggering capabilities on jets was developed.
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Figure 2.11: Event display of a dijet with 57 and 60 GeV taken by the UA2 experiment, from [8].

�e Axial Field Spectrometer (AFS) triggered on high ET clusters in the event using two limited accep-

tance (“floor” and “roof”) U–Cu hadronic calorimeter (where the fission compensation in U results in a nearly

equal response to electromagnetic energy). �e tower energy is used directly as the “jet energy”, and no clus-

tering has been attempted [48]. �e CERN–Columbia–Oxford–Rockefeller Collaboration (CCOR) triggers

using a Pb glass electromagnetic calorimeter [49]. In the early 1980s, the opinion regarding the existence of

jets in high energy collisions remained widely skeptical. Both the Aachen–Berlin–CERN–Cracow–London–

Vienna–Warsaw Collaboration (ABCCLVW) [50] using the Big European Bubble Chamber (BEBC) and the

Bari–Krakow–Liverpool–Max Planck Institute Munich–Nijmegen Collaboration using a [51] showed little

jet-like structure.

While the previous attempts to see a jet signal has been mostly statistical, the increased energy at SPS

allowed the UA1 and UA2 experiment to make the clear observation of jet structure in single events, in ad-

dition to the measurement of jet cross section and jet fragmentation functions. Scattering at TeV scale by the

Tevatron further enhanced the access to jet signal, in term of integrated luminosity and the enhanced yield

that comes with the collision energy. �is produced a large body of precision jet measurement as tests for

QCD.
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Figure 2.11 shows a dijet event with a 57 and a 60 GeV by the UA2 experiment.

2.6 Perturbative Energy Loss

�e perturbative model of parton energy loss is based on the processes of gluon scattering with the medium.

“Radiative” energy loss describes inelastic scattering with static scattering centers, as opposed to “collisional”

energy loss with elastic scatterings.

2.6.1 BDMPS-Z

In the 1950s, high energy electron–nucleus scattering revealed that coherent multiple scattering causes de-

structive interference and therefore suppresses the bremsstrahlung, which is also knwon as the Landau–

Pomeranchuk–Megdal (LPM) effect. M. Gyulassy and X.-n. Wang were the first to derive the non-Abelian

equivalent of the LPM effect [52]. Radiative energy loss is enforced by introducing static scattering scenters

that are screened by one gluon exchange. In the original Gyulassy–Wang model, quarks emit gluon only once

and subsequently do not further interact with the medium.

�e Baier–Dokshitzer–Mueller–Peigne–Schiff–Zakharov (BDMPS-Z) model [53] provides an full tret-

ment of the multiple so
 scattering by considering the quark rescattering contribution.

�e medium is considered as thick, as the mean free path λ g ⪢ µ−1, with µ being the screening mass.

In the static medium approximation, the gluon radiation cross section corresponds to a harmonic oscillator.

�e rescattering as Brownian motion is described by the path integral

K =
Z

Dr exp
�
i
Z
dξ
�
iω
2
Pr −

1
2
n.ξ/σ.r/

��
(2.58)

where n.ξ/ is the density of rescattering centers and σ.r/, and in dipole approximation

n.ξ/σ.r/ =
1
2
Oq.ξ/r2 , (2.59)

and Oq = µ2/λ g is the transport coefficient. Since the coherence length is L >
p
2ωλ g /µ2, ω < 1

2 OqL.

Evaluating the BDMPS-Z energy loss in the leading log approximation gives

−
dE
dz =

αsCR
8

µ
λ g
L2 log

�
L
λ g

�
(2.60)

Comparison of BDMPS-Z energy loss with the RHIC neutral hadron suppression data consistently pro-

duce a large transport coefficient in the range of Oq ≈ 5–15 GeV2/fm.
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Figure 2.12: �e RHIC nonphotonic electron nuclear modification factor compared to the energy loss predicted by the

Wicks–Horowitz–Djordjevic–Gyulassy model, from [9].

2.6.2 GLV

Unlike BDMPS-Z and multiple so
 scattering, the Gyulassy–Lévai–Vitev (GLV) models [54] describes the

QGP using N color screened Yukawa potentials, that are separated in the sense λ g ⪢ µ−1.

�e opacity expansion then can be realized via two reaction operators: Operator OD is for one gluon ex-

change with color and momentum exchange, plus a non-interacting gluon emission. OV is for a virtual double

exchange that leaves the parton color and momentum intact. �e double Born terms are needed for the

purpose of unitarity.

To the first order in opacity, the medium induced energy loss in the leading log approximation is

−
dE.1/

dz =
αsCR
N.E/

µ
λ g
L2 log

�
E
λ g

�
(2.61)

Here, N.∞/ = 4 if there are no kinematic constraints, but N.E/ = 10.1 is given for E = 50 GeV jets.

Numerical evaluation of dE.2/
dz shows that the series converges rapidly except for high opacity of L/λ g > 4 and

at the SPS energy. �is kinematic constraint is also found to suppress the dE/dz compared to BDMPS-Z for

RHIC and SPS energies.

�e originally massless GLV opacity expansion was extended to describe heavy quark energy loss by
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M. Djordjevic (DGLV) [55], where the effect of having a finite mass is found to cause a frequency shi
.

�e Wicks–Horowitz–Djordjevic–Gyulassy (WHDG) energy loss [9] further extends the radiative DGLV

calculation by the elastic energy loss from E. Braaten, M. H. �oma, and M. Gyulassy [56]. �is is then

combined with the path length dependence due to geometry fluctuation to describe the RHIC data on the

suppression of nonphotonic electrons.

Figure 2.12 shows a comparison of the RHIC nonphotonic electron nuclear modification factor to the

WHDG energy loss calculation.

�ere are a few other PQCD based formalisms to calculate the parton–medium interaction. �e finite

temperature field theory approach by P. Arnold, G. Moore, and L. Yaffe (AMY) uses hard thermal loops

(HTL) to model both the jet propagation and medium feedback. �e main caveat of AMY is however, that

the medium is weakly coupled. Also, flavor changing inside the medium is not modelled. �e higher twist

(HT) approach resums power corrections to the leading twist cross section, and derives a medium-modified

fragmentation function for the leading hadron, from which single particle suppression can be obtained. �ere

is no medium backscattering or flavor changing. Unfortunately, the setup is at a poor position to serve a

predictor for partonic/jet energy loss, or that of the nonleading particles.

A crucial test of the consistency among PQCD approaches is the medium property extraction. For GLV,

the range obtained is Oq ≈ 3 GeV2/fm, which is in reasonable proximity of the Oq ≈ 2 GeV2/fm with the HT

and Oq ≈ 4GeV2/fm with the AMY formalism. However, these three formalism stand in stark contrast to the

result from BDMPS-Z.

2.7 AdS/CFT Energy Loss

Unlike d = 4 field theory, the elementary perturbative object in the string theory are open and closed strings.

�ese are world sheet that can be parametrized as Xµ.σ, τ/, with σ and τ being the spatial and temporal

variables of parametrization, which are not physical. When quantizing bosonic strings, the Faddeev–Popov

ghosts give rise to a central charge c = −26. In order to preserve the conformal symmetry c = 0 must

hold. �is can be established by introducing d scalar fields, therefore making d = 26 the critical dimension.

However, bosonic strings suffer from the existence of tachyon, which cannot be fixed by the choice of d .

�e existence of the tachyon in string theory is fixed by the introduction of supersymmetry (SUSY). In

the traditional SM representation of fields, internal degrees of freedom cause quantized fields to commute
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or anticommute according to the spin-statistics theorem. �ese two algebras can be combined into a Lie

superalgebra by Z2-grading [57]. �e fermionic degrees of freedom can be introduced either as world-sheet

(Ramond–Neveu–Schwarz formalism [58]) or space-time supersymmetry (Green–Schwarz [59] and the pure

spinor [60] formalisms), which are equivalent. For the supersymmetric or super strings, there are additional

11 superconformal ghosts, bringing down the central charge to c = −15. Existence of the supersymmetric

degrees of freedom means that physical fields contribute as 3
2d , resulting in a critical dimension of d = 10.

From closed strings states, 35 states of d = 10 gravitons, 28 Kalb–Ramond (a tensorial generalization

of the Maxwell field), and one dilaton (a scalar field lacking a QFT analog, which controls the coupling) are

universal to any string theory. Choice of symmetric and antisymmetric boundary conditions for the fermionic

degrees of freedom splits the each of the le
/right moving direction of modes into the Ramond (R, symmetric)

and Neveu–Schwarz (NS, antisymmetric) sectors.

Open strings must satisfy either the Neumann (N) or Dirichlet (D) boundary condition (but they can be

mixed, i.e. with the two endpoints, strings can satisfy either of the NN, ND, DN, and DD boundary condi-

tions). �e imposed p degrees of freedom of a Dirichlet boundary condition can be thought as moving along

a Dp brane. Since Dp branes can emit closed string by converting the brane-bound open strings to freely

moving, closed strings, the Dp brane can be considered as a nonperturbative object that can interact with

strings.

Five types of d = 10 consistent supersymmetric string theories are known: type I (unoriented), type IIA/B

(le
-moving/right-moving open superstrings), and the E8 × E8 and SO.32/ heterotic (le
-moving bosonic,

right-moving supersymmetric). Heterotic string theories do not have open strings and therefore no Dp branes

at all. Type II string theories are produced by combining le
/right moving modes with while requiring the

existence of the R–NS type (otherwise, the type 0 is obtained, which contains a tachyon). Type IIA and IIB

are distinguished by the sign choice in one of the motion direction, e.g. the right-moving .NS+, R±/ and

.R+, R±/ (choosing this to the le
 moving modes gives the reflected IIA0, IIB0, which are physically the

same), while IIB in that case corresponds to the choice of identical Ramond sectors. �is has implications of

R–R bosons and therefore stable Dp branes. Type IIA permits stable D0 and D2 branes, while type IIB D7,

D1, and D3 branes. �e unoriented type I string theory is obtained by orientifolding IIB, and only D1, D5,

D9 branes are stable.
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2.7.1 �e AdS/CFT Conjecture

�e AdS/CFT correspondence is an example of the holographic principle that appears in the supergravity.

�e dynamics of the string theory on the asymptotically AdS space times a manifold is equivalent to the CFT

on the conformal boundary, which is given by the vanishing Weyl tensor. In the case of AdS5 × S5, the type

IIB string theory is equivalent to the dynamics of the D3 branes on the boundary, which forms N = 4 super

Yang–Mills (SYM) theory of stacked D3 branes.

�e N = 4 SYM field is the supersymmetric SU.Nc/ gauge theory, with N counting the four spinor

supercharges, which is also the maximally possible supersymmetry without including supergravity. �e N =

4 SYM contains as gauge multiplets: a gauge field Aµ (the gluon), four le
 Weyl fermion fields λ1α , . . . , λ4α (the

gluinos), and six scalar fields X1 , . . . , X6. Poincaré and scale invariance combines into a SO.2, 4/ ∼ SU.2, 2/

group, which again is combined with the N = 4 Poincaré supersymmetry into the superconformal group

SU.2, 2 | 4/.

Despite a lack of rigorous proof, the AdS/CFT correspondence can be tested by a comparison of the

symmetries. In that case, the isometry in AdS5×S5 turns out to be also of the superconformal group SU.2, 2 |

4/.

�e AdS black hole metric in the light cone coordinates .r, x± , x2 , x3/ and in the Minkowski coordinates

.r, t, x1 , x2 , x3/ is

ds2 = −
�
r2

R2 +
h.r/

�
dx+dx− +

1
2

�
r2

R2 −
h.r/

�
Œ.dx+/2 + .dx−/2 �+

r2

R2
.dx22 + dx23/

+
1
h.r/

dr2

= −h.r/dt2 +
r2

R2
.dx21 + dx22 + dx23/+

1
h.r/

dr2

(2.62)

where

h.r/ ≡
r2

R2

�
1−

r4H
r4

�
(2.63)

and R is the curvature of the AdS space, which is related to the ’t Hoo
 coupling

p
λ =

R2

α0
(2.64)

with T0 ≡ .2πα0/−1 being the string tension. �e radius rH is related to the both the Hawking temperature

of the black hole and the temperature of the d-dimensional SYM via

TH =
rHd
4πR

(2.65)
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Two independent, AdS/CFT-based methods to calculate jet quenching phenomenology have emerged.

Herzog et al. use a open string with one endpoint describing a heavy quark to evaluate the full medium

interaction, represented by the AdS black brane [61]. Liu et al. invoke a k⊥ broadening analogy to describe

the radiative part of the energy loss [62].

2.7.2 Wilson Loop Approach

�e approach by H. Liu, K. Rajagopal, and U.A. Wiedemann calculates the radiative energy loss via a timelike

Wilson loop. �e Wilson loop corresponds to the propagation of a q Nq system on the AdS5 boundary, and its

screening by the black hole background. Using the simple setup of a D3 brane at the conformal boundary, no

attempts in mimicking the QCD Nc and n f is attempted, and the goal is to find a Oq that is hopefully universal

among strongly interacting theories.

In the high energy limit ω ! 0, the Wilson loop corresponds to the exponentiating the BDMPS-Z rescat-

tering (2.58) along the scattering length ∆z = L−/
p
2, and the becomes

hWA.Clight-like/i = exp
�

1
4
p
2
OqL−L2

�
(2.66)

which provide a Wilson loop based definition of the transport coefficient Oq.

�e next step is to obtain a equation of motion for the extremal world sheet that describes the q Nq system.

y0 =
1
q

q
.y4 − 1/.y4 − yc/, y4c ≡ cosh2 η+ q2 (2.67)

where q is a constant of integration. �e nontrivial solution corresponds to a string that starts on the D3

brane, descends, and touches the AdS black hole event horizon, and returns to the D3 brane. Inserting this

into the action and compare with the Wilson loop gives

OqSYM =
π2

a

p
λT3 =

π3/2Γ.3/4/
Γ.5/4/

p
λT3 ≈ 26.69

p
αSYMNcT3 (2.68)

Inserting a realistic condition, such as withNc = 3, αs = 0.5, andT = 300MeV, gives a OqSYM ≈ 4.5GeV2/fm,

which is between the Oq from the group of GLV, AMY and HT formalisms, and that of BDMPS-Z.

�e crucial, and experimentally (given a suitable detector) accessible prediction from the AdS/CFT energy

loss is a strongly different suppression behavior than PQCD with respect to light versus heavy quark flavors.

�e heavy versus light quark jet suppression therefore can be regarded as an indicator for the PQCD versus

strongly coupled jet suppression in heavy ion collisions. �e sensitivity is particularly pronounced at the

LHC energies, but is still accessible at RHIC. However, due to the lack of vertex detector, this prediction

unfortunately could not be explored in this thesis.



CHAPTER 2. QUARK–GLUON PLASMA 36

Figure 2.13: Charm quark to bottom quark nuclear modification factor double ration for the LHC comparing the Wicks–

Horowitz–Djordjevic–Gyulassy and AdS/CFT string drag energy loss. From [10].

2.7.3 String Drag Approach

�e string drag approach describes the full energy loss using a D3/D7 brane intersection, where the M D7

branes are introduced as flavor probes. Quarks are modeled as string that connects the AdS black hole with

a D7 brane.

�e string motion solves to

x.r, t/ = x0 + vF.r/+ vt (2.69)

where F.r/ parametrizes the curved string that is being dragged behind the moving quark

F.r/ =
1
2rH

�
π
2
− tan−1

�
r
rH

�
− cot−1

�
r
rH

��
(2.70)

In the large mass limit m ⪢ ∆m.T/, where

∆m.T/ =
1
2

p
λT (2.71)

is the thermal rest mass shi
 of the quark, the result is a surprisingly, mass independent energy loss

−
dE
dx = −

1
v
dE
dt = πT∆m.T/

v
p
1− v2

(2.72)

and
d
dt
hp2Ti = 4π∆m.T/T2. (2.73)
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which implies a mass dependent relationship between the energy loss and transverse broadening, as opposed

to the case with BDMPS-Z or AdS/CFT-Wilson loop.

Figure 2.13 shows the difference between the WHDG AdS/CFT string drag energy loss, when comparing

the c quark to b quark nuclear modification factor double ration for the LHC.
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Chapter 3

JetMeasurement in Fixed-Target and Collider

Experiments

3.1 “Traditional” Jet Reconstruction Algorithms

We will discuss in more detail a algorithmic definition of the collinear and infrared safety test when the

Gaussian filter algorithm is introduced.

3.1.1 Sphericity and �rust

�e very early idea to reconstruct jets were all based on the examination of the event quadruple moment [63],

i.e.

Qαβ =
NX
k=1

pαk p
β
k (3.1)

(Counihan) or as the traceless tensor

Tαβ =
1
2

NX
k=1

�
3pαk p

β
k − δαβ p2k

�
(3.2)

(Bjorken and Brodsky) as a measure of jet presence. Diagonalizing Tαβ, α, β = 1 . . . , 3 yields three eigen-

values λ1 ≥ λ2 ≥ λ3, where in modern notation, λ3 specifies the jet angular spread
P

j2T . At the Stanford

Positron Electron Accelerating Ring (SPEAR), the derived quantity sphericity was defined as

S =
3λ3

λ1 + λ2 + λ3
(3.3)

with the value approaches S ≈ 0 for jet-like events, and S = 1 for fully isotropic events. In principle, the

eigenvector associated with λ3 points to the direction of the dijet. �e danger is however, that this biases

towards coplanar dijet.
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�e British–French–Scandinavian Collaboration at the CERN ISR adapted this technique into the “prin-

cipal axis method”. It minimizes the “in-cone” sphericity sum plus the “out-of-cone” energy square

x2 =
X

jT,k<pT,k^zk>0

j2T,k +
X

jT,k≥pT,k_zk≤0

p2T,k . (3.4)

While the pursuit of this method was quickly abandoned, together with the first application of Gaussian

smearing to jet finding, the usage of in-cone transverse momentum balancing appears in the algorithm that

was devised next.

Another early event shape variable that involves maximization is the thrust variable [64] which in the

original, half-sphere definition involves the spherical maximization of

d.Or/ =
P

k.pk � Or/ θ.pk � Or/P
k |pk |

(3.5)

with respect to the orientation of the unit vector Or, where θ is the step function.

3.1.2 Cone Algorithm

�e iterative cone algorithm was introduced to hadronic collider by the Snowmass accord [65]. However,

unbeknownst to the high energy/nuclear physics community then, the iterative cone algorithm without the

split/merge step was already used as nonparametric density estimator in pattern recognition for over a decade,

and is alternatively known as the mean-shi
 iteration. To the pattern recognition literature, a equivalence

between the mean shi
 and convolution is also known [66]. �erefore, two equivalent definition of the (non-

split/merge) iterative cone algorithm can be obtained.

Figure 3.1 shows an example of mean-shi
 iteration used in the pattern recognition.

�e “classical” cone definition starts with .η.0/J , ϕ.0/J / of a jet axis guess, which can be the direction of a

high-pT seed particle. �en, the fixed point iteration over k

η.k+1/J =

P
∆RiJ<R pT,iηiP
∆R.k/iJ <R

pT,i

ϕ.k+1/J =

P
∆RiJ<R pT,iϕiP
∆R.k/iJ <R

pT,i

(3.6)

with the radial distance measure between the i-th final state particle and cone jet axis J at the k-th iteration

is defined as

.∆R.k/iJ /
2 = .ηi − η.k/J /

2 + .ϕi − ϕ.k/J /2 (3.7)
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Figure 3.1: Example of mean-shi
 iteration in pattern recognition: Image segmentation in the .L∗ , u∗/ color space,

from [11]
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and R is the radial cutoff of the cone algorithm. �e iteration terminates with reaching of the fixed point

η.k+1/J = η.k/J

ϕ.k+1/J = ϕ.k/J
(3.8)

Rewriting the above fix point condition as weighted sample mean

η.k+1/J − η.k/J =

P
i pT,i.ηi − η.k/J /θŒR

2 − .ηi − η.k/J /
2 − .ϕi − ϕ.k/J /2 �P

i pT,iθŒR2 − .ηi − η.k/J /2 − .ϕi − ϕ.k/J /2 �
= 0

ϕ.k+1/J − ϕ.k/J =

P
i pT,i.ϕi − ϕ.k/J /θŒR2 − .ηi − η.k/J /

2 − .ϕi − ϕ.k/J /2 �P
i pT,iθŒR2 − .ηi − η.k/J /2 − .ϕi − ϕ.k/J /2 �

= 0

(3.9)

where the integral bound is now expressed as the step function weighting

k.r/ = θ.R2 − r2/ (3.10)

�is notation with an explicit step function lays the groundwork for the “nonclassical” discussion of the cone

algorithm below.

We can convert the 2D equation to an differential form by noting that (given that k.r/ satisfies the neces-

sary integrability conditions)

h.r/ = C
Z ∞

r
dr0 r0k.r0/ = −C

Z r

0
dr0 r0k.r0/ (3.11)

which translates to the differential relation

rh.r/ = h0.r/r r.r/ = k.r/ r (3.12)

For the cone algorithm, the differential form of the fixed point condition is therefore

r

"X
i

pT,i h.ηi − η.k/J , ϕi − ϕ.k/J /

#
= 0 (3.13)

where h, with the proper radial cutoff in the integration observed, and dropping unnecessary constants (for

the condition of a vanishing gradient, neither a multiplicative nor a constant offset matters), is the Epanech-

nikov kernel [67]

h.r/ = max.0, R2 − r2/. (3.14)

In a later chapter, I will show that this correspondence can be used to derived different algorithms that gen-

eralizes the cone algorithm while retaining some of its useful traits.
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Figure 3.2: Examples of N = 3 and N = 4 configuration with 7 and 9 stable cone axes, respectively, which are stationary

points in the convolution by Epanechnikov kernel. Particle positions are shown as green dots.

Figure 3.2 shows examples of N = 3 and N = 4 configuration with 7 and 9 stable cone axes, respectively,

which are stationary points in the convolution by Epanechnikov kernel.

�e procedure of introducing a pT threshold during the seeding, while “weeding out” undesirable stable

axes, results in a final state particle pT dependent phase space cutoff, that is a collinear and infrared unsafe

slicing of the two-body/three-body final state at the NLO level of jet cross section, since the cross section

would depend on the fragmentation property. Defining the cone algorithm as convolution with the Epanech-

nikov kernel makes it much clearer why the cone algorithm is traditionally seeded and an unseeded definition

is highly problematic at high multiplicity environment such as the heavy ion collision: Convolution with the

Epanechnikov kernel is potentially maximum-creating, and therefore, in a suitably event configuration, there

can be more stable cones than final state particles! �erefore, finding the stable cones without seeding is not

sufficient to obtain a practical, seeded cone-like definition.

�e seedless/infrared safe cone (SISCone) version of the cone algorithm alleviates the problem of the high

density of stable axes by introducing a split/merge procedure that is infrared and collinearly safe.

For a longitudinally isotropic underlying event with (ideally) infinitely dense final state particles, like a

mid-rapidity heavy ion collision, the characteristic, effective cone radius is not R, but to the first order already

.R + R1/, with R1 being the distance of the first order cone merge, which for a flat background, is given by
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the inversion of the equation

4
π

Z 1

R1 /2
dx
p
1− x2 = 2 cos−1

�
R1
2

�
−

R1
2

q
4− R21 = overlap threshold (3.15)

which numerically evaluates to R1 ≈ 0.81R for an overlap threshold 0.5 and R1 ≈ 0.40R for the overlap

threshold 0.75, which are nonnegligible contribution over the zeroth order R. In practice, however, higher

order merge distances Rn ,n ≥ 2 do not necessarily drop in magnitude, and applying SISCone to events

generated e.g. by the  event generator exhibits the behavior of merging the background into strips of

multiple units of rapidity.

3.1.3 Iterative Recombination

�e generalized form of the Catani–Dokshitzer–Ellis–Soper k⊥ algorithm starts with pT,i, denoted protojet

in the k⊥ terminology, and successively combines based on the distance measure

d.i, j/ ≡ min.pkT,i , p
k
T, j/

p
.ηi − η j/2 + .ϕi − ϕ j/2

D
(3.16)

and a “beam-distance” is defined by

d.i, beam/ ≡ pkT,i. (3.17)

Note that d.i, j/ is a true distance function/metric, such that the algorithm e.g. can be redefined by d2.i, j/

instead. At each step, if there exists a j ≠ i with d.i, j/ < d.i, beam/, a longitudinal .i, j/ protojet combining

is performed by removing the protojet i, j and add the new protojet

pT,i+ j = pT,i + pT, j

ηT,i+ j =
pT,iηi + pT, jη j

pT,i+ j

ϕT,i+ j =
pT,iϕi + pT, jϕ j

pT,i+ j

(3.18)

And if for all j ≠ i, d.i, j/ > d.i, beam/, the i-th protojet is removed from the list as a final, fully recon-

structed jet.

For the ordinary k⊥, k = 1, and the clustering follows a sequence of increasing transverse momentum

order for QCD splitting, thus “k⊥”. Setting k = 0 gives the Cambridge–Aachen algorithm, and k = −1 is

the anti-k⊥ algorithm. �e term “anti-k⊥” is in fact a misnomer, since modifying k does not make it cluster

in the opposite direction of a k⊥ ordering.
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Figure 3.3: Event display of p + p event from  with the Gaussian filter jet reconstruction. From bottom to top,

the event display consists of: Lego plot of the deposited energy by final state particles, red lines are the reconstructed jet

axes, contour plot at the top indicates the filter output, where the maxima coincide with the reconstructed jet axes.

Anti-k⊥ has been frequently compared to the cone algorithm. However, the coverage area is the crucial

difference here. An unseeded cone algorithm will inevitably have both split and merge decision in order

to avoid many mostly overlapping cone directions. We showed above that higher order cone merges have

nonnegligible contribution to the effective cone radius. Anti-k⊥ however, has the opposite behavior. Iterative

recombination with a protojet center dominated distance cutoff has the effect of a coverage oscillating with

each recombination step. (Note that the behavior is different than the infrared safety, as infrared safety is

an asymptotic behavior at the presence of infinitely low momentum particles.) �erefore, the characteristic

radius is in the range of D and D minus the average particle separation, i.e. it may decide to kick one particle

out of the “cone”. �is behavior is in addition to the lack of merging. �erefore, the behavior of anti-k⊥

diverges from the cone algorithm with either increasing wider jet fragmentation or an increasing magnitude

of the underlying event.
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3.2 Gaussian filter

3.2.1 Filter Definition

Figure 3.3 shows an event display of p + p event from  with the Gaussian filter jet reconstruction,

where a Lego plot of the final state particle energy deposit is overlaid with the filter output contour plot, and

the maxima as the reconstructed jet axes.

For a filter-based jet reconstruction, and including heavy ion events, we define the event pT density to be

pT.η, ϕ/ =
X

i∈fragment

pT,iδ.η− ηi/δ.ϕ − ϕi/, (3.19)

For the Gaussian filter, the filter kernel is set to be

hσfil.η, ϕ/ = exp
�
−.η2 + ϕ∗2//.2σ2fil/

�
, (3.20)

with ϕ∗ ≡ ϕ−2πb.ϕ+π//.2π/c being the angular range reduced ϕ (see also section A.3.2 how to implement

it). �e set of jets J as the three-tuple .pT , η, ϕ/ is then given by the local maximization

J = f .pT , η, ϕ/ | pT = QpT.η, ϕ/ a local maximum g, (3.21)

in which the .η, ϕ/-convolved pT density is

QpT.η, ϕ/ =
“

ℝ×S1
dη0dϕ0pT.η0 , ϕ0/h.η− η0 , ϕ − ϕ0/. (3.22)

For heavy ion events, underlying event has a finite and sizable contribution to the jet pT . We can take ad-

vantage of the linearity of the convolution, and define the background corrected pT density as the expectation

value

pbg
T .η, ϕ/ = hpT.η, ϕ/inonjet , (3.23)

where the averaging is understood to exclude real jet production (i.e. in situation with large true jet yield, the

regions with jets have to be excluded. �en, (3.19) can be redefined as

pT.η, ϕ/ =
X

i∈fragment

pT,iδ.η− ηi/δ.ϕ − ϕi/− pbg
T .η, ϕ/, (3.24)

and pbg
T .η, ϕ/ ≡ 0 can be thought if there are no underlying event. Due to the linearity of the convolution,

the contribution from the underlying event can be precomputed as

Qpbg
T .η, ϕ/ =

“
ℝ×S1

dη0dϕ0pbg
T .η

0 , ϕ0/h.η− η0 , ϕ − ϕ0/. (3.25)

�ere are a few direct properties to the Gaussian filter that becomes evident:



CHAPTER 3. JET MEASUREMENT IN FIXED-TARGET AND COLLIDER EXPERIMENTS 46

1. �ere is no immediate need for split/merge. Since convolution with the Gaussian kernel do not cre-

ate maxima, there is no merging step necessary to remove higher order stable axes, as with the cone

algorithm.

2. From a purely mathematical point of view, the filter kernel h is a test function, which regulates the δ

distribution from the point-like final states, and makes a diffuse background the same objects as the

final state particles, therefore facilitates a direct subtraction of the event background.

3. �e algorithm has a fixed geometry, which makes the subtraction of underlying event easy. A dynamic

geometry algorithm (which includes cone algorithm with split/merge) has an event-by-event and jet-

by-jet fluctuating underlying event area, which either means either some integration algorithm has to

provide the amount of the underlying event dynamically, or it is estimated event-by-event (which can

make the problem cyclic/self reinforcing). �is is in principle achievable with other jet algorithms, but

the jet definition has to be changed to make it fixed-geometry.

In practical realization, the reconstruction of an event is divided into the following two steps, which will

be explained in detail in the following sections:

1. Obtain an discrete convolution of the event pT using a digital filter implementation of the filter.

2. Subtract the discretized Qpbg
T . Oη, Oϕ/, which can be precomputed and stored.

3. Find the maxima and stationary points . Oη, Oϕ/ from QpT. Oη, Oϕ/.

4. Refine upon the discretized jet position using continuous optimization algorithm to obtain the true jet

position.

3.2.1.1 Infinite Impulse Response Realization

1. Obtain an rectangular histogram as a discretized approximation to the pT density. �e continuous

.η, ϕ/ is replaced by the discretization . Oη, Oϕ/ with

Oη =
�
.η− ηmin/

Nη

∆η

�
∆η
Nη

+ ηmin

Oϕ =
�
.ϕ − ϕmin/

Nϕ
∆ϕ

�
∆ϕ
Nϕ

+ ϕmin

(3.26)



CHAPTER 3. JET MEASUREMENT IN FIXED-TARGET AND COLLIDER EXPERIMENTS 47

where Nη is the number of discrete pseudorapidity bins and ∆η the pseudorapidity range, and analo-

gously for the azimuth ϕ. �e finite bin size introduces a constant renormalization to the otherwise

infinities in the distribution.

2. Filter the histogram using a discrete realization of the filter. �is can be implemented using either in

.η, ϕ/ domain using a finite impulse response (FIR) or an infinite impulse response (IIR) realization,

or in the Fourier domain.

�e discrete Z-transform (e.g. [68]) is defined via the Laurent series

F.z/ =
∞X

n=−∞

f.nT/ z−n (3.27)

For brevity, I will used fn ≡ f.nT/ as shorthand for the discrete sequence. Infinite impulse response (IIR)

digital filters are recurrent filters, which in the frequency space, have a transfer function H.z/ being a rational

function of z = e iω . From the discrete time realization

yn =
NX
k=1

bkxn−k −
NX
k=1

ak yn−k (3.28)

we obtain a
er the separation of variables

yn +
NX
k=1

ak yn−k =
NX
k=0

bkxn−k . (3.29)

Z-transform both side gives

zn
 
1+

NX
k=1

akz−k
!
Y.z/ = zn

 NX
k=0

bkz−k
!
X.k/ (3.30)

or for the transfer function

H.z/ ≡
Y.z/
X.z/ =

PN
k=0 bkz

−k

1+
PN

k=1 akz−k
(3.31)

�e fact that only negative exponents appear causes this filter structure to be causal, i.e. only time-retarded

input is used to produce the filter output.

IIR approximation to a Gaussian convolution have been provided as a pole-zero, parallel filter by R. De-

riche [69], and as an all-pole, cascade filter by van Vliet, Young and Verbeek [70], for which I will provide

an improved fourth order approximation. Since jet reconstruction operates on the input offline (in the sig-

nal processing sense, i.e. the entire input is known), the all-pole cascade realization eliminates the otherwise
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undesirable phase delay of an IIR filter is eliminated by a zero delay filter structure (e.g. [71])

H.z/ = H+.z/H−.z/, H−.z/ ≡ H+.z−1/ (3.32)

where the causal part of the filter is H+.z/ and noncausal (or anticausal) part H−.z/, which is essentially

H+.z/ with the spatial filter direction reversed. For the fourth order filter realization, the structure is

H+.z/ =
b0

1+ a1z−1 + a2z−2 + a3z−3 + a4z−4

H−.z/ =
b0

1+ a1z1 + a2z2 + a3z3 + a4z4
.

(3.33)

D. Hale noted that the parallel implementation is computationally advantageous, and the van Vliet, Young and

Verbeek approximation can be converted to a parallel structure by partial fraction expansion [72]. Hale also

noted that for the discrete Oσ > 8 (with Oσ = σNη/∆η for the pseudorapidity and similarly for the azimuth),

the difference between the Deriche and van Vliet approximation are negligible, while the Deriche filter scales

poorly with increasing Oσ , which explains our choice. It should however be pointed out that the continuous

optimization we apply a
er the discrete filter will mask any approximation at this scale. In fact, we started out

using the suboptimal approximation provided by van Vliet, Young and Verbeek and subsequently improved

our approximation.

�e structure of a polynomial is numerically more accurately described by its roots. Expressed in roots,

appendix B.1 derives the complex location d1,3 of the poles, by minimizing |H.e iω/− exp.−2ω2/|, as

d1 = 1.047 190+ 1.276 950 i

d3 = 1.664 977+ 0.472 724 i,
(3.34)

or expressed in polynomial coefficients

a1 = −5.424 333

a2 = 12.697 011

a3 =−15.355 431

a4 = 8.169 664

b0 = 1.086 911

(3.35)

where b0 is simply a normalization to ensure H.z = 1/ = 1.

While a rigorous introduction to the scaling theorem with the discrete Z-transform (that relates the Z-

transform of the sequence h.nT/ to h.T/) would be a bit distracting to the discussion here, examining the
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Figure 3.4: Scaling factor q of the IIR Gaussian filter approximation as function of the standard deviation σ (with only

the non-linear, small q region depicted). Shaded region is the suggested bound for root finding. Multiple roots exist for

σ < 0.3264.

definition (3.27) strongly suggest that, should f.nT/ be the discrete sampling of a continuous function, the

Z-transform would scale according a parameter change. An arbitrary σ therefore would be achieved by the

scaling of the poles via dk 7! d1/qk , q ∈ ℝ+. Since such a scaling with respect to a discrete and sequence is

not exact, we would examine the effect on the actual variance of the impulse response and parametrize any

residual effect. Transforming the definition of the variance into Fourier space gives

Var h =
∞X

n=−∞

n2h.nT/ = Re
X
k

2dσ0 /qk

.dσ0 /qk − 1/2
(3.36)

where σ0 = 2 is width used in the initial approximation. As opposed to previous publications, we use the

bracketing equation solver by G. Alefeld, F. A. Potra, and Y.-x. Shi [73] to invert the relation and obtain the

value of q. By investigating the small q plus asymptotic behavior, obtained a suitable (and ensure that the

slopes are representable by IEEE 754 single precision) bound

max.0.792 552 02, 0.962 887 64 σ − 0.823 265 93/ ≤ q ≤ 0.962 887 70 σ + 0.823 099 19 (3.37)

�e lower bound is relaxed to center the root, which may avoid difficulties from root finding if the root is too

close to the edge.

Figure 3.4 shows the scaling factor q of the IIR Gaussian filter approximation as function of the standard



CHAPTER 3. JET MEASUREMENT IN FIXED-TARGET AND COLLIDER EXPERIMENTS 50

deviation σ (with only the non-linear, small q region depicted), together with the shaded region correspond-

ing to the inequalities in (3.37).

Since the IIR approximation calculates a linear convolution in both η, ϕ, the azimuthal wrap-around in

ϕ is approximated by extending the star the convolution by π to 2π (i.e. depending on the causal direction of

the filter, from −3π-−2π to π, or from −π to 2π–3π).

�ere is a slight detail when implementing the filter either using linear or circular convolution (or use

linear convolution to mimic circular convolution, as detailed above). Circularly convolve the event with a

Gaussian distribution also filters away noncyclic frequency component, and the actual azimuthal function

being convolved with is therefore the Jacobi theta function ϑ3 ([74], section 16.27.3, p. 576)

h.η, ϕ/ =
|σ |
p
2π

e−η
2 /.2σ2/ϑ3

�
ϕ
2
, e−σ

2 /2
�
. (3.38)

For practical sizes of σ , the effect is negligible and corrected during the continuous optimization.

3.2.1.2 Approximation of the Background Distribution

�e basic constraint imposed by the continuous maximum finding to the parametrization of the filter con-

volved background Qpbg
T is that it is a second order differentiable function. Two obvious choices exist for the

parametrization

• Polynomial over the entire .η, ϕ/ range, which has the advantage of compact coefficients. However,

the Runge phenomenon of the directly calculable, least square, L2 approximation causes the pointwise

approximation error (i.e. if the jet happens to be on a “unlucky” .η, ϕ/ position) to be unbounded,

while the minimax approximation that provides a bounded, pointwise approximation requires iterative

algorithms to calculate.

• B-splines with order≥ 3, which has the advantage that the Runge phenomenon is easier to constrain by

noniterative algorithms, but requires a large set of coefficients to be carried around (in fact, computing

optimal, minimum number of nodes B-splines is even less trivial than using minimax polynomials).

In this implementation, we chose the polynomial approximation, while calculating its coefficients using

an arbitrary dimensional (convex) extension to the Remez algorithm [75] by G. A. Watson [76].
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�e Remez–Watson algorithm calculates the linear approximation of a target function f.x/, where the

residual function is

r.α, x/ =
nX
j=1

α jφ j.x/− f.x/ (3.39)

and its maximum norm ||r.α, x/||∞ is minimized, with α being the resulting coefficients, and φ are the basis

functions. �is is accomplished by the iteration:

1. Initialize using the r points x1 , . . . , xr , and with a jl = φl.x j/, f j = f.x j/ the coefficient matrix and

right-hand-side vector

C.1/ =

�
A 11×r

−A 11×r

�
c.1/ =

�
f

−f

�
(3.40)

2. Solve the linear programming (LP) subproblem

minimize h

subject to C.k/

�
α

h

�
≥ c.k/

(3.41)

3. Search for points where the maximum norm ||r.α, x/||∞, and consider points that are not already in

C.k/ and c.k/. If no additional points can be found, terminate.

4. Otherwise, using the set of new extrema xs , . . . , xs+t−1 and, evaluate the new sets of A0 and f 0 rows,

with with a0jl = φl.xs+ j−1/, f j = f.xs+ j−1/, analogously to step 1. Update the LP subproblem by

extending the rows:

C.k+1/ =

˙
C.k/

A0 11×r

−A0 11×r

�

c.k+1/ =

˙
c.k/

f 0

−f 0

�

. (3.42)

Go to step 2.

�e implementation of the algorithm above (or any best uniform optimization algorithm) requires local

optimization to determine the position of the point that contributes to the L∞ norm. Note that for a 2D

problem, it is not sufficient to just implement the N = 2-dimensional, unconstrained local optimization,

since with best uniform approximation, the boundary surface is usually populated with extrema. For the

problem here, the boundary and associated constraints are purely axial, therefore an unconstrained, limited
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storage Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [77] is used first. Depending on the initial

location of the optimization (which may be on the boundary surface), the appropriate constraints are applied

by converting the problem into an 1D or (the trivial) 0D one, and then use unconstrained optimization on

the remaining dimensions.

�e target function is determined by the convolution of the measured detector response. To calculate

the target function, a finite impulse response (FIR) filter implementation of the filter is used. FIR filters are

essentially special cases of an IIR filter with no recursive component, and setting ak in (3.31) shows that

FIR filters can be simply realized by linear convolution. �e filter is realized as circular convolution in the

Fourier space. Since the resulting convolution is already circular, nothing has to be done in the azimuthal

axis. �e effect of using circular instead of linear convolution in the pseudorapidity is mitigated by extending

the pseudorapidity range to be much larger than the detector’s pseudorapidity coverage. And because piece-

wise Newton interpolation do not necessarily have continuous derivatives at the nodes, algorithm  in [78],

section 8.6.2.2, pp. 343–344, is used to obtain the numerical gradient instead of the analytic one. And since

the target function is largely “smooth” (in the sense that the trust region of a local quadratic approximation is

far larger than the point-to-point distance), applying a continuous maximization with the numerical gradient

remains efficient.

Further acceleration of the problem can be achieved by noting that the problem is really one that is defined

on discrete .η, ϕ/ points, since the target function is approximated by FIR. However, any practical resolution

in .η, ϕ/ would result in Nη,ϕ ≈ 104 grid points and becomes computationally unpractical to solve by a

brute force N-D LP. �e usage of the continuous Remez–Watson algorithm here provides an efficient mean

to reduce N to ≈ 103, where the linear programming can be solved even with the simplex algorithm. In case

here of a target function that is really only defined on a grid, I found that the convergence of the Remez–

Watson can be accelerated by round the extrema in each step to the grid position.

Because this thesis only considers two type of detectors:

• Ideal detectors with only an (kinematic) η dependence of the background and no ϕ dependence (e.g.

resulting from acceptance inperfection)

• �e PHENIX detector with a large gap at ϕ = −π/2

we only encounter cases where no ϕ parametrization or a parametrization that is discontinuous at ϕ = −π/2

is possible and efficient. In the latter case, we use a tensor Chebyshev polynomial in .η, ϕ/. A full 2π-azimuth
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detector with acceptance inperfection would need to extend this approach to tensor Chebyshev–Fourier poly-

nomials (i.e., in η and ϕ).

For practical purpose, we found that an initial set of grid points for the LP of k.N + 1/, with N being the

approximation order and k = 2 . . . 3 to be sufficient for the PHENIX acceptance. Except for the (unlikely)

scenario of a even more severe detector nonuniformity, there is little need go beyond this value.

3.2.1.3 Discrete Maximum Finding

�e discrete location of the local maxima are found using comparisons against the nine neighboring pixels.

Infrequently, events may possess a maximum that lies exactly between two pixels. In lieu of a more elaborate

test, whether a contiguous group of equally valued pixels is bounded by values that are smaller, we simply

add points where adjacent pixels have equal values to the list of potential “maxima”. Continuous maximum

finding (described next) is used to weed out stationary points that are not true local maxima (i.e. minima or

saddle points), since these initial values will either

• converge into a continuous minimum or saddle point, and terminate

• diverge and terminate by hitting the pseudorapidity boundary

• converge into another maximum and filtered out by the “ghost cut”

3.2.1.4 Continuous Optimization

Once the discrete, approximate position of a maximum or stationary point is found, the continuously defined

jet direction is determined by using standard multidimensional optimization algorithms.

While in the purely additive situation of p + p, the generate distributions are relatively simple Gaussian

mixture distributions that can be easily accomplished by Newton iterations, doing so when a background

distribution is subtracted and repeating this reliably over multiple billion events requires a more robust ap-

proach. �e biased Wolfe trust region algorithm [79] (pp. 30–31, algorithm 2.2.4) is used. �e biased Wolfe

trust region iterates on k < kmax, and for each step k:

1. Obtain s.k/ ≡ .∆η.k/ , ∆ϕ.k// as the k-th solution of the trust-region subproblem within the “radius”

||N.k/s.k/|| ≤ δ.k/. �is is described by the quadratic programming (QP) problem

minimize Q.k/.s.k//

subject to ||N.k/s.k/|| ≤ δ.k/
(3.43)
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where

Q.k/.s.k// ≡ .g.k//Ts.k/ + .s.k//TB.k/s.k/ (3.44)

where g.k/ and B.k/ are the local estimate of the gradient and the Hessian of QpT.η, ϕ/. �e actual shape

of the trust region depends on the choice of norm, and the L∞ norm is used for simplicity. Since in our

situation, .η, ϕ/ are properly scaled, N.k/ ≡ 1.

2. Determine the Armijo rule discriminant for the trust region update

ρ.k/ =
QpT.η.k/ + ∆η.k/ , ϕ.k/ + ∆ϕ.k//− QpT.η.k/ , ϕ.k//

Q.k/.∆η.k/ , ∆ϕ.k//
(3.45)

3. Perform an exact line search for a step size α.k/ using the algorithm by Moré and �uente [80], such

that the step size satisfies the Wolfe conditions, consisting of the Armijo rule

QpT.η.k/ + ∆η.k/ , ϕ.k/ + ∆ϕ.k//− QpT.η.k/ , ϕ.k// < c1Q.k/.α.k/η.k/ , α.k/ϕ.k// (3.46)

and the curvature condition

r QpT.η.k/ + ∆η.k/ , ϕ.k/ + ∆ϕ.k// ≤ c2r QpT.η.k/ , ϕ.k//, (3.47)

where 0 < c1 < c2 < 1 is required for the function value tolerance c1 and gradient tolerance c2. �e

choice c1 = 10−4, c2 = 0.9 in [80] is kept.

4. Update by advancing by the step size

η.k+1/ = η.k/ + α.k/∆η.k/

ϕ.k+1/ = ϕ.k/ + α.k/∆ϕ.k/
(3.48)

5. Update the trust region

δ.k+1/ =

�
max

�
δ.k/ , α.k/ Oν||N.k/s.k/||, γ3||N.k/s.k/||

�
ρ.k/ ≥ c2

α.k/ min
�
δ.k/ , ||N.k/s.k/||

�
ρ.k/ < c2

(3.49)

where the increase of the trust region is determined by γ3 > ν ≥ 1. �e decrease of the trial step is

compensated by the parameter Oν ∈ Œ1, ν �, and in our case, since the exact line search is combined with

a problem that converges rapidly, the conservative choice of Onu = ν = 1 is used. For the potential trust

region increase, γ3 = 2 is used. �e specific form of the case ρ.k/ < c2 is chose to be the lower-bound

within the update rule type described in [79], pp. 20.



CHAPTER 3. JET MEASUREMENT IN FIXED-TARGET AND COLLIDER EXPERIMENTS 55

In [79], the choice of QP subproblem with Q.k/ or the more stringent, constrained Hessian determinant

OQ.k/.s/ ≡ .g.k//Ts + min.0, sTB.k/s/ in updating the trust region radius is le
 somewhat ambiguous (cf.

[79], section 2.2.2). Applying to practical events, Q.k/ appears to be sufficient for our purposes. When in the

d = 2, .η, ϕ/ space, a trust region with respect to the maximum norm is used, the constrained optimization

subproblem is relatively simply solved by enumerating the four d−1 = 1 and the four d−2 = 0 dimensional,

constrained problems.

�e targeted .η, ϕ/ precision is set τF = 4�M , with �M being machine precision. �e parameter �A

specifies the achievable machine accuracy when evaluating f.x/, which is defined as the lower bound for �A,

with

f.xx/− f.x/ ≤ �A (3.50)

around the proximity of x. In the case of the Gaussian filter, a full evaluation of �A is avoided, since the target

function is sufficiently smooth, and instead the simple estimate

�A ≈ �MŒ1+ f.x/� (3.51)

is used. �e (logically or-chained) termination criteria are the – in [78], section 8.2.3.2, pp. 306–307

f.xk−1/− f.xk / < τFŒ1+ | f.xk /| � (3.52)

||xk−1 − xk || <
p
τF.1+ ||xk ||/ (3.53)

||gk || < 3
p
τFŒ1+ | f.xk /| � (3.54)

||gk || < �A , (3.55)

where (3.52) is the termination condition on the function value, (3.53) the condition for the argument, and

(3.54) and (3.55) are the conditions on the gradient. �e condition U5 in [78] on the positive definiteness of

the local Hessian is not necessary, since the constrained solver will always find a non-decreasing step.

While so structured optimization guarantees descent with each step, optimization starting from stationary

points will (necessarily) converge to a local maxima in proximity. �is leads to multiply, close maxima as the

optimization output, which is rectified by applying a “ghost jet” with ∆R < �2/3M is applied.

3.3 Collinear and Infrared Safety

To test that the fully implemented algorithm for infrared and collinear (IRC) safe, event are generated with

the following characteristics
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• 2 ≤ N ≤ 9 lightlike particles

• flat pT between �M and 1 TeV

• |η| ≤ 1.5

IR safety is tested by adding 1 ≤ n ≤ 5 particles with pT = �M ≈ 1eV in the same pseudorapidity range.

3 × 109 random events were generated. IR safety violating event were found at a rate of 10−6. Inspection

of the corresponding events show that these are jets on the phase space boundary, where jets are formed

which can be either merged or split into two Gaussian peak, with a near-saddle point in between. Not only is

the behavior essentially consistent with the expected phase space from the finite IR test particle magnitude,

behavior at such low rate will not cause problems for even complex jet analysis such as cocktail subtraction,

for the foreseeable future.

Collinear safety is tested by generating a random .∆η, ∆ϕ/ direction with magnitude �M ≈ 10−6, and

then every track in the event is split by a random ratio r and with the perturbed .η, ϕ/, while another particle

with .1− r/pT and the Lorenz balancing direction is added to the event. Also here, a collinear violation was

found at the rate of 10−6, consistent with the phase space expectation, and again, coming from jets at the

exact splitting phase space boundary.

3.4 Fake Jet Rejection

Random overlap of hadronization processes in the underlying event can give large fluctuation to the jet energy.

When measuring a steeply falling spectrum such as jet production, the spectrum itself (in linear scale) is in

fact nearly a delta function, and the convolution by the underlying event fluctuation in low pT is dominated

by the smearing process. �is behavior only terminates when the tail of the energy smearing crosses over

with the jet spectrum, which given a steep spectrum at mid-
p
sNN can exclude a significant portion of the

statistically accessible jet pT . Not only would labeling a, say 100 MeV “jet” that receives 10 GeV/c from pure

fluctuation as a real 10 GeV jet not make any sense. It will be clear in a moment why operationally, these jets

that predominantly obtain their energy from fluctuation and not actual hard scattering process, should be

considered as falsely reconstructed jets, or “fake jets”.

Since behavior of producing these “jets” with mostly fluctuation-based energy only terminates at high-

pT and at a low jet yield, this also demonstrate a key problem that confused many people. �e problem of
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heavy ion underlying event energy smearing is inherently the sampling of the statistical tail of the underlying

event smearing. Another way to describe the problem is that it is insufficient to reject per heavy ion event

enough jets from fluctuation, but you have to reject this sufficiently per observed hard scattering. Below the

smearing–jet yield cross over, this is not possible without a strategy to remove these background “jets”.

Another proposed approach, where some colleagues have staked their hope on, is to statistically unfold

away the yield coming from background smearing. Essentially the hope is that the unfolding would “move”

these background jets into their correct pT , i.e. around 0 GeV. �is approach will fail from two reasons

• It is plainly impossible to quantify the background interaction (without resorting to some model) with

the jet reconstruction algorithm at this level of statistical tail. Any attempt to quantify this by embed-

ding into actual minimum bias heavy ion event will encounter intrinsic jet production, and – unsur-

prisingly – at exactly the same range of the statistical tail you would like to quantify.

• �e necessary unfolding is simply numerically infeasible. As it was discussed above, the low pT por-

tion of the jet spectrum – where you would want to unfold these backgrounds jets into – looks to the

unfolding like a delta distribution. Compounded by the issue of Poisson counting noise, numerical

inversion cannot reliably unfold a nearly Gaussian distribution against a Gaussian distribution, and

obtain a near-delta distribution. Another way to look at this is that in the Fourier domain the inversion

of a Gaussian smearing is the multiplication of eω2 against e−ω2 , which is not stable for low ω, whereas

the “movement” of background jets in to a delta-function like peak require the reliable reconstruction

of a function that is nearly constant in the Fourier domain.

�e fake rejection discriminant we developed is based on the fact that by restricting to a small σdis =

0.1 ≈
p
2π/.dN/dη/ (here taking the dN/dη of Au + Au), the weighted energy inside the region is unlikely

to attain a high value compared to the small angular opening in jets.

We define the “simple” Gaussian fake rejection discriminant to be

gσdis.η, ϕ/ =
X

i∈fragment

p2T,ihσdis.ηi − η, ϕi − ϕ/. (3.56)

�en we introduce the leading, filter weighted, off-center fragment to be

m ∈ fragment with p2T,mhσfil.ηi − η, ϕi − ϕ/maximized. (3.57)

�e center adapted Gaussian fake rejection discriminant is then

g 0σdis
.ηjet , ϕjet/ = max

�
gσdis.ηjet , ϕjet/, gσdis.ηm , ϕm/

�
. (3.58)
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�e discriminant was studied using  [81] and for Au + Au collisions at
p
sNN = 200 GeV. An

impact parameter b = 0 fm was used, which corresponds to dNch/dη = 858. �e phenomological 

radiation scheme used by  was not used. While it enhances the dN/dη fluctuation, it causes rare but

unphysical gluon jets radiated from forward rapidity and low-pT strings. �e fake rate of the Gaussian filter

was determined using 106  events, which is necessary to quantify the residual fake rate for an algorithm

that would sufficiently suppresses the fake jets across the entire pT range, while for the non-fully fake rejected

SISCone and Fast-kT , 8× 105 and 4× 105 events were sufficient to determine the fake rate, respectively.

 also contains intrinsic hard scattering. While [82] tried to obtain a “non-jet” sample by imposing

a maximum momentum transfer Q for the individual scattering in , this approach introduces a bias

towards a smooth background, which would be especially problematic for RHIC energies, where a relatively

low Q has to be imposed. We were able to obtain a clean sample by tagging each string system inside .

Each string system undergoes fragmentation and individual jet reconstruction. �e efficient Gaussian filter

algorithm makes ≈ 109 event reconstruction feasible.

�e jet–string system ∆R versus the jet–string system pT ratio pT,jet/pT,ss distribution exhibits two com-

ponents, one being the a correlated region where the reconstructed jet aligns with a string system, and an

general, combinatorial background that however subsides rapidly above pss
T > 4 GeV/c. We there fore use a

conservative polygon cut

pss
T > 4 GeV/c ^ ∆R < maxf0.5, 0.2+ 0.075Œpss

T /.GeV/c/− 4 �g (3.59)

to mask out area where one would find itself on top of a single string system and unsurprisingly reconstruct

the string system.

Two LHC motivated algorithm–fake rejection pairs were constructed as a baseline. �e SISCone [83] was

combined the ATLAS ΣjT fake rejection scheme [82]. Its implementation uses the same calorimeter tower

based background subtraction scheme a
er the ATLAS collaboration. Specifically, the same ∆η × ∆ϕ =

0.1×π/32 tower segmentation as the intermediate ATLAS electromagnetic calorimeter layer is implemented

at particle level. �e same ATLAS tower energy redistribution algorithm to avoid negative tower energy a
er

the underlying event subtraction is also applied. �e Fast-kT [84] was combined with the pT /A background

identification suggested by the same authors [85]. �e performance of Gaussian filter with g 00.1 was found to

far exceed the that of the other algorithms, and in fact, only the Gaussian filter with g 00.1 was sufficient for

RHIC purposes.
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Figure 3.5: Fake rate and efficiency from’s central Au + Au
p
sNN = 200GeV collision. Shown is the performance

of the Gaussian filter using g 00.1 fake rejection, SISCone using the ATLAS Collaboration ΣjT fake rejection, and k⊥ using

the pT /A− ρ > 1.9 σ/
p
hAi discriminant proposed by the FastJet authors. �e overall power-law behavior of the p + p

jet spectrum has been divided out for clarity. �e rejection thresholds for SISCone and anti-k⊥ were relaxed until either

an efficiency of ≈ 0.3 was achieved at 20 GeV/c, or in the case of pT /A− ρ, mean plus 0σ is reached.

Using the same simulation, we can also demonstrate why we need to go to p2T by examining the discrim-

inant value dependent behavior of the efficiency and fake rate. While p1T results in a behavior that the fake

rate only changes slowly with sacrificing the efficiency, using p2T drastically changes this behavior and a large

reduction of fake rate can be achieved by sacrificing little to moderate level of efficiency. It can be also shown

that further increasing the power to 3 offers little gain above the quadratic weighting.

Figure 3.5 shows the fake rate and efficiency from ’s central Au + Au
p
sNN = 200 GeV collision.

Shown is the performance of the Gaussian filter using g 00.1 fake rejection, SISCone using the ATLAS Collab-

oration ΣjT fake rejection, and k⊥ using the pT /A− ρ > 1.9 σ/
p
hAi discriminant proposed by the FastJet

authors.

Figure 3.6 shows the efficiency versus fake rate for pT > 8GeV/c jets of central Au + Au
p
sNN = 200GeV

 for g (le
) and u, d , s quark jets (right) for p1T weighting. Figure 3.7 shows the same for a p2T weighting,

and figure 3.8 shows it for a p3T weighting.
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Figure 3.6: Efficiency versus fake rate for pT > 8 GeV/c jets of central Au + Au
p
sNN = 200 GeV  for g (le
)

and u, d , s quark jets (right) for p1T weighting.

Figure 3.7: Efficiency versus fake rate for pT > 8 GeV/c jets of central Au + Au
p
sNN = 200 GeV  for g (le
)

and u, d , s quark jets (right) for p2T weighting.
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Figure 3.8: Efficiency versus fake rate for pT > 8 GeV/c jets of central Au + Au
p
sNN = 200 GeV  for g (le
)

and u, d , s quark jets (right) for p3T weighting.
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Chapter 4

Experimental Setup

4.1 RHIC Accelerator Complex

�e Relativistic Heavy Ion Collider (RHIC) accelerator complex is situated at the Brookhaven National Lab-

oratory (BNL) in Upton, New York, and is the extension of the Alternating Gradient Synchrotron using the

then abandoned Collider Beam Accelerator (CBA) tunnel, which serves as the injection accelerator for RHIC.

Figures 4.1 and 4.2 show the layout of the RHIC accelerator complex as a map and aerial photograph.

Depending on the beam type, the initial ionization and acceleration occurs in either the Linear Accelerator

or the Tandem Van de Graaff accelerator.

4.1.1 Linear Accelerator/LINAC-to-Booster Line

�e linear accelerator starts with the optically pumped polarized ion source (OPPIS), which produces a beam

of spin-polarized H−, and is pulsed 0.350ms, corresponding to 1/4 of the AGS pulse. �is is then accelerated

by a 144.8 m to an energy of 200 MeV. Momentum selection is achieved using a 120ı bend in the transfer

line to the AGS Booster.

Figure 4.3 shows the layout of the LINAC-to-Booster and Tandem-to-Booster Line.

4.1.2 Tandem Van de Graaff/Tandem-to-Booster Line

�e Tandem Van de Graaff facility consists of two model MP accelerators, manufactured by the High Voltage

Engineering Corporation (HVEC, founded by R. J. Van de Graaff himself), and upgraded using the Pelletron

charging system to achieve a terminal voltage of 15MV. Generator MP7 serves as the main source for RHIC

operation, which is fed using a pulsed solid state sputter source. MP6 serves as a spare for RHIC, and is also

the source for the NASA Space Radiation Laboratory (NSRL) and other users.
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Figure 4.1: Map of the RHIC complex at BNL, from [12].
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Figure 4.2: Aerial photograph of BNL superimposed with the storage rings and beam lines of the RHIC complex.

Figure 4.3: Layout of the LINAC-to-Booster and Tandem-to-Booster Line, from [12].
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Figure 4.4: Layout of the AGS Booster and Booster-to-AGS Line, from [12].

Still in the Tandem facility, ions emerging from MP6 and MP7 makes a U-turn by two 90ı bend with

1.526 83 m radius. Charge and momentum selection is accomplished by the first bend. �e TTB transport

line contains four additional bends, which are made acromatic using tuned quadrupole magnets.

4.1.3 Booster/Booster-to-AGS Line

As a strongly focusing synchrotron, the Booster has a alternating gradient (a principle originating from the

BNL Alternating Gradient Synchrotron) lattice design, where cells are arranged to a QF OO QD OO structure,

or FODO cells. QF is the quadruple focusing magnet, which (by convention) denotes one that focuses the

beam horizontally and defocuses vertically, OO (as for orbit) is either dri
 space or a bending dipole, and QD

the quadrupole defocusing magnet, which is a QF configuration rotated by π/2 with respect to the beam axis.

�e combination of focusing and defocusing magnet creates an overall focusing beam optics. In addition,

sextupole magnets SF and SD are inserted into the FODO lattice, where the correct the chromaticity of the

beam by introducing a momentum dependent focusing.

�e Booster consists of six superperiods (denoted A–F) and four FODO cells per superperiod. �e total

circumference is CBooster = 201.78 m, while the dipole bending radius is 13.8656 m. Booster injection from
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Figure 4.5: Photograph of the interior of the AGS tunnel at BNL.

the TTB occurs at the C3 straight section, and is done using a cathode and septum magnet combination, with

four kicker magnets. Booster injection from the LTB uses the charge exchange method. �e C5 dipole has

a displaced return yoke to accommodate the injection. A 200 µg/cm2 carbon stripping foil is inserted into

the front part of the C6 straight section. And the charge exchanged protons are deflected into the orbit by

the C7 dipole. Booster extraction to AGS occurs at the F6 septum, while the D6 septum magnet leads to the

transport line to the NSRL target room.

Figure 4.4 shows the layout of the AGS Booster and Booster-to-AGS Line.

4.1.4 Alternating Gradient Synchrotron

�e Alternating Gradient Synchrotron (AGS) is a (in fact, the first) synchrotron that controls the transverse

beam dynamics, which is dominated by the betatron oscillation, using alternating focusing–defocusing cells.

�e nominal AGS circumference is CAGS = 807.104 75 m, which is 4CBooster. For the RHIC circumference

design we will discuss below, the extraction of beam using a system of kicker magnets slightly lengthens the

orbit to the extraction orbit circumference, which has been measured to Cextr
AGS = 807.125 26 m.

�e AGS lattice is divided into 12 superperiods, designated A–L, each contains 20 dipole magnets, one
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horizontal plus one vertical quadrupole, and one horizontal and one vertical sextupole magnet. Injection

occurs at A5, and the extraction to the AGS-To-RHIC Transfer Line G10.

Figure 4.5 shows a photograph of the interior of the AGS tunnel.

4.1.5 AGS-To-RHIC Transfer Line

�e 770m AGS-To-RHIC Transfer Line (ATR) has a more complex structure than the previous transfer lines.

ATR is divided in several sections. �e U-line is next to the AGS extraction, and start with the 4.25ı bend,

and forks with a 8ı bend from the line leading to AGS E821. �e W-line transports the beam to the symmetric

X/Y-lines, and contains a 20ı horizontal bend together with a 1.73 m level drop near the middle. A switch

dipole directing the beam to either X or Y-line, each contains a horizontal 90ı bend, and multiple vertical

bends leading to the RHIC injection points.

4.1.6 Stripping

For proton RHIC injection, the H− beam coming from the LINAC is fully stripped by the 200µg/cm2 carbon

LTB foil, during Booster injection. For Cu beam, the Cu− ions are generated from a sputter source and

accelerated to +13MV potential, where it passes through the terminal stripping (denoted S1) by a 4 µg/cm2

carbon foil. �e Cu11+ ions are further stripped when injected into the AGS and by a 14mg/cm2 carbon BTA

foil (S3) to the fully stripped Cu29+ state. For the Au beam, the two additional object foil (S2) and ATR foil

(S4) are used. �e Au− ions are stripped to Au12+ at S1, followed by the object foil at S2 to Au31+ at the entry

of the TTB. S3 strips the ions further to Au77+ at AGS injection, and a
er S4 at the entrance of ATR finally

reaches the fully stripped state of Au78+.

4.1.7 RHIC

4.1.7.1 Basic Parameter

RHIC is a intersecting storage ring (ISR) accelerator, in which the collision of independent particle species

at the center-of-mass (CM) is facilitated using two rings operated with independent magnetic and radio-

frequency (RF) fields. �ese two rings are arbitrarily labeled using the colors “yellow” and “blue”. Looking

down from the air/space, ions (or because positive ions are accelerated, equivalently +qv) bunches in the

yellow ring travel counterclockwise, i.e. at the PHENIX interaction region, from the compass direction NNW
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Figure 4.6: Photograph of the interior of the RHIC tunnel at BNL.

Figure 4.7: Computer-aided design drawing of the Cross section of a RHIC arc dipole magnet, color version of drawings

from [13].
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Figure 4.8: Computer-aided design drawing of the cross section of a RHIC arc dipole magnet integrated inside the

cryostat, color version of drawings from [13].

Figure 4.9: Computer-aided design drawing of the cross section of a RHIC corrector magnet, color version of drawings

from [13].
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Figure 4.10: Cross section photograph of a RHIC sextupole magnet.

to SSE, and vice versa for the blue ring. When running in d + Au mode, the yellow ring is filled with Au

bunches.

�e difference with the blue/yellow ring as the inner/outer arc causes the RHIC to be symmetric in three

superperiods, each containing 12 FODO cells each 29.622m long, and 24 half cells with a 9.46m long dipole,

a 1.13 m long quadrupole, and a 0.75 m long sextupole. �e total ring circumference is CRHIC = 19
4 C

extr
AGS =

3834 m in circumference (which allows a easier injection by coupling the AGS and RHIC lattices), and has a

circular–hexagonal shape, i.e. consisting of both nearly straight 313 m long and circular arc section with an

average bending radius inside the arc of 380 m, the center of which sits on a hexagon with the radius 240 m.

�e particles are deflected using 1740 superconducting NbTi (a type II superconductor with Tc = 9.2 K)

dipole magnets operating 5.093kA current and 3.458T field. �e arc dipole bending radius is 243m. �e beam

are bent into each of the six interaction regions using a pair of DX magnets. Since different species are being

collided at RHIC, the final focusing magnet is place before the common dipole DX magnet, which is 18 cm

wide to accommodate different species. �e maximum magnetic rigidity at RHIC is Bρ = 839.5 T m at top

energy (while Bρ = 81.114 T m at injection). �is means that attainable beam energies are E = 100 GeV/u

for Au beams, E = 125 GeV/u for light ions, and E = 250 GeV/u for protons.
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Figure 4.4 shows a photograph of the interior of the RHIC tunnel.

Figures 4.7–4.9 shows computer-aided design (CAD) drawing of the cross section of a RHIC arc dipole, of

the arc dipole integrated inside the cryostat, and of the corrector magnet. Figure 4.10 shows the cross section

photograph of a RHIC sextupole magnet.

4.1.7.2 Beam Dynamics and Luminosity

Some review of the basic synchrotron beam motion is needed for the discussion RHIC luminosity. Betatron

oscillation in a synchrotron is described by the Hill’s equation

d2x
ds2 + K.s/x = 0 (4.1)

where K.s/ is a periodic restoring coefficient, and s parametrizes the longitudinal beam travel distance. �e

Hill’s equation integrated is solved algebraically by Fourier transform K.s/, and gives three parameters from

the initial condition of the beam, the transverse emittance ε, the betatron amplitude function β∗.s/, and the

phase advance ψ.s/. �e horizontal equation of motion (with the initial phase δ) takes the form

x =
p
εβ∗.s/ cos.ψ.s/+ δ/ (4.2)

�e Hill’s equation for the so expressed, monochromatic transverse beam motion becomes a algebraic equa-

tion of transport matrices. Since for the cross section (assuming for a moment a circular beam and note that

σx is also the half linear size)

cross section = 4πσ2x = 4εβ∗.s/ (4.3)

(avoiding multiple usage of the symbol σ for clarity), it follows that

ε =
πσ2x
β∗

. (4.4)

At a storage ring with two independent beam intensities, in case of RHIC denoted as Nblue and Nyellow,

the luminosity takes the slightly more elaborate form

ℒmachine =
frev

2πσV
x σV

y

X
crossing

NblueNyellow (4.5)

Here, the frev is the revolution frequency for a given RHIC store. For identical B bunches in both rings,X
crossing

NblueNyellow = BN2. (4.6)
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�e beam profiles σV denote the convolved beam profiles, which unlike the individual “blue” and “yellow”

profiles, are directly measurable using the van der Meer method, also called the vernier scan. In case of

Gaussian beam profiles,

.σV
x /

2 = σ2x,blue + σ2x,yellow

.σV
y /

2 = σ2y,blue + σ2y,yellow.
(4.7)

Note that σV
x,y = 2σx,y for identical beams.

Using the result above, we obtain the machine luminosity with respect to the beam emittance as

ℒmachine =
frev

4
q
εxβ∗xεyβ∗y

X
crossing

NblueNyellow. (4.8)

Since adiabatic damping decreases the beam emittance as inversely proportional to the beam momentum,

the BNL Collider–Accelerator Department (C–AD) frequently uses the definition of a normalized emittance

that corresponds to a 95% beam contour [86]

εN = βγ
6πσ2

β∗
(4.9)

and the machine luminosity in this form is

ℒmachine =
3
2
frev

βγ
εNβ∗

X
crossing

NblueNyellow (4.10)

�e design luminosity for RHIC isℒ = 2×1026cm−2s−1 for E = 100GeV/uAu beams and averaged over

10 hours. Additional, detector dependent details of the experimental luminosity measurement is deferred to

section 4.2.5.

4.2 PHENIX

PHENIX combines a central rapidity spectrometer (the “Central Arms”) with forward tracking and calorime-

try for µ±. Unlike traditional, hermetic detector design, the central rapidity spectrometer only partially covers

the midrapidity, while the magnet field is a dipole field.

In the PHENIX coordinate system, Ox vector points to the WSW, Oy skywards/away from the center of

Earth, and Oz to the NNW, i.e. in the travel direction of ions in the blue ring. �e origin .0, 0, 0/ is at the

nominal collision point. PHENIX is generally measures using the CGS system of units.

Figure 4.11 shows the layout of the PHENIX detector systems.
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Figure 4.11: Layout of the PHENIX detector subsystems.

4.2.1 Central Arm Detectors

At midrapidity, the PHENIX detector configuration at Run-5 consists of two spectrometer arms. Because of

the definition of the PHENIX coordinate system, the arm towards + Ox from the collision point west arm is

called the West Arm, and the arm towards − Ox the East Arm.

4.2.1.1 Particle Identification

We will start the discussion of the PHENIX detector subsystems with a detector not directly used in this anal-

ysis, but nevertheless provides the tracking momentum scale and is crucial in determining the momentum

resolution of the tracking system.

�e time-of-flight detector (TOF) is a scintillation detector covering the PHENIX east arm. It consists of

10 panels with 96 scintillator slats each. �e segmentation is designed for a dNch/dη = 1500, for which the

average occupancy per panel is kept below 0.1 to avoid large number of double hits. �e scintillator material is

the plastic Bicron BC404. �e light is channeled through a light guide to Hamamatsu R3478S photomultiplier

tubes (PMTs), which are arranged perpendicular in a residual field of < 10−3 T strength. �e TOF is placed
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Variable Rinner .cm/ Router .cm/

n0 3.4 8.4

n1 — 11

n2 — 8.4

n3 3.9 7.9

Table 4.1: �e four PHENIX RICH phototube counting ring variables and the associated radii

5.1 m from the collision vertex, and is sandwiched between PC3 and the EMCal.

�e timing resolution of the TOF is σTOF ≈ 100ps and can be estimate by the observed timing distribution

for π+. A rigorous determination however requires a simultaneous fixing of the tracking momentum scale,

which we defer to the next section.

�e other central arm PID detector, responsible for electron identification, is the ring-imaging Cherenkov

detector (RICH). Each arm contains a RICH detector, consisting of 40m3 volume and 48 intersecting spherical

Al mirror panels, which focuses the Cherenkov light onto 1280 Hamamatsu H3171S UV PMTs per sector.

Since RHIC is positioned closer to the inner field, the PMTs are magnetically shielded to allow operation in

field up to 10−2 T. Based on  simulation, and due its optical transparency in UV and low radiation

length, CO2 with n = 1.000 410 was chosen as radiator gas, while the better performing, but flammable

ethane can be used as alternative. �e radiator gas is held at an overpressure of 0.500 water column. When

filled with ethane gas, the RICH has a total radiation thickness of 2%.

�e CO2 radiator translates into a threshold γ = 35, which is p > 0.02 for e± and p > 4.9 for π±,

with the latter gives a upper momentum constraint for reliable electron identification. Electron identification

is performed by observing sufficient amount of photoelectrons along the expected ring geometry of R0 =

5.9 cm. Accounting for ±2.5 cm variations, an annulus is used with the inner radius of 3.4 cm and the outer

radius being 8.4 cm. Other variables have been designed for situations when misalignment is suspected or to

provide a tighter cut at ±2 cm.

Table 4.1 lists the four PHENIX RICH ring variables counting the track associated phototube and their

associated radii.

Figure 4.12 shows the identification of π±, K±, and p/ Np using the PHENIX TOF detector in
p
sNN =

130 GeV Au + Au collision.
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Figure 4.12: Identification of π±, K±, and p/ Np using the PHENIX time-of-flight detector in
p
sNN = 130GeV Au + Au

collision.

4.2.1.2 Tracking detectors

�e PHENIX central arm tracking detectors consists of a stacked sequence of dri
 chamber (DC) and pad

chambers (PC). �e DC is a specialized form of multiwire proportional counter (MWPC) with timing capa-

bility to resolve the hit position along the wire. Charged tracks causes gas in the DC to avalanche, and due to a

potential gradient, electrons and ions separate and dri
 in a uniform field created by anode and cathode wires.

�e fast moving electrons causes a current pulse of ≈ 10 ns duration in the anode wires, which is integrated

to the measured signal. �e DC is characterized by two main calibration parameters, the effective ionization

time t0 and the effective dri
 velocity v0. Both can be obtained by measuring the leading and tailing edge of

the dri
 time distribution. �e PHENIX DC gas mixture consists of 49% Ar, 49% C2H6, and ≈ 1.5% ethanol.

Compared to the original MWPC design, DC uses potential or field wires (P) between anode wires to

improve charge collection. �e PHENIX DC is additionally a DC with focused geometry, where additional

field forming wires are placed to break the le
/right ambiguity and narrowed sample length. Dri
ing electrons

in the intended direction are focused towards the anode wires using gate (G) wires that localize the dri
 region

by generating a high field near the anode wire, while electrons from the opposite dri
 directions are stopped
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Figure 4.13: Field lines of the focused PHENIX DC geometry in a  simulation.

by the back (B) wire. At the outer bound of the planes, the potential wires are joined by additional termination

wires. �e PHENIX DC single wire efficiency is ≈ 0.95–0.98, while the back efficiency is < 7%.

�e wires in the PHENIX DC is organized radially into six radial planes. �e X1, X2 wires are in parallel

to the z axis, and provide .r, ϕ/measurement of track hits. Each X1, X2 plane is surrounded by U1, V1, and

U2, V2 stereo planes, which contain wires having a stereo angle of ≈ 6ı to resolve the z coordinate of the

track. �e X planes contain 12 anode wires, and each U or V plane four. Group of four anode–cathode planes

is organized into one keystone.

Figure 4.13 shows the field lines of the focused PHENIX DC geometry in a  simulation.

�e PC are the only nonprojective elements in the PHENIX central arms and therefore crucial for the

pattern recognition. �e PC is a MWPC with pixel-pad cathode. �e pad pixel of PC1 is organized in to

cells of 8.2 × 8.4 mm2, while PC2 14.2 mm and PC3 16.7 mm. To achieve a good z resolution, the cell is

subdivided into three pixels along the z direction, resulting in a z resolution of ±1.7 mm. To save readout

channels, three layers of three diagonal pixels are chained together into a single readout channel. Coincidence

of three adjacent z pixels (which by organization of the chaining, are in three separate channels) is required to

suppress electronic noise. �e tracking system formed by the DC and PC1 is also called as the intermediate
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DC/PC1 Hit Property Bitmask

X1 used 0000012

X2 used 0000102

UV found 0001002

UV unique 0010002

PC1 found 0100002

PC1 unique 1000002

Table 4.2: DC/PC1 hit properties and associated bitmasks for the PHENIX central arm tracks.

tracker (ITR), and PC2/PC3 as the outer tracker.

Expressed in ratio to the radiation length, the DC has an thickness of ≈ 0.2%, the PC1 ≈ 1.2%, and

the PC2/PC3 ≈ 2.4%. �is still means that in the measurement of a steeply falling spectrum, momentum

misconstruction due to the lack of in-field tracking can contribute significantly to the set of measured high-

pT particles. �e DC and PC1 combined form the primary tracking subsystem. Each track is tagged with a

track quality bitmask.

Table 4.2 lists the DC/PC1 quality bit and their properties.

�e overall tracking pattern recognition and momentum reconstruction uses the combinatorial Hough

transform, which calculates the track parameter for all possible combination of hits, and reconstructed tracks

appear as the lining up of combinations as local maxima in the track parameter space. In a first order ap-

proximation (constant field and η = 0), the momentum scale at the DC is determined by the effective field

integral

K =
Z

B × d l = 87 mrad GeV/c (4.11)

which also enters the momentum resolution that is a combination of the intrinsic angular resolution σα and

multiple scattering of the charged particle in the detector material σMS:�
δp
p

�2
=
�σα
K
p
�2

+
�
σMS

Kβ

�2
(4.12)

Using an additional parameter σTOF, the mass resolution of the TOF can be expressed as

σm2 =
4m4p2

K2 σ2α +
4m4

K2

�
1+

m2

p2

�
σ2MS +

4p2c2

L2
.m2 + p2/σ2TOF (4.13)
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Figure 4.14: Photograph of a quarter PbGl supermodule during testing.

�e angular resolution can be additionally checked using Using zero field data, the angular resolution can

be additionally confirmed as σα = 0.84 ± 0.05 mrad .GeV/c/−1. Using the combined fit, the momentum

resolution of the tracking system is determined as

δp
p = 0.7% ⊕ 1.0%

p
GeV/c

(4.14)

4.2.1.3 Electromagnetic Calorimeter

EMCal measure the energy by detecting the shower of secondary particles, which is produced when the pri-

mary particle interacts with the absorber. With proper calibration, calorimeter measure the energy deposit

directly, and can provide online measurement of the energy deposit in an event, as opposed to tracking,

which requires pattern recognition and momentum reconstruction that are difficult to produce at the rate

of the collisions. �erefore, the EMCal is also the crucial component to provide fast triggering on high-pT

events.

�e PHENIX experiment contains both major types of EMCal: Six of the total eight sectors are cov-

ered by Pb–scintillator (PbSc) calorimeters. �e PbSc tower is a sampling detector consisting of alternating



CHAPTER 4. EXPERIMENTAL SETUP 79

1.5mm Pb and 4mm scintillator layers, with the scintillator being 0.01% p-bis[2-(5-phenyloxazolyl)]-benzene

(POPOP) with 1.5% additive p-terphenyl (PT). Two sectors are covered by Pb–glass (PbGl) calorimeters that

were previously used at the WA98 experiment at CERN SPS. �e PbGl towers are homogeneous, non-imaging

Cherenkov detectors, where a Pb-glass medium with 51% Pb-oxide both generates the secondary particles

and also serves as the Cherenkov radiator. In both types, the generated light is then read out using PMTs.

�e generated photons is proportional to the energy deposit, but leakage causes nonlinearity effects for low

energy electrons and photons, which have to be corrected.

Since the longitudinal energy loss in an EMCal is given by

dE
dz = −

E
X0

(4.15)

the characteristic longitudinal size of the shower is exponential and decreases with the radiation length X0.

�e lateral size of the shower is dominated by multiple scattering, and is described by the Moliere radius RM,

which is related to the radiation length via

RM = X0
Es
Ec

(4.16)

where Es =
p
4π/α me c2 ≈ 21 MeV is the scale energy, and Ec is the material dependent electron critical

energy. For PbSc towers, X0 ≈ 20 mm, and the module length of 37.5 cm corresponds to ≈ 18X0. For the

PbGl towers, X0 ≈ 28 mm and the module length of 40 cm is 14.4X0. For PbSc towers, RM ≈ 30 mm, and

for PbGl, RM ≈ 36.8 mm.

While electrons and photons interact with the absorber via bremsstrahlung and pair production, hadronic

interaction produce significantly different shower shapes. Rejection of hadrons are therefore done using

shower shape cuts. �e measured energy distribution among the towers for electrons is used to produce

an analytic parametrization of tower energy distribution with respect to the impact point. �e χ2 distance

of the measured distribution to the parametrization characterizes the “electromagneticness” of the shower.

Distribution for electrons and pions cross over at χ2 ≈ 3 dof.

Both detectors are timing capable. �e PbSc has the better timing resolution of ≈ 120 ps for electrons

and protons depositing E ≥ 0.5 GeV, and ≈ 270 ps for pions. �e timing resolution for electromagnetic

showers in the PbGl is also ≈ 200 ps, but the position offset of hadronic showers causes hadronic TOF to be

shi
ed by −800 ps.

�e tower segmentation for PbSc is approximately 5.535× 5.535 cm2 or ∆η× ∆ϕ ≈ 0.01× 0.01 while

the PbGl segmentation is 4× 4 cm2 or ∆η× ∆ϕ ≈ 0.008× 0.008 For both technologies, 12× 12 towers are
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grouped together to form a supermodule, while each sector contains 3×6 PbSc or 4×8 PbGl supermodules.

�e resolution of both technologies has been determined using e− test beam from the AGS between 0.5–

5 GeV/c and using e− test beam from the SPS between 10–80 GeV/c. �e energy resolution was found to

have a Gaussian shape. A quadratic fit to the combined AGS/SPS test beam data yields an energy resolution

for the PbSc

σE /E = 8.1%/
p
E ⊕ 2.1% (4.17)

and for PbGl

σE /E = 5.9%/
p
E ⊕ 0.8% (4.18)

�e EMCal energy scale can be derived from either e± E/p ratio distribution or by locating the π0 ! γγ

decay peak. For π0 ! γγ method, the nonlinear error propagation of the finite detector resolution causes the

reconstructed m.π0/mass peak to shi
 from the physical value. Given a known resolution, the energy scale,

in principle, can be determined by iterative fitting of the m.π0/mass peak. While this method is popular in

PHENIX due to the higher yield of π0 decay photons than e±, and because this “self-contained approach”

does not involve another detector subsystem. However, the convergence of this method to the physical π0

peak has not been rigorously studied or quantified. In this analysis, we therefore prefer the e± E/p method,

which provides a rigorously defined energy scale that is coupled to both the TOF derived tracking momentum

scale and the  detector simulation.

�e usage of two EMCal types has been argued to provide systematic control. While this may be true for

single particle measurement, this choice significantly complicates the measurement of delocalized objects like

jets. At the same time, calibration techniques such as e± E/p can easily provide an adequate determination

of the EMCal energy scale.

Figure 4.14 shows the photograph of a quarter PbGl supermodule during testing.

4.2.2 Vertex, Centrality, and Reaction Plane Detectors

�e Zero-Degree Calorimeter (ZDC) pair is a common detector installed at either side of all four RHIC

experimental interaction regions and behind the DX dipole, covering approximately 2 mrad surrounding

beam axis. In heavy ion collisions, the DX dipole deflects the colliding ions from beam pipe leading to the

interaction region into either the blue or yellow ring, while spectator protons are deflected further outwards,

leaving spectator neutrons hitting the ZDC undeflected. �e ZDC is a sampling hadronic calorimeter with
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Figure 4.15: �e BBC assembled (le
) and inserted into the forward magnet (right).

W (tungsten) absorber and undoped optical fibers that serves as Cherenkov radiators. �e optical fibers are

tilted 45ı toward the beam to maximize signal to noise. �e timing resolution is ≈ 200 ps.

�e Beam–Beam Counter (BBC) pair is a PHENIX-specific (although other RHIC experiments also uses

a BBC, but of different design) charged Cherenkov detector consisting of 64 quartz radiation elements com-

bined with a PMT covering 3.0|η| < 3.9 and 2π in azimuth. �e gain of each PMT is calibrated to provide

40 pC per minimum ionizing particle (MIP), and the dynamic range is ≈ 30 MIP per PMT. �e single PMT

timing resolution is 52± 4 ps, while the combined resolution is multiplicity dependent, and is at most 20 ps

for high multiplicity. In contrast to the ZDC, this makes the BBC suitable to provide the collision start time

for particle identification by the TOF. �is also translates into a z-vertex resolution of 0.6 cm.

�e BBC as a forward multiplicity detector provides information about particle production and its az-

imuthal modulation in heavy ion collisions. �e charge sum of the BBC PMT has a monotonic correlation

with the collision centrality. However, since particle production in ultraperipheral collisions is low, the ZDC

as detector for the spectator neutrons provides a complementary measure for the centrality. In PHENIX, the

centrality is therefore determined as a combination of the BBC charge sum QBBC and ZDC energy EZDC.

Centrality bins are defined as slices orthogonal to the centroid line of the .QBBC/Qmax
BBC , EZDC/Emax

ZDC/ distri-

bution

�e event plane or observed reaction plane as the dominant angle of the event eccentricity is determined

by expanding the individual charge qi in the 64 BBC PMT to the second order Fourier coefficient

Qx + iQy =
64X
k=1

qie2iϕi (4.19)
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and obtaining the event plane or the observed reaction plane as the half phase

Ψ =
1
2

arg.Qx + iQy/. (4.20)

�e reaction plane resolution depends on the event multiplicity and the magnitude of the event eccentricity.

It is determined using the difference in the value using only the north or south BBC:

∆Ψ =
p
2hcos 2.ΨBBCN − ΨBBCS/i (4.21)

and for
p
sNN = 200 GeV Cu + Cu collision, the resolution peaks at 10–20% centrality to ∆Ψ ≈ 0.17.

Figure 4.15 shows the assembled BBC outside and inserted into the forward magnet.

4.2.3 Trigger

Each trigger is associated with a Global Level-1 (GL1) bitmask. 32 of such GL1 trigger bits are assembled into

a 32-bit integers and passed down to the data acquisition (DAQ). Each event record this value at three stages,

1. whether the trigger has fired, also called the raw bit,

2. whether the trigger has fired and is the .s + 1/-th event of a scale down value s (note the PHENIX

off-by-one convention), also called the scaled bit, and

3. whether the trigger each corresponding to whether the bit fired that is recorded with the event.

From the four subsystems used in the PHENIX trigger system, the the BBC trigger and the EMCal/RICH

trigger (ERT) that are used in this thesis. �e BBC trigger is an and-operation of the comparison of either

arm PMT firing to a threshold value, and the reconstruction of the vertex. In Run-5 (and subsequent runs),

the threshold is one or more PMT in either the north or the south BBC.

�e PHENIX ERT is a trigger for electromagnetic probes. �e EMCal triggers are based on energy thresh-

old comparison using disjoint 2×2 analog and staggered 4×4 analog–digital sums. Starting point of energy

summing are the 2×2 = 4 tower PMT channels serviced by each analog stage application-specific integrated

circuits (ASIC) chip, which produces the total current integral from the PMT of the four towers. �is pro-

duces 36 2× 2 energy sums per supermodule. A
er the analog-to-digital conversion (ADC), the quantized

value of the 2 × 2 energy sum is relayed to three adjacent ASICs, so that 36 staggered-by-two 4 × 4 digital

sums are formed. �e ASICs are connected across supermodules – so that staggered sums can be formed

across supermodule edges – but not across sectors.
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�e corresponding level-1 trigger is fired when the 2×2 analog and the 4×4 analog–digital sums exceed

a preset threshold energy. �e 2×2 sum is compared against one threshold, and the 4×4 has three thresholds,

therefore giving four EMCal based triggers are available.

4.2.4 Data Acquisition

Detector signals in PHENIX are first digitized in the Front-End Modules (FEM). Optical signals from the

FEM are then sent to the Data Collection Modules (DCM), which packages the data into event fragments.

Assembly of whole event package is performed by the Event Builder (EvB), which is a cluster of off-the-

shelf PC, and is divided into the Sub-Event Buffers (SEB), the Assembly and Trigger Processor (ATP),

4.2.5 Luminosity Measurement

Recall that we derived the relation of the luminosity to the beam intensities Nblue and Nyellow, the betatron

amplitude function β∗, and the convolved beam profiles σV
x and σV

y

ℒmachine =
frev

2πσV
x σV

y

X
crossing

NblueNyellow (4.22)

�e RHIC luminosity is therefore determined by observing the beam intensities Nblue, Nyellow using wall cur-

rent monitors (WCM), and determining the beam profiles σV
x and σV

y using the van der Meer method/vernier

scan.

Going back to the transverse beam motion, the focusing behavior around an interaction point z = 0 is

described by the series expansion

σ2x.z/ = σ2x.0/
�
1+

z2

.β∗/2 +
O.z3/

�
. (4.23)

When determining the luminosity using van der Meer method with a finite z vertex distribution, which

is known as the Hourglass correction. �e betatron amplitude function β∗ can be extracted by measuring

the longitudinal profile using the WCM. At injection, β∗ = 10 m, but decreases during acceleration. For
p
s = 200 GeV and

p
sNN = 200 GeV collisions in Run-5, β∗ = 1.0± 0.1 m is quoted by the C–AD.

Experimental measurement of cross section is usually directly tied to the minimum bias trigger. Using

the luminosity–interaction rate definition

R ≡
dN
dt = ℒσ, (4.24)
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since the BBC is the PHENIX minimum bias trigger, the BBC cross section is therefore related the machine

luminosity by

σBBC =
Rmax

ℒmachine�vertex
, (4.25)

where Rmax is the BBC trigger rate at maximum overlap, and �vertex is the efficiency of the vertex being re-

constructed by the BBC.

4.3 Detector Simulation

4.3.1  3

�e detector simulation so
ware  is a Monte Carlo simulation of the passage of elementary particles

through matter, and is maintained by the CERN Application So
ware and Databases Group (ASD). For his-

torical reasons, PHENIX uses the Fortran 77 based  3. �e structure of  3 is roughly divided

into the description of detector geometry and material, event generator interface, particle transport and in-

teraction with material, the digitization of detector hits, and visualization.

Detector volumes are described in  3 using constructive solid geometry (CSG), which builds com-

plex detector shapes using Boolean operation on 29 predefined shapes. �e property of the volumes are de-

scribed by material, which describes the atomic property and density, and tracking medium, which describes

the electric and magnetic field property in that medium, and sets the parameter of the tracking algorithm.

Volumes can be subdivided into cells to simulate calorimeter towers or layers of detector strips.

�e basic loop processes through individual events. �e four-momenta of the particles are kept in the

 banks. Particles paths are tracked through the volumes in discretized steps, while the interaction is

simulated by weighting with the the cross section of interaction processes and the energy loss of the involved

particles. �e motion of charged particles within a magnetic field is calculated either using the Runge–Kutta–

Nyström algorithm ([74], section 25.5.20, p. 897) for generic field configuration, or for simple homogeneous

fields, analytically using an helical path.

Volumes can be set as sensitive detectors, where the detector can be of a trajectory or a calorimeter type,

and produces the hit information either in the form of a position or the magnitude of the energy loss. Tracking

steps inside those volumes automatically cause these information to be stored into the  bank. It is possible

to simulate detector digitization inside , but since the hits information is far more computationally

expensive compared to the digitization, the digitization is typically performed outside the  package.
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Electromagnetic processes such as bremsstrahlung, Compton scattering, δ-ray production, and pair pro-

duction are implemented in  3 by cross section evaluation and Electromagnetic processes in 

3 are Hadronic processes in  3 are simulated using either the  and  package. Electro-

magnetic interaction are simulated internally, and validity range for electromagnetic processes extends from

E = 10 keV–100 GeV. Muonic interaction extends to E = 10 TeV.

4.3.2  2000

�e so
ware package  2000 is the implementation of the PHENIX detector subsystems and support struc-

tures using the  3 geometry and event particle tracking.

�e beryllium–steel beam pipe is modeled as a cylinder with the materials and thickness in the (beryllium)

section between the central magnets, and the (stainless steel) sections between the central magnets and the

piston. �e beam pipe is a major conversion source, and responsible for most of the electrons detected in

the central arm. In order to improved the simulation efficiency, the thickness of the beryllium section can be

increased from 1 mm in order to generate more conversions.

�e dri
 chamber is modeled in  using four cells per keystone, with 20 keystones per arm. No actual

wires or charge dri
 are simulated, but instead using eight wire groups per arm, which is in turn divided into

20 planes. As consequence, fiducial cuts has to applied to the measurement to avoid bad regions that are not

properly simulated, and the  efficiency has to be aligned with good DC regions, in order to obtain a

realistic DC efficiency. Similarly, for the simulation of the EMCal, the hot towers are not properly simulated,

and has to be cut out before comparing the  simulation with the data.
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Chapter 5

Data Analysis I: Raw Spectra

We now start the discussion on the measurement of jet-related quantities. Spectra here also include jet-related

distribution that serves as the starting point for derived quantities (usually ratios), such as fragmentation

functions, jT distributions and related quantities.

�e measurement of virtually all spectrometer quantities starts with the extraction of raw, detector energy

scale spectra, which are not directly comparable to theory. In this chapter, I will describe the extraction these

detector energy level spectra. Since the detector simulation are not o
en published, and also cumbersome to

simulate for a theorist, it is generally considered not optimal to publish spectra in the detector energy scale.

�e detector simulation, however, provides a mean to remedy this and instead obtain results in physically

universal quantities. �is will be discussed in the next chapter.

5.1 Offline Analysis So
ware

At the time of writing, data analysis in HEP and nuclear experiments are predominantly performed using

the C++ [87], an objected-oriented [88] programming language that further implements “templates” as a

form of generic programming [89], together with the Standard Template Library (STL) as a standard library

implemented in this technique [90].

�e so
ware package  [91] is used for data input/output and plotting. Despite being an object ori-

ented C++ framework,  carried many Fortran-based design decisions and idiosyncrasies from . Fur-

thermore, the  “C++” interpreter is only a partial C++98 implementation (which by design as a compiled

language, and difficult to implement as an interpreter), and no documentation exists regarding its deviation

from the C++ standard, resulting in many examples of undefined behavior. �is situation is worsening with

the adoption of C++98 TR1 and C++0x. For this reason,  is only used minimally, while the computa-

tional part of this analysis is implemented directly in C++0x with STL and TR1.
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Two sets of C++ and Fortran 77 compilers for the Intel/AMD IA-32 and x86-64 architecture were used

throughout the analysis:

• GNU Compiler Collection (GCC), versions 3.2–4.4

• Intel C++ and Fortran Compiler, versions 9.0–12.0

Using two compilers provides a check against e.g. bugs in the compiler back end and other issues that could

potentially result in a nondeterministic code behavior. �e usage of the Intel C++ Compiler also allowed the

generation of fully vectorized and multithreaded code for this analysis, before GCC supported OpenMP and

started to implement a rudimentary vectorizer. Fortran 77 sources appear in this analysis are the /

detector simulation code, LO event generators such as ,  and , and the unfolding code

.

�e compiler and generated code ran on the Linux distributions:

• Red Hat Enterprise Linux 4–6

• Fedora Core 9

• FNAL/CERN Scientific Linux 3–5

Due to legacy third-party libraries, PHENIX offline computing is unfortunately constrained to 32-bit IA-32

until the time of writing. �is has the implication that any optimized single-instruction, multiple data (SIMD)

code written in assembly is limited to eight registers (instead of 16 with the 64-bit x86-64), therefore limiting

the performance by the achievable implementation and instruction pipelining. On the other hand, the shared

implementation provides additional checks by comparing results using both architecture.

Memory debugging on the full analysis code were performed using the virtual machine Valgrind. While

the instrumenting memory debugger Paraso
 Insure++ was used as matter of PHENIX Collaboration policy,

heavy usage of STL and also inline assembly precluded the code instrumentation in this parts (the collabora-

tion effectively permits these parts of the code to be excluded), and the overall code coverage with Insure++

should not be considered as sufficient. Profiling of the jet reconstruction code was done using Intel VTune,

which is a sampling profiler that provides a histogram of instruction code address using the x86 central pro-

cessing unit (CPU) performance monitoring units (PMU).
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5.1.1 Histograms

�is analysis uses extensively histograms with ≈ 10 dimensions of binning. At the beginning of this analysis,

’s THnSparse has not been implemented, and PHENIX was using a TTree based, dense multidimen-

sional histogram class THmulf. �erfore, a customly written, 64-bit histogram class has been implemented.

While this thesis is largely histogram based, and we will not hear it further, reader from mathematical and

computer science background might want to be aware of an awkward terminology. “Tree” (e.g. ’s TTree)

as opposed to histograms in HEP and nuclear physics are not graph theoretic trees. It is merely data in the

form of an (dense) array of 2-tuples .x, w/, where implicitly w = 1 is possible as weight, that can be used to

produce (or “fill”) a histogram.

�e underlying hash table is based on   [92], which has been used extensively in

Google’s search engine. �e performance characteristics of its dense hash table implementation is made pos-

sible by implementing the hash table using arrays, while one special key value is sacrificed to mark unused

table entries. For the histogram operation, the maximum integer 264−1 is used, thus reducing the maximum

number of bins by one. Since avoidance of hash collision is critical for performance, MurmurHash2 by A.

Appleby has been used. Self-modifying code (although not dynamically generated) is used to maintain loop

unrolling and avoid repeated branching as with ’s TH1 and THnSparse.

Accelerating histogram filling by asynchronously filling a cache and then using multiple threads to per-

form the bin look-up was explored but ultimately not used, since the necessary book-keeping was found to

be too large to provided a significant performance gain. However, for histogram operations such as merging,

the bookkeeping of weights allows one to utilize two threads. Also, the histograms are merged using O.N2/

algorithm, which is significantly more efficient (both computationally and in term of memory usage) than

the incremental O.N logN/ merging using binary search trees, due to the far lower complexity prefactor in

the first case, and for the number of merge steps, Nmerge ⪡ Nbin holds for virtually all high energy physics

applications.

Initially in this analysis, some densely binned, low dimension histograms were used e.g. for the back-

ground estimation. However, the sparse histogram implemented here is sufficiently efficient in term of speed

and memory consumption, and all histogramming were therefore converted to sparse histograms.
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5.1.2 Numerical Representation

For storage efficiency, normalized cut variables (which are usually of the order one and does not require high

precision) are stored and processed as IEEE 754:2008 (and at that time, its dra
 standard) half precision

numbers. �e C++ implementation of half precision numbers for the OpenEXR digital image format by

Industrial Light and Magic was repurposed. �e main caveat for this representation is that the PHENIX

“magic number” −9999 for invalid values rounds to −10 000.

5.1.3 Data Production

�e PHENIX DAQ system assembles the event information from the individual subsystems and stores this

in the PHENIX Raw Data Format (PRDF). Starting with each collider run, track and cluster reconstruction

are performed to convert hit position into physics information suitable for analyes. �ese information are

stored in data summary tapes (DST). �e full event DST type is called the nano DST (nDST). �e full set of

nDST is too large to held (economically) on a random accessible storage, and only resides on the Linear Tape

Open (LTO) magnetic tapes in the High Performance Storage System (HPSS). Physics working groups have

specific, disk resident and interactively accessible, partial event DST, in the case of the Hard/Photon Physics

Working Group (H/P PWG), the Hard pico DST (pDST).

�e production of a level-2 jet triggered DST is typical for collaboration with a more extensive jet physics

programs. �e existing PHENIX pDST are designed with traditional, non-jet analyses in mind, e.g. single

particle yield, two-particle correlation, and dielectron continuum. However, the ability to process the entire

Run-5 p + p and Cu + Cu
p
sNN = 200 GeV data on local disk was essential for complex analysis proce-

dure such as p + p in Cu + Cu embedding. �is analysis therefore had to “reinvent” this within the PHENIX

Collaboration.

To avoid the production of multiple jet DSTs and subsequent recombination, a strategy of variably scaled

down DST is chosen. Each event is scaled down according to the highest jet pT in the event, which acts as

trigger. �is strategy is somewhat comparable to the approach e.g. by the CDF experiment, which produces

a Single Tower 05 (ST05), Jet20, Jet50, Jet70, and Jet100, with the numerical values corresponding to the

different jet ET (in GeV) thresholds [93]. And in case of heavy ion collisions, the fake jet discriminant level

is also used to avoid recording large amounts background fluctuations (which are typically produced more

frequently than jets) that are subsequently discarded by the fake jet rejection.

In the initial phase of this analysis, when the analysis cuts for jet reconstruction and the fake rejection
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strategy has been studied, the triggering strategy is based on the total event pT . �e jet pT based triggering

was subsequently adopted once the basic analysis cuts and fake rejection discriminant are fixed.

Event are scaled down by power of two, and deterministically by the integer modulus of an sequential

event counter (i.e. not the run number) with the scale down factor. �e maximum scale down is 25 = 32,

which ensures that a subset of the minimum bias events is always recorded.

5.2 Outline of Procedure

Obtaining a jet spectrum is a surprisingly complex procedure. Before we move on to explain the individual

steps, a countertop recipe to whip up the jet spectrum is described. �e measurement is organized in three

steps

1. Extraction of the detector level yield

2. Unfolding to the particle level yield (see next chapter)

3. Conversion to the cross section measurement

Both in order not to overload the procedure immediately, and also because detector level yields can serve a

meaningful measurement for the nuclear modification factor RAA, we will split off and defer the discussion

to the next chapter.

5.2.1 Data Reduction

At Run-5, the following PHENIX triggers are of interest:

• �e “BBCLL1(>0 tubes)” is the PHENIX minimum bias trigger, and is defined by the coincident fir-

ing of at least one phototube in the north and south BBC, which is triggered to the observation of a

minimum ionizing particle inside the BBC acceptance of 3.1 < |η| < 3.9.

• �e “ERTLL1_4x4c” is a calorimeter-based high-pT trigger, that fires when observing E > 1.4 GeV in

a staggered 4×4 tower tile in the EMCal.

• �e “ERTLL1_4x4b” is a calorimeter-based high-pT trigger, that fires when observing E > 3.5 GeV in

a staggered 4×4 tower tile in the EMCal.
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To obtain yields, the following trigger selection are needed:

• BBCLL1(>0 tubes) raw (equivalent to scaled in the MB data set),

• BBCLL1(>0 tubes) ^ ERTLL1_4x4c raw (equivalent to select ERTLL1_4x4c raw only in the MB data

set, or select ERTLL1_4x4c&BBCLL1 in the ERT data set),

• ERTLL1_4x4c raw (equivalent to scaled in the ERT data set).

For the cross section measure, two additional data sets are needed:

• ERTLL1_4x4c _ ERTLL1_4x4b scaled, in the ERT data set,

• .ERTLL1_4x4c _ ERTLL1_4x4b scaled/ ^ BBCLL1(>0 tubes) raw, in the ERT data set.

5.2.2 Detector Level Yield

1. For each of the datasets:

• BBCLL1(>0 tubes) raw

• BBCLL1(>0 tubes) ^ ERTLL1_4x4c raw

• ERTLL1_4x4c raw

(a) Select events matching the trigger.

(b) Apply particle level, tracking and EM cluster cuts.

(c) Discard irregular events labeled by the particle level cuts.

(d) Merge tracks and EM clusters.

(e) Run jet reconstruction algorithm, record prec
T and necessary information for jet level cuts.

(f) Apply jet level cuts.

2. Evaluate �ERT.prec
T / using the BBCLL1(>0 tubes) and the BBCLL1(>0 tubes)^ ERTLL1_4x4c spectra.

3. Calculate the unique event spectrum sum from the BBCLL1(>0 tubes) raw,

BBCLL1(>0 tubes) ^ ERTLL1_4x4c raw, and ERTLL1_4x4c raw spectra, correct for �ERT.

4. Obtain the minimum bias event count NMB, divide the spectrum by it.
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5.2.3 Cross Section Measure

1. Evaluate the BBC efficiency �BBC.prec
T / using the or-ed ERT ERTLL1_4x4c _ ERTLL1_4x4b scaled

and the or-ed ERT coincidence with minimum bias trigger .ERTLL1_4x4c_ ERTLL1_4x4b scaled/^

BBCLL1(>0 tubes) raw spectra.

2. Correct the combined spectrum for �BBC.prec
T / (strictly speaking, this has to be done before unfolding

the spectrum, but a constant �BBC makes it commutative with the unfolding).

3. Obtain σBBC by the van der Meer method/vernier scan, then divide the spectrum by 2π∆ηpT , multiply

by σBBC to obtain Ed3σ/dp = .2π/−1dN/.pTdpTdy/.

4. Tweak the steps to obtain systematic uncertainties.

5.3 Run Quality Assurance

�e Run-5 p + p data set covers 842 runs within the PHENIX run numbers 168314–179846.

�e proper normalization depends on having properly matching MB and ERT file sets. Since the PHENIX

Analysis Taxi/Train contains some partial file sets, this is selected by comparing the MB and ERT trigger

counts against the run log. �e following condition can happen:

1. Fewer events in the Run Log than on Taxi: Usually the Run Control crashed in this case.

2. Fewer events on Taxi than in the Run Log: Usually file sets are missing/removed from the Taxi, but not

the entire run.

To properly detect partial runs independent of potential Run Control crashes, applying the following criterion

of an ERT4x4c&BBCLL1 to BBCLL1 raw trigger count ratio appears to work best. We require

− 0.01 < N taxi
ERT4x4c&BBCLL1/N

taxi
BBCLL1 − N log

ERT4x4c&BBCLL1/N
log
BBCLL1 < 0.02 (5.1)

to remove the outliers.

�ere is a clear distinction between normal runs with 0.1318 GeV/c2 < m.π0/ < 0.1435 GeV/c2 and

run outliers that have a 0.1501 GeV/c2 < m.π0/ < 0.1656 GeV/c2 for π0 with pT > 2 GeV/c. Since

the corresponding runs do not have large statistics, and the egregiously wrong m.π0/ could indicate other
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calibration issues, we require the Run-5 p + p runs to satisfy

m.π0/ < 0.1648 GeV/c2 , (5.2)

�e Run-5 Cu + Cu runs have systematically lower π0 masses, which are suspicious, as combinatorial effects

should be small given the high π0 momentum requirement, and not decrease the mass. For the purpose of

selecting runs, however, we placed the requirement

0.120 GeV/c2 < m.π0/ < 0.133 GeV/c2 , (5.3)

to reject outlier runs showing large deviation of the energy scale.

5.4 Trigger

In term of the Run-5 p + p GL1 bitmask, the triggers we use correspond to:

• BBCLL1(>0 tubes): 0000000416

• ERTLL1_4x4c: 0000040016

• ERTLL1_4x4c&BBCLL1: 0000100016

• ERTLL1_4x4b: 0800000016

In term of the Run-5 Cu + Cu GL1 bitmask, the triggers we use correspond to:

• BBCLL1(>0 tubes): 0000000416

• ERTLL1_4x4b&BBCLL1: 0000200016

• ERTLL1_4x4c&BBCLL1: 0000400016

Note that as of Run-5, BBCLL1(>0 tubes) is synonymous with BBCLL1, since higher multiplicity thresholds

proved to be unnecessary.

5.5 Electromagnetic Clusters

We require a minimum energy threshold (in term of “ecore”) of E > 500 MeV, which is common to most

PHENIX analyses with the EMCal. �e rationale for this requirement is a bit artificial, the E/p based calibra-

tion for nonlinearities in the calorimeter response at PHENIX terminates at 500 MeV.
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5.5.1 Energy Scale

�e PHENIX momentum scale of the tracking detectors fixed by the particle identification of π±, K±, and

p/ Np, and the comparison of the particle time-of-flight measurement with their known masses. �is analysis

uses this momentum scale unmodified.

�e energy scale of the EMCal detectors can be established by either reconstructing the decay of light and

short-lived hadrons, e.g. with π0 ! γγ , or by determining the energy scale by comparing the energy deposit

E of electrons into the calorimeter with the momentum p from the tracking detectors – commonly referred

to as “E/p” calibration.

�is analysis departs from the PHENIX tradition of using a purely π0 based energy scale while using

E/p to quantify the nonlinearity only. �e π0 based energy calibration requires a priori knowledge of the

calorimeter energy resolution (a case of nonlinear error propagation, where the propagated mean, the π0

mass, depends on the uncertainties or detector resolution). Direct measurement of the EMCal energy resolu-

tion is only accessible using test beam, which likely will not properly characterize the time-dependent change

to the detector a
er five years of running.

�e E/p calibration at PHENIX is complicated by the fact that most of the electrons observed are photon

conversion in the beam pipe material. Due to the lack of in-field tracking, the momenta of these electrons

are misreconstructed under the assumption that they originated from the event vertex instead of the beam

pipe. �e E/p calibration therefore requires the determination of the beam pipe dominated, and momenta

misreconstructed E/p distribution using photon conversion in the beam pipe, which produces a momentum

dependent E/p reference value ≈ 0.98 for p > 1 GeV/c.

5.5.1.1 Tower-by-Tower E/p Balancing

For the purpose of E/p calibration, we take all tracks with |p| > 0.75GeV/c and that fires more than one

RICH phototube within the nominal electron radii range 3.4–8.4 cm (refer the table 4.1), and calculate the

E/p distribution for each tower (no run dependence).

For p + p, a Gaussian distribution is used to fit the E/p distribution in the range between 0.75 ≤ E/p <

1.25. Towers with less than 16 counts are considered to be insufficient to determine the E/p.

�e rescaling of the clusters for each central tower is determined by the ratio of the E/p peak position

average over all towers by the E/p peak position of each tower. �e assumption is that π0-based calibration

already provides a correct global energy scale calibration. Regions within η < 0.01 are not rescaled, since
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these lie within the DC dead region. If the statistics is insufficient to obtain a stable and convergent E/p fit,

no rescaling is performed.

5.5.1.2 Bad Tower Mask

A spectrum binned in 0.25GeV/c for cluster associated with each central tower is produced. width is made.

�is spectrum fitted with a power law. For the sets of for PbSc and PbGl towers, the overall factor and expo-

nent are fitted to a Gaussian distribution. �e peaks for both overall factor and exponent are extracted as the

reference PbSc and PbGl spectrum parameter.

A
er the E/p based scaling, the (Pearson) χ2 goodness-of-fit is used to select abnormal towers, requiring

(not divided by degrees of freedom) χ2 < 1600 for PbSc and χ2 < 350 for PbGl. We found that cutting on

the (small count corrected) Yates χ2 has little effect on the tower map.

�e tower mask is then 3 × 3-convoluted. No special treatments (beside that they go out of the 3 × 3-

convolution) are made for the sector edges.

Figures 5.1 and 5.2 show the input data of the Run-5 p + p and Cu + Cu tower energy balancing and the

resulting tower masks.

5.5.1.3 Run-by-Run π0 Mass Balancing

Since the π0 mass from the reconstruction of γγ ! π0 is

mπ0 =
p
2E1E2.1− cos θ/, (5.4)

with θ being the opening angle between the two γ , the mass is proportional to any global energy offset. To

balance the run-by-run energy scale, the π0 mass therefore offers a higher statistics than using E/p. And

because there is still a final step to align the sector-by-sector energy scale to the  E/p, there is no need to

fix the global energy scale yet.

For the rescaling, we consider π0 with pT > 2 GeV/c. Taking the good run mean value for Run-5 p + p

hmπ0i = 0.137 622 8± 0.000 007 9 GeV/c2 (5.5)

the multiplicative run-by-run energy rescaling is

hmπ0i/mrun
π0 . (5.6)
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Figure 5.1: Run-5 p + p tower map, split into 2× 4 plots, each with W0, W1, W2, W3, E3, E2, E1, E0 rotated such that

+ Oϕ is to the right, + Oη is to the top. Le
 column, top to bottom: e± distribution, E/p peak position, E/p fit χ2, E/p

width. Right column, top to bottom: γ count, derived tower scaling, spectrum fit χ2, resulting tower map (red tower

not masked, white tower masked).

Figure 5.2: Run-5 p + p tower map, split into 2× 4 plots, each with W0, W1, W2, W3, E3, E2, E1, E0 rotated such that

+ Oϕ is to the right, + Oη is to the top. Le
 column, top to bottom: e± distribution, E/p peak position, E/p fit χ2, E/p

width. Right column, top to bottom: γ count, derived tower scaling, spectrum fit χ2, resulting tower map (red tower

not masked, white tower masked).
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�e rescaling to the p + p value above is also applied to Cu + Cu, which given the pT threshold used, should

to the first order give a satisfactory recalibration of the EMCal energy scale due to the low combinatorial

effects at such a large momentum. �e real test/confirmation that this assumption is true, however, is the

sector E/p calibration below, which proves that the rescaled Cu + Cu EMCal energy scale matches well to the

independent momentum scale of the tracking system.

5.5.1.4 Sector E/p Calibration

�e sector calibration is performed a
er the tower-by-tower balancing via E/p, and the run-by-run balancing

via π0 ! γγ mass reconstruction.

Using  simulation of purely γ events, we select on events where the photon converts into electrons, as

identified by RICH. Since this calibration is performed on sector/arm basis, a more stringent n0 > 2 is used

to select electrons. From  Tune A, we obtain the γ spectrum

dNγ

dE =
�

E
GeV

+ 1.3266
�−10.074

, E ≥ 0.5 GeV (5.7)

(since also the conversion process produce an electron spectrum with a deep slope, the additional weighting

has little effect, and we observe consistent E/p behavior with or without the γ spectrum weighting). Within

the range of 0.5 ≤ E/p ≤ 1.4, Gaussian plus a linear pedestal fitted against the E/p distribution to extract the

peak position. �is is done to both data and  simulation of beam pipe conversions.

Since the range p < 1 GeV/c tends to contain residual nonlinearities, the three data points for 1 ≤ p <

1.5 GeV/c, 1.5 ≤ p < 2 GeV/c, and 2 ≤ p < 3 GeV/c are used for fitting. For the  reference, W PbSc

sectors, E PbSc sectors, and E PbGl sectors are grouped together. �is is then divided by the E/p from the

data to obtain the per-sector energy scale correction, which for Run-5 p + p are

EW0/EW0
0 = 1.0174± 0.0041

EW1/EW1
0 = 1.0244± 0.0041

EW2/EW2
0 = 1.0188± 0.0041

EW3/EW3
0 = 1.0203± 0.0041

EE2/EE2
0 = 1.0177± 0.0068

EE3/EE3
0 = 1.0209± 0.0069

(5.8)



CHAPTER 5. DATA ANALYSIS I: RAW SPECTRA 98

EE0/EE0
0 = 0.9565± 0.0041

EE1/EE1
0 = 0.9536± 0.0042

(5.9)

and for Run-5 Cu + Cu are

EW0/EW0
0 = 1.0299± 0.0058

EW1/EW1
0 = 1.0349± 0.0061

EW2/EW2
0 = 1.0299± 0.0058

EW3/EW3
0 = 1.0159± 0.0060

EE2/EE2
0 = 1.0238± 0.0069

EE3/EE3
0 = 1.0190± 0.0069

EE0/EE0
0 = 0.9556± 0.0043

EE1/EE1
0 = 0.9602± 0.0042

(5.10)

Except for the known poor sector W3, the p dependence within the three data points is consistent with

a constant, supporting the assumption of a constant energy scale mismatch. A
er applying the scaling, we

observe negligible impact on the π0 distribution.

Figures 5.3 and 5.4 show the e± momentum dependent scaling values and the final values extracted using

fits to the stable momentum bins.

Since we did this calibration a
er applying the tower-by-tower and run-by-run energy scale balancing,

any residual energy offset are included in this calibration. �erefore, a self-consistent EMCal energy scale is

now established that fully reproduces the  simulation.

�e final energy scaling are therefore:

E.i, r/
E0.i, r/

=
1

Nrun

X
r

E0.i, r/
N−1

tower
P

j E0. j, r/„ ƒ‚ …
relative

1
Ntower

X
i

E0.i, r/
N−1

run
P

r E0.i, r/„ ƒ‚ …
relative

Esector.r/

Esector.r/
0„ ƒ‚ …
absolute

(5.11)

5.5.2 Time-of-Flight

�e requirement on TOF was first introduced when analyzing the Run-5 p + p fragmentation function. �e

behavior of the p + p fragmentation function, when evaluated without any cuts on the cluster timing, exhibits

anomalous behavior around pT ≈ 18GeV/c and z ≈ 1. Looking at the time-of-flight (TOF), it is evident

that additional background were present at exceedingly high and low TOF values.
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Figure 5.3: Run-5 p + p and Cu + Cu sector energy scale with statistical errors, PbSc sectors. A constant scaling value is

extracted by fitting the high-pT part.
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Figure 5.4: Run-5 p + p and Cu + Cu sector energy scale with statistical errors, PbGl sectors. A constant scaling value is

extracted by fitting the high-pT part.

�e Run-5 p + p EMCal TOF appears to be poorly calibrated. �ere is a significant, residual tower-by-

tower, and run-by-run variation in the time-of-flight. Also, while the existing Run-5 Cu + Cu calibration

appear to be calibrated, it suffering from a limited resolution.

For this calibration, I assume that the TOF behavior is largely factorized into the sector–run dependence,

the tower-by-tower dependence, and the energy dependent slewing. �e sector–run dependence is first char-

acterized by a histogram with 0.125 ns resolution, which is approximately twice the intrinsic TOF resolution

for π±, and covering |∆t | < 64 ns. Clusters with less than 1 GeV are removed to avoid slewing effects. �e

approximate position of the TOF peak is located by fitting the histogram against a Gaussian plus 4-th order

polynomial distribution with the initial guess of h∆ti = −8 ns and σ.∆t/ = 4 ns. Because inproperly cali-

bration introduces additional modes into the distribution and causes the Gaussian fits to be biased towards

problematic runs, iterative fits are used to locate the actual peak position. �e iterative fit procedure is con-

strained to ±1σ of the initial guess, and terminates either with the Gaussian peak mean moving less than the

fit uncertainty, or forcibly a
er the 64-th iteration.

�e result of the procedures detained above in the largely uncalibrated p + p TOF shows an overall dri


of the timing mean with the run progression, and an approximately constant offset between the sectors.

Next, the sector–run peak position is discretized to multiples of the histogram resolution, 0.125ns, and the

histogram is shi
ed along the timing axis to compensate for the sector–run behavior, and a tower-by-tower

fit (using the same procedure) is obtained for each tower.
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Quantifying the nonfactorized effect is difficult. However, since we did not encounter timing issues in

the Run-5 p + p using a 3σ cut, one could compare the TOF σ to see how large a cut would be appropriate for

the Cu + Cu. �is approach, while slightly ad-hoc, also has the benefit of producing a consistent TOF cut for

the two species. Comparing the median width for the active/unmasked towers, the Run-5 p + p is 0.93174 ns,

while Cu + Cu has 0.571189 ns. Scaled to 3σ in p + p means the TOF median adjusted cut for Cu + Cu would

be 5σ .

5.6 Tracks

�e structure of track pair cuts in fact the limitation factor of the the overall performance of jet reconstruction.

�is is also a good demonstration that seeking algorithms beyondO.N2/ in fact does not make practical sense.

5.6.1 e± Tagging

�is is not by itself a cut, but is needed for subsequent cuts. We noticed that the number of firing phototube

within the nominal disk radius is dependent on the quality of the track reconstruction and therefore the PC3

matching. �erefore, we use a variable requirement

is_electron = n0 >

�
2 ∆RPC3 < 1.5

1 ∆RPC3 ≥ 1.5
(5.12)

to select on e± candidate, where

∆RPC3 ≡

s�
∆zPC3

σ.∆zPC3/

�2
+
�

∆ϕPC3

σ.∆ϕPC3/

�2
(5.13)

and ∆zPC3, ∆ϕPC3 are the residual displacement of the hit position in PC3 with respect to the expected PC3

intersection point from the reconstructed track trajectory. �e normalization σ.∆zPC3/, σ.∆ϕPC3/ are the

momentum dependent standard deviation of ∆zPC3, ∆ϕPC3.

5.6.2 Cluster-Unassociated e± Candidate

Tracks that fire the RICH as electrons, but has no associated cluster in the EMCal would indicate some type

of abnormal event reconstruction, e.g. particle misidentification. We suspect the PID-based cuts would yield

incorrect results applied to these events. We therefore also label these events as abnormal and discard them.
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5.6.3 Quality

�e DC “good quality” acceptance criterion is

good_quality = .quality & 1001102 ≠ 0/ ^

�
true |p| < 6 GeV/c

quality & 112 = 112 |p| ≥ 6 GeV/c
(5.14)

�e rationale is that we observe at high-pT increased number of tracks with no jet association, that do not

hit both X1 and X2. Restricting this requirement to high-pT prevents incurring an inefficiency for low-pT

tracks, but will suppress conversion in the region of a significant background.

5.6.4 Maximum Track p

We avoid events that contains a track pT ≥ 25 GeV/c. �is is well within the region where PHENIX Run-5

tracking is dominated by conversion and decay background. �is cut does not by itself provide sufficient back-

ground rejection, but we observe that these events virtually always contain isolated tracks with no apparent

jet association and therefore indicate an incorrect momentum reconstruction.

Note that cut is only applied to DC “good quality” tracks, i.e. high pT bad quality track do not trigger the

event removal.

5.6.5 PC3 matching

We observed a similar need to tighten the cuts at high pT for the PC3 matching, where

∆RPC3 =

s�
∆zPC3

σ.∆zPC3/

�2
+
�

∆ϕPC3

σ.∆ϕPC3/

�2
<

�
3σ pT < 6GeV/c

2.5σ pT ≥ 6GeV/c
(5.15)

5.6.6 e± Pair

We observe that for tracks firing the RICH, usually there is a close angle conversion partner, forming a “butter-

fly” like shape, induced by decay kinematics plus magnetic field. While one of two electrons may be removed

by a sufficiently loose ghost cut, unlike ghost cuts, we would like to remove both electrons. Note that this cut

is different from the ghost cut, and cannot be achieved by using a loosened ghost cut.
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We therfore apply before any ghost cuts a conversion electron cut. We found the distribution is clean and

narrowly localized in η, therefore the box shape

∆η < 0.005 ^ ∆ϕ < 0.2 (5.16)

is used in lieu of a more complex geometry.

5.6.7 Ghost

For the purpose of expressing DC ghosting, which is generated by the wire structure, it is more natural to

introduce a scaled azimuthal angle

Oϕ =
160ϕ
π

(5.17)

such that ∆ Oϕ = 1 correspond to the anode-to-anode or cathode-to-cathode angle in the dri
 chamber.

�e DC ghost cut then consists of rectangular and ellipsoid cuts:

1. �e same z, anode-to-anode/cathode-to-cathode structure

Œ.∆z < 0.01/ ^ .∆ Oϕ < 0.75/� _ Œ.∆z < 0.02/ ^ .0.78 < ∆ Oϕ < 0.88/� (5.18)

2. �e additional similar z, anode-to-cathode/cathode-to-anode structure on top of the previous

.∆z < 0.075/ ^ .∆ Oϕ < 0.35/ (5.19)

3. �e same wire structure

.∆z < 0.7/ ^ .∆ Oϕ < 0.08/ (5.20)

4. �e resonant anode-to-cathode/cathode-to-anode structure

∆z2

0.1252
+
.∆ Oϕ − 0.5/2

0.052
< 1 (5.21)

5. �e hybrid structure resulting from the anode-to-cathode/cathode-to-anode and the same wire ghosts

(a octagonal shape would match the distribution better, but the elliptical expression is algebraically far

simpler)
∆z2

0.52
+
∆ Oϕ2

0.22
< 1 (5.22)

�e final cut is the logically or-ed combination of the above, and for all tracks within one event, tracks pairs

that satisfies one of the above cut is considered as a ghosting track pair, resulting in one of the track pair to

be removed from the event.
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Figure 5.5: �e .ϕDC , zDC/ distribution of tracks (with only quality > 7 applied) with box-cut for DC dead and hot

regions

5.6.8 DC Dead and Hot Regions

�e dead and hot regions are obtained from examining the track .zDC , ϕDC/ distribution at the reference

radius RDC = 1.2 m for the DC track reconstruction. Uneven acceptance are caused by broken wires and

bad pixels in the pad chamber. �ese regions are therefore mostly rectangular (or rectangular and elongated

in the case of broken wires) and are parametrized as such. �e final cut is the logically or-ed (or geometrical

union) of the individual rectangular regions.

Included in these irregular regions, are also the edges of the central arms, where the magnetic field can

cause tracks to cross the projective detector geometry at an incident angle, and therefore result in a recon-

struction efficiency that is difficult to parametrize. Unfortunately, the west arm also contains large patch of

decreased efficiency, which we decided to keep, in order to avoid massive loss of acceptance.

Table 5.1 lists the parameters for the rectangular cut regions.

Figure 5.5 shows the rectangular cut regions overlaid on top of the .ϕDC , zDC/ distribution of tracks.

5.6.9 Electron E/p

�e momentum of electron candidate with E/p < 1/8 is considered wrong, and the EMCal cluster energy is

used instead (by calculating the momentum assuming m2 = 0). No explicit restriction for the momentum

scale is applied for this cut, but due to the minimum ionizing deposit in the EMCal, this cut is effective for

tracks with approximately p > 2.4 GeV with the sectors covered by the PbSc calorimeters and p > 4.0 GeV

for sectors with PbGl.
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ϕ0 z0 .cm/ ϕ1 z1 .cm/

−π/2 −90 3π/2 −78

−π/2 −4 3π/2 4

−π/2 78 3π/2 90

−0.66 −∞ −0.56 ∞

0.97 −∞ 1.07 ∞

2.06 −∞ 2.16 ∞

3.71 −∞ 3.81 ∞

−0.39 −29 −0.34 −14

−0.28 0 −0.22 10

−0.21 −78 −0.19 0

−0.12 −78 −0.09 78

0.17 −78 0.21 78

0.21 −78 0.22 0

0.35 −27 0.44 −15

0.35 62 0.41 73

0.55 −27 0.60 −15

0.79 −63 0.83 −51

0.82 −51 0.88 −21

0.90 0 0.95 10

ϕ0 z0 .cm/ ϕ1 z1 .cm/

2.16 −78 2.20 −71

2.30 0 2.32 78

2.32 0 2.35 18

2.34 −72 2.38 −45

2.34 −24 2.38 −12

2.41 −55 2.47 −42

2.41 0 2.47 18

2.41 64 2.47 73

2.50 18 2.55 29

2.73 0 2.79 9

2.73 52 2.79 78

3.01 −78 3.02 0

3.05 −72 3.10 −58

3.05 −27 3.10 −15

3.13 −78 3.18 −70

3.29 −78 3.34 −70

3.53 −10 3.57 0

3.60 35 3.66 45

Table 5.1: Rectangular cut parameters for DC dead and hot regions
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5.7 ERT Efficiency

�e PHENIX minimum bias (MB) cross section is defined relative to the BBCLL1(>0 tubes) trigger. In order

to avoid exceeding the data acquisition (DAQ) capacity, both the minimum bias events and the pure ERT

events are scaled down by a fixed ratio, which are denoted here as sMB and sERT. �e scale down are defined

as the ratio between the number of events being accepted into the data stream (the scaled number of events)

versus the number of events firing the trigger (the raw number of events).

Starting with the MB-coincident-with-ERT count

dNMBERT

dprec
T

= �ERT
dNMB

dprec
T

, (5.23)

and the ERT count (which is not scaled down in Run-5 p + p) consists of the ERT coincident with the MB

trigger, plus pure ERT events, that are scaled down by the ratio sERT and for which there is no effect from the

BBC efficiency �BBC:

dNERT

dprec
T

= sMB�ERT

�
1+

1
sERT

�
1
�BBC

− 1
��

dNMB

dprec
T

≈ sMB�ERT
dNMB

dprec
T

.�BBC ≈ 1, sERT ⪢ 1/,
(5.24)

where sERT is the scale down of the ERTLL1_4x4c trigger. �e term 1− �BBC in the denominator is due to the

logical or-chaining of the triggers (we will discuss the definition and evaluation of �BBC in section 5.12). Note

that for Run-5 p + p runs, 1 ⪡ 1001 ≤ sERT ≤ 12001 (the 1 in the last digit is due to the PHENIX DAQ’s

off-by-one convention for triggers), and for jets, �BBC ≈ 1 holds unless the prec
T is exceedingly low.

�e uniquely combined event sum is therefore

dNUC

dprec
T

≡
dNERT

dprec
T

+
dNMB

dprec
T

−
dNMBERT

dprec
T

=
��

sMB

�
1+

1− �BBC

sERT�BBC

�
− 1

�
�ERT + 1

�
dNMB

dprec
T

(5.25)

and the minimum bias yield is

1
Nevt

dN
dpppT

=
1

NMB

dNMB

dprec
T

=
1

NMB

��
sMB

�
1+

1− �BBC

sERT�BBC

�
− 1

�
�ERT + 1

�−1 dNUC

dprec
T

≈
1

NMB

1
.sMB − 1/�ERT + 1

dNUC

dprec
T

.�BBC ≈ 1, sERT ⪢ 1/

(5.26)
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Figure 5.6: Run-5 p + p ERT efficiency and fit for Gaussian filter, and the combined (corrected) spectrum to MB spec-

trum ratio

Figure 5.7: Run-5 p + p ERT efficiency and fit for anti-k⊥, and the combined (corrected) spectrum to MB spectrum ratio
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5.7.1 Run-5 p+ p

�e ERT efficiency as function of the jet prec
T can be parametrized as

�ERT.prec
T / = �0erf

( NX
k=0

akTk
�

log10 p
rec
T /.GeV/c/− 1.05078125

0.43359375

�)
(5.27)

where N is the order of the Chebyshev polynomial. �e unusual scaling in the argument of the Chebyshev

polynomials reflects the bin midpoint between approximately 4 and 30 GeV/c, but is corrected for binning

(otherwise 1
2.log10 30+ log10 4/ = 1.04, 12.log10 30− log10 4/ = 0.44). �e logarithmic pT scaling makes the

fit more robust by preventing large numerical quantity to appear, making the bins equidistant, and deweights

the statistically poor high-pT range. �e fit truncate for the largest N where the saturation is not affected by

the Chebyshev polynomial starting to reproduce the bin-to-bin statistical fluctuation. For the Gaussian filter,

we obtain the polynomial order N = 6 (since the fit is stable, coefficients consistent with zero are retained).

�0 = 0.957± 0.019

a0 = 3.06± 0.19

a1 = 3.89± 0.13

a2 = 1.92± 0.30

a3 = 0.83± 0.52

a4 = 0.22± 0.43

a5 = 0.02± 0.20

a6 = −0.006± 0.048

(5.28)

and for anti-k⊥:

�0 = 0.940± 0.011

a0 = 34± 21

a1 = 60± 37

a2 = 43± 27

a3 = 25± 15

a4 = 10.8± 6.4

a5 = 3.3± 1.8

a6 = 0.55± 0.28

(5.29)
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Figures 5.6 and 5.7 show the ERT 4×4C efficiency for the Gaussian filter and anti-k⊥ algorithms.

5.7.2 Run-5 Cu + Cu

�e Run-5 Cu + Cu is considerably harder to correct, as the rapid saturating ERT 4×4C trigger is fully masked

off during the Cu + Cu running. �e next higher threshold ERT trigger, 4×4A, was scaled at a higher ratio

than the BBCLL1 trigger, which essentially defeated its purpose, as selecting on the scaled ERT 4×4A bit

would yield less high-pT event than in the minimum bias data. �is leaves the 4×4B as the only viable

trigger.

�e solution used here is to perform a two staged ERT correction. �e assumption is that at sufficiently

high pT , where also the 4×4B resides, the efficiency can be factorized into the Cu + Cu MB to 4×4C efficiency,

and a collision system plus masked-off supermodules independent 4×4C to 4×4B efficiency, that can be

estimated using the high statistics, ERT 4×4C triggered p + p data

�CuCu
4×4B.p

rec
T / = �CuCu

4×4C.p
rec
T /

�
pp
4×4B.p

rec
T /

�
pp
4×4C.p

rec
T /

(5.30)

For the Cu + Cu, we use a low order version of the previous parametrization (where due to the low poly-

nomial order, the bin correction of the Chebyshev polynomial scaling is relaxed for sake of simplicity)

�4×4C.prec
T / = �0erf

( NX
k=0

akTk

"
log10 p

rec
T /.GeV/c/− 1

2.log10 100+ log10 4/
1
2.log10 100− log10 4/

#)
(5.31)

while the remaining 4×4C to 4×4B efficiency is parametrized with a higher minimum pT = 8 GeV/c.

�4×4B.prec
T /

�4×4C.prec
T /

= �0erf

( NX
k=0

akTk

"
log10 p

rec
T /.GeV/c/− 1

2.log10 100+ log10 8/
1
2.log10 100− log10 8/

#)
(5.32)

For �4×4B.prec
T //�4×4C.prec

T /, the fit gives

�0 = 0.907± 0.015

a0 = 1.53± 0.14

a1 = 0.84± 0.16

a2 = 0.160± 0.049

(5.33)
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0–10% 10–30% 30–50% 50–70% 70–90%

�0 0.968± 0.047 0.918± 0.037 1 0.951± 0.093 1

a0 1.40± 0.19 1.60± 0.29 1.44± 0.12 1.9± 1.5 1.71± 0.60

a1 1.21± 0.24 1.30± 0.37 1.01± 0.17 1.4± 2.0 1.33± 0.88

a2 0.231± 0.064 0.181± 0.098 0.149± 0.062 0.19± 0.56 0.32± 0.31

Table 5.2: Run-5 Cu + Cu minimum bias to ERT 4×4C efficiency fit without fake rejection.

0–10% 10–30% 30–50% 50–70% 70–90%

�0 0.985± 0.067 0.907± 0.037 1 0.935± 0.051 1

a0 1.28± 0.25 1.73± 0.36 1.44± 0.12 2.5± 1.4 1.58± 0.63

a1 0.97± 0.29 1.39± 0.46 0.96± 0.18 2.2± 1.8 0.96± 0.93

a2 0.170± 0.079 0.24± 0.13 0.162± 0.066 0.53± 0.56 0.24± 0.33

Table 5.3: Run-5 Cu + Cu minimum bias to ERT 4×4C efficiency fit for the g 0 > 11.5 .GeV/c/2 fake rejection level.

0–10% 10–30% 30–50% 50–70% 70–90%

�0 0.959± 0.058 0.903± 0.038 1 0.921± 0.041 1

a0 1.42± 0.31 1.83± 0.43 1.52± 0.13 3.4± 2.2 1.69± 0.67

a1 1.09± 0.37 1.48± 0.55 1.05± 0.20 3.5± 3.1 1.05± 0.99

a2 0.21± 0.11 0.31± 0.16 0.225± 0.076 0.97± 0.95 0.32± 0.37

Table 5.4: Run-5 Cu + Cu minimum bias to ERT 4×4C efficiency fit for the g 0 > 17.8 .GeV/c/2 fake rejection level.

0–10% 10–30% 30–50% 50–70% 70–90%

�0 0.895± 0.027 0.867± 0.021 1 0.919± 0.029 1

a0 2.64± 0.53 3.68± 0.85 1.84± 0.18 4.9± 2.5 2.10± 0.97

a1 2.66± 0.72 3.9± 1.2 1.46± 0.26 5.4± 3.5 1.6± 1.4

a2 0.86± 0.24 1.36± 0.40 0.49± 0.11 1.8± 1.2 0.64± 0.59

Table 5.5: Run-5 Cu + Cu minimum bias to ERT 4×4C efficiency fit for the g 0 > 27.4 .GeV/c/2 fake rejection level.
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5.8 Jet Reconstruction in p + p

Using the particle and particle-pair cuts described above, a set of tracks and electromagnetic clusters are

obtained. For tracks that points to an electromagnetic cluster, the PHENIX tracking algorithm will maintain

a cluster association. �e clusters that have been associated with a track in this fashion is removed from the list

of clusters to prevent energy double counting. �e momenta of the remaining clusters are obtained assuming

m = 0, and combined with the tracks to form a set of 3-momenta.

In the case of Run-5 p + p, we then apply either the σ = 0.3 Gaussian filter or the D = 0.3 anti-k⊥ jet

reconstruction algorithm on the 3-momenta. For the Gaussian filter, the discrete algorithm is run using a

pseudorapidity range of |η| < 0.525, which is 150% of the PHENIX acceptance, and therefore encompasses

the vertex dependent “swing” of the PHENIX pseudorapidity coverage, on a Nη × Nϕ = 42× 256 grid, that

is approximately quadratic in the .η, ϕ/ bin sizes. Since the anti-k⊥ algorithm is implemented using rapidity

as opposed to pseudorapidity (and internally calculates the logitudinally invariant recombination using four-

momenta), E = |p| is set to all particles before they are inserted into the anti-k⊥ algorithm to ensure a purely

momentum-based recombination.

While the tracking background arising from conversions and decays will exceed the jet spectrum at high-

pT , the yield is typically still far less than one per event. �erefore, “jets” resulting from the tracking back-

ground is most severe when no multiplicity requirement is applied, and the rate rapidly decreases when the

coincident detection of multiple tracks are demanded. �erefore, for all our analyses, we require a minimum

multiplicity within a ∆ϕ J < π/3 with respect to the jet axis beingZ
dΩ θ.π/3− ∆ϕ J /

dN
dΩ ≥ 3 (5.34)

where fragments are either E > 500 GeV/c electromagnetic clusters (i.e. using the same nonlinearity cut as

the overall event), or p > 200 GeV tracks (which is set to a sufficiently high momentum the track will reach

the DC, in order to avoid residual variations).

�e second cut, also with the level during introduction, was

max z < 0.95 (5.35)

which recognizes that jets containing a misreconstructed high-pT will be longitudinally dominated by it. �is

is then combined with a charged fraction cut

fch ≡

P
i∈charged h.ηi − η J , ϕi − ϕ J /θ.pT,i − pT,min/pT,iP
i∈fragment h.ηi − η J , ϕi − ϕ J /θ.pT,i − pT,min/pT,i

< 0.9 (5.36)
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Figure 5.8: Run-5 p + p σ = 0.3 Gaussian filter raw spectrum.

For p + p, no pT thresholds are applied, i.e. pT,min = 0 (except for the finite momentum turn-on of the

detector).

Dennis V. Perepelitsa later showed that these two cuts I proposed can be combined to improve the effi-

ciency in preserving jet fragment phase space. For this analysis, I found that in p + p, a cut at

fch < 0.95 ^ .max z < 0.8 _ fch < 0.8/ (5.37)

is optimal.

From the corrections specified above, we obtain a σ = 0.3 Gaussian filter and D = 0.3 anti-k⊥ spectrum

in per event yield
1
Nevt

Ed3N
.dppp/3 =

1
Nevt

1
2π

dN
pppT dpppT dy

(5.38)

Figures 5.8 and 5.9 show the raw Run-5 p + p Gaussian filter and anti-k⊥ spectra.
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Figure 5.9: Run-5 p + p D = 0.3 anti-k⊥ raw spectrum.

5.9 Heavy Ion Background

Due to efficiency reason, the heavy ion background is obtained using the Gaussian filter applied to a .η, ϕ/

binned histogram as opposed to the exact convolution using all the original particle momenta, since the

latter would incur prohibitive storage and computational demand. �e Run-5 Cu + Cu background being

discussed here is determined using Nη × Nϕ = 84 × 512 bins within |η| < 0.525 (150% of the nominal

PHENIX acceptance) and full 2π azimuth. �is choice provides a factor of two oversampling compared to

the discrete filter in the Gaussian filter algorithm, and still has sufficient occupancy per bin when integrating

over the peripheral 80–95% centrality when using the Run-5 Cu + Cu statistics.

We are using a partially factorized background in the sense that the normalized (by the total event pT )

.η, ϕ/ distribution is parametrized in 20% centrality bins, while the total event pT is parametrized in 1%

centrality bin. �e usage of partially factorized background has both statistical and technical reasons. �e

parametrization of vertex and reaction plane dependence with 95 centrality bins would require about 108

evaluation of polynomials during initialization, which can take several minutes, and equally large amount of

values to be held in memory (which was problematic due to PHENIX running computer nodes with small
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Figure 5.10: Dependence of the Gaussian filter convolved background on the vertex position.

memory sizes). And as indicated above, further subdivision the peripheral 80–95% centrality in the Run-5

Cu + Cu statistics will cause a Nη × Nϕ = 84× 512 histogram to have significant portion of the histogram

with no occupancy. A too fine centrality binning also bears the danger of outlier bin, where jet events are not

properly averaged out against non-jet-producing events.

We used 1
4 of the Run-5 Cu + Cu minimum bias events, uniformly sampled across the entire Run-5 statis-

tics.

Figure 5.10 demonstrates dependence of the approximated on the vertex z position, using backgrounds

for 0–20% centrality and z = −25–−20 cm, z = −5–0 cm, and z = 20–25 cm bins.

Figure 5.11 demonstrates dependence of the approximated on the reaction plane, using backgrounds for

20–40% centrality and four positions from a full reaction plane rotation.

Figures 5.12 and 5.13 show the relative and absolute error of the total event pT normalized .η, ϕ/ back-

ground pT distribution.
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Figure 5.11: Dependence of the Gaussian filter convolved background on the reaction plane orientation.

Figure 5.12: Relative approximation error using the minimax approximation and relative error metrics. Note the fully

balanced out, “equiripple” structure.

Figure 5.13: Absolute approximation error using the minimax approximation and relative error metrics.



CHAPTER 5. DATA ANALYSIS I: RAW SPECTRA 116

φ∆
0 1 2 3 4 5 6

φ∆
/d

N
 d

−1 je
t

N 
−3

10

0

0.5

1

1.5

2

2.5
2)c > 4.9 (GeV/

0.1
’g

2)c > 7.5 (GeV/
0.1
’g

2)c > 11.5 (GeV/
0.1
’g

2)c > 17.8 (GeV/
0.1
’g

2)c > 27.4 (GeV/
0.1
’g

PHENIX Preliminary
Run−5 Cu + Cu 0−20%

c = 200 GeV/NNs
 = 0.3σGaussian filter, 

c < 11.5 GeV/
,recT

p7.5 < 

Figure 5.14: Run-5 Cu + Cu dijet azimuthal correlation for the 0–20% centrality, symmetrical dijets with 7.5GeV/c <

pCuCu
T < 11.5GeV/c, and different fake rejection level. Errors shown are statistical.
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Figure 5.15: Run-5 Cu + Cu dijet azimuthal correlation for symmetrical dijets with 7.5GeV/c < pCuCu
T < 11.5GeV/c,

using the g 00.1 > 17.8 .GeV/c/2 fake rejection level, and for different centralities. Errors shown are statistical.
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Centrality σ

0–20% 0.223± 0.017

20–40% 0.231± 0.016

40–60% 0.260± 0.059

60–80% 0.253± 0.055

Table 5.6: Widths σ of Gaussian fits to the PHENIX Run-5 Cu + Cu azimuthal angular correlation for symmetrical

dijets with 7.5GeV/c < pCuCu
T < 11.5GeV/c, using the g 00.1 > 17.8 .GeV/c/2 fake rejection level, and for different

centralities. Uncertainties listed are statistical.

5.10 Dijet Azimuthal Correlation in Cu + Cu

In order to determine the level of fake rejection discriminant sufficient to clean up the jet signal, the dijet

azimuthal correlation is used to observe the level of uncorrelated signal from fake jets. �e effect of the

PHENIX central arm acceptance is corrected using the area normalized event mixing (e.g. [18])

dN.∆ϕ/
d∆ϕ =

1
A.∆ϕ/

dN raw.∆ϕ/
d∆ϕ

(5.39)

where A.∆ϕ/ is the detector acceptance correction. �e yield of fake jets is observed to saturate at g 00.1 >

17.8 .GeV/c/2, where the pedestal translates into an estimated fake jet contamination of 10%.

Figure 5.14 shows the Run-5 Cu + Cu dijet azimuthal correlation for the 0–20% centrality and different

fake rejection level.

Using a Gaussian fit to the distribution, we also extracted the width for 7.5GeV/c < pCuCu
T < 11.5GeV/c.

�e widths are consistent within the uncertainty across all centrality ranges. Assuming L = 1fm, the residual

statistical uncertainty of hkTi < 0.5 GeV/c would translates into a strong constraint of Oq < 0.3 GeV2/fm for

the BDMPS-Z type of jet energy loss.

Figure 5.15 shows the Run-5 Cu + Cu dijet azimuthal correlation for symmetrical dijets with 7.5GeV/c <

pCuCu
T < 11.5GeV/c, using the g 00.1 > 17.8 .GeV/c/2 fake rejection level, and for different centralities.

Table 5.6 shows the widths of Gaussian fit to the PHENIX Run-5 Cu + Cu azimuthal angular correlation

for symmetrical dijets with 7.5GeV/c < pCuCu
T < 11.5GeV/c, using the g 00.1 > 17.8 .GeV/c/2 fake rejection

level, and for different centralities.
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Figure 5.16: Run-5 Cu + Cu raw jet spectra without fake rejection. Error bars indicate statistical uncertainties.

5.11 Raw Spectra in Cu + Cu

For Cu + Cu, we found pT,min below 1.5GeV/c is insufficient to remove the large z “bump” (and since a

moderate pT,min removes the effect, it is reasonable to consider the otherwise observed “bump” not being a

effect of modification). When evaluating the charged fraction of a jet, we use

pT,min = min.0.1pjet
T , 1.5 GeV/c/ (5.40)

for Cu + Cu.

for Cu + Cu, we also found that a larger max z and charged fraction cut is necessary, namely

fch < 0.95 ^ .max z < 0.7 _ fch < 0.6/ (5.41)

while the aforementioned minimum pT threshold is maintained

Figures 5.16, 5.17, 5.18, and 5.19 show the Run-5 Cu + Cu raw jet spectra with no fake rejection, and with

g 0 > 11.5, 17.8, and 27.4 .GeV/c/2 fake rejection levels.
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Figure 5.17: Run-5 Cu + Cu raw jet spectra at g 0 > 11.5 .GeV/c/2 fake rejection. Error bars indicate statistical uncer-

tainties.

Figure 5.18: Run-5 Cu + Cu raw jet spectra at g 0 > 17.8 .GeV/c/2 fake rejection. Error bars indicate statistical uncer-

tainties.
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Figure 5.19: Run-5 Cu + Cu raw jet spectra at g 0 > 27.4 .GeV/c/2 fake rejection. Error bars indicate statistical uncer-

tainties.

5.12 BBC Efficiency

We could also include the purely multiplicative BBC cross section and BBC efficiency to obtain a cross section

measure, but since the spectrum produced here is intended as input for further unfolding to the true jet energy

scale, we le
 the previous discussion at the level of the yield.

�e BBC efficiency �BBC is needed to convert the BBCLL1/MB trigger based cross section to the unbiased

cross section. It is is the efficiency of the PHENIX MB or BBCLL1(>0 tubes) trigger firing, which at Run-5, is

defined the coincident firing of at least one phototube in the north and south BBC. At the moment, evaluating

the BBC efficiency using  tune A and  in conjunction of PISA gives inconsistent result, and

both event generators with detector simulation also produce a result that does not agree with the data driven

method in all pT . �erefore, the data driven method is preferred here. �e fact that  tune A and

 do not agree suggest that the issue is less the detector simulation, but resides in the inability of the

event generators to reproduce physical particle production across a large rapidity gap.

GL1 contains two ERT trigger that are not conincidental with the MB trigger, namely ERTLL1_4x4c

and ERTLL1_4x4b. As noted above, ERTLL1_4x4c is heavily scaled down (while ERTLL1_4x4b is usually



CHAPTER 5. DATA ANALYSIS I: RAW SPECTRA 121

not scaled down). �e proper nonbiased event selection in a mixture of the ERT-conincidental-with-MB

triggers therefore requires the test against the scaled bit (vs. the raw bit). A non-MB-biased selection of

events therefore can be selected by triggering on ERTLL1_4x4c bit scaled logical-or ERTLL1_4x4b bit scaled:

PŒBBCLL1(>0 tubes) � = PŒBBCLL1(>0 tubes) | some non-MB trigger �

=
N.ERTLL1_4x4c_ERTLL1_4x4b/^BBCLL1(>0 tubes)

NERTLL1_4x4c_ERTLL1_4x4b

(5.42)

(note that selecting solely on ERTLL1_4x4c would yield minuscule statistics in Run-5 p + p, that reaches single

count level already at prec
T ≈ 10 GeV/c).

Fitting the efficiency using a constant yields �BBC = 0.88694± 0.00084 �e systematic uncertainty can

be obtained by fitting the pT dependence by the 3rd order Chebyshev polynomial and extract the largest

component. |a3| = 0.013± 0.010 (15%).

�e rationale to select order N = 3 is as follow: Fitting to order ≥ 5 starts to reproduce the statistical

variation, which can be seen by significant (larger than statistical uncertainty) modification of lower order

coefficients. For N = 4, a4 has insignificant amplitude, but the correlation magnifies the uncertainty in a3.

Note that a3 is consistent among N = 3 and N = 4.

We therefore obtain

�BBC = a0 = 0.88694± 0.00084 (stat.) ± 1.5% (syst.) (5.43)

5.13 BBC Cross Section

�e BBC Cross Section was measured in Run-5 using the van der Meer method/vernier scan to be

σBBC = 24.58 mb ± 5% (5.44)

where due to the low amount of runs that are available to perform the cross section determination, the un-

certainty is a combined statistical and systematic uncertainty. However, given the low number of runs and

the large hourglass correction necessary to obtain the BBC cross section, we felt that the uncertainty is likely

underestimated, and assign a more conservative 10% uncertainty instead.

5.14 Summary of Systematic Uncertainties

Table 5.7 summarizes the systematic uncertainties that applies to the measurement of the raw jet spectrum.
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No. Description Magnitude

Global scale

1 BBCLL1 cross section 5%

2 BBCLL1 efficiency 1.5%

3 p + p ERT efficiency saturation level 2%

4 Minimum bias/ERT normalization matching 5%

5 Global energy scale 15%

Quadrature sum 17%

Point-to-point

6 e± contamination for prec
T > 20GeV/c 10%

7 Detector boundaries/fiducial cuts sensitivity 15%

Table 5.7: Table of systematic uncertainties for the raw jet spectrum.

�e accuracy to which the trigger efficiencies are known have been discussed in previous sections. �e

uncertainty on the energy scale is derived from the sector E/p calibration, where we observe that the π0-

only calibration produces an E/p ≈ 1 ± 3% on average. Together with the slope of the jet spectrum being

approximately −5, this translates into a 15% global energy scale uncertainty.

In term of point-to-point uncertainties, from the charged fraction distribution at high pT , we observe that

residual contamination of conversion electrons is < 10%, which we quote as an uncertainty above 20 GeV.

�e uncertainty of the cross section from the detector boundary is determined by varying the fiducial cut and

observe the yield variation, which was observed to be ≈ 15%.
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Chapter 6

Data Analysis II: Spectra Unfolding

6.1 Outline of Procedure

We continue from where we le
 off in the previous chapter, where we le
 the unfolding to the particle level

yield

6.2 Unfolding

Typically, the measurement involves the

dN
dpdet

T
=
Z
dpTP.pdet

T |pT /
dN
dpT

(6.1)

We first make a slight detour and provide an overview of unfolding techniques applied to spectra in high

energy and nuclear physics. Unfolding as an inverse problem falls in the J. Hadamard’s classification of ill-

posed problems, which he contrasts with well-posed problem (problèmes bien posé), for which the solution

exists and is uniquely determined [94].

A look at the current literature regarding inverse and ill-posed problems in mathematics, (optical and

radio) astronomy, geophysics, and medical imaging easily reveals that a more comprehensive review of tech-

niques suitable for spectra unfolding in high energy and nuclear physics is urgently needed. �is situation also

has leaded to many “rediscovery” papers, some published more than half century a
er the original treatise.

Two methods are developed in the following, to my knowledge, has never been applied to high energy and

nuclear physics: the multidimensional Phillips–Tikhonov algorihm, and the scaled Landweber algorithm.

6.2.1 Inverse Problem

Least square unfolding with linear regularization is widely known and applied in fields outside HEP (e.g.

geophysics and machine lerning). Overviews to this field can be found in textbooks such as [95].
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Unfolding attempts to invert the linear folding

Ax = b, (6.2)

with x the truth histogram, b the measured histogram, and A the transfer matrix. Unfolding is closely related

to the numerical solution of Feldholm integral equations (in fact, the solution by linear regularization is first

described for integral equations).

A naïve solution to (6.2) would be

x = A−1b, (6.3)

which however requires A being invertible, which in most cases is not true, when using Monte Carlo derived,

and therefore inherently noisy A. Furthermore, since b is derived by measurement, and typically contains

Poisson noise, even if A−1 happens to exist, the numerically large (or near singular) eigenvalues in A−1 can

drastically enhance the noise in b and lead a resulting x with unphysical bin-by-bin fluctuations (note also,

that the direct inversion uses no information from the covariance of b).

�e next least square solution (i.e. the solution with ||x|| = min! for a rank-deficient A) is obtained by

solving

||Ax − b||C = min!, (6.4)

Here, the right-hand side of the minimization, b is understood as the measurement that contains the folding

via the linear system A, and true vector x is the unknown. �e rotated norm ||u||C =
p

uTC−1u is the

Mahalanobis distance, with C being understood (in the Baysian interpretation) as the covariance matrix of

the measurement b. �e normal equation to (6.4) is usually solved using singular value decomposition (SVD)

of A, which is given as

A = UΣVT (6.5)

where U, V are orthogonal matrices, and Σ is a diagonal matrix. �e solution is then

x = VΣ−1UTb. (6.6)

where A†
MP = VΣ−1UT is the Moore–Penrose pseudoinverse of A. Expressing the problem as linear least

square solves the issue with the outright singular part when inverting A, but still does not address the problem

with near zero eigenvalues in A, that become large singular values in A†
MP.
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6.2.2 Phillips–Tikhonov Regularization

However, while x from physical processes are smooth, near-singular components of A typically amplify the

unavoidable fluctuation in b, leading to large, non-physical fluctuations in x. �is can be solved using linear

regularization, and the general solution is known as the Phillips-Tikhonov regularization.

6.2.2.1 Scaling

�e need to properly scale unfolding problem is more unique to the high-energy and nuclear physics, where

spectra are usually steeply falling, with the features of interest usually being multiplicatively “on top” of a

power-law or exponential distribution. �is is unlike unfolding of digital images or atomic and molecular

spectra, where quantities encountered are typically approximately uniformly distributed on a linear quanti-

zation scale. �e representation of a steeply falling and therefore (numerically and for the purpose of spectral

decomposition) δ function-like distribution always require the presence of its high frequency contribution.

�e spectral cut-off by the direct application of traditional regularization and reblurring techniques will al-

ways result in exhaustion of the available degrees of freedom simply by the shape of the spectrum.

Among regularized unfolding, the  so
ware package [96] is special in its definition of a scaled Ox with

Oxi = xi /xini,i, where xini is a (typically model/event generator derived) vector of the approximate scale of x.

Since we would like to scale the unknowns by xi 7! Oxi = xi /xini,i, the linear system A is inversely scaled (i.e.

multiplicatively), with

Oaij = aijxini,i (6.7)

(column-wise scaling). Note that we do not want to scale L, since the measure of undesired fluctuation is

based on the scaled x, (i.e. fluctuation has to be small if xini is small, and vice versa).

�is step is crucial when the unfolding involves steeply falling spectra across several order of magnitudes.

Without the scaling, the residual noise would be of the same scale regardless of the actual magnitude of xi,

which would be prohibitive e.g. to obtain a high pT tail of the jet cross section, that is 10−10 the size of the low

pT portion of the cross section. �e original Fortran 77 implementation of  and port to C++ have been

used extensively at the Tevatron experiments. For both our 1D and multidimensional unfolding, we closely

follow the approach of  in order to achieve comparability in the data analysis approaches.

In the context of the Phillips–Tikhonov regularization, the scaling can also be approximately considered

as applying a nonuniform regularization. One should also be aware that scaling the unfolding problem has
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the inherent danger of overregularization, yet yielding a physically plausible spectrum.

6.2.2.2 Solution by Singular Value Decomposition

For typical count measurements, C is usually a diagonal matrix, and the inversion and rotation of both sides

are trivial. And this can be tought as a row-wise scaling of A and b with c−1/2ii . Otherwise, the Cholesky

decomposition C = ΛΛT is needed, withΛ being a lower triangular matrix (which has not been implemented

in either , and due to the lack of necessity, neither in our unfolding code).

�e scaled regularization then has the form

|| OAOx − b||2C + τ ||L.2/ Ox||2C = min!, (6.8)

with

L.2/ =

�
−1 1 0 � � � 0

1 −2 1
...

0 1 −2 0
...

. . . 1

0 � � � 0 1 −1

˘

(6.9)

being the 2nd order finite difference operator. Expressed in matrix form, this is equivalent to the linear least

square problem 






0@ OA
p
τL

1A Ox −

0@b

0

1A






C

= min!. (6.10)

Because (6.8) essentially trades off least square accuracy || OAOx − b||C and smoothness ||L.2/ Ox||C, a the two

norms form a “L” shaped parametric curve, which is commonly referred to as the L-curve. Typically, the

location of a “kink” (or rigorously, a minimum of curvature) on the curve is considered as the ideal choice of

regularization. �e situation becomes however more complicated when multiple “kinks” appear.

If the regularization parameter τ is known, the problem is very simple and can be solved by a SVD of

the linear system on the le
-hand side (expressed with the Cholesky decomposition for the generalized C =

ΛΛT ):

Λ−1

0@ OA
p
τL

1A = UΣVT (6.11)

(with U, V being orthogonal matrices and Σ a diagonal matrix). �en the unfolded solution mean is

Ox = VΣ−1UT.Λ−1b/. (6.12)
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To derive the covariance matrix Cov Ox, note that Cov.Λ−1b/ = I follows from C = Cov b, and U is orthog-

onal. �erefore

Cov Ox = VΣ−1U Cov.Λ−1b/UT.Σ−1/TVT

= VΣ−1.Σ−1/TVT .
(6.13)

To simplify the discussion below, I will drop the Λ−1 term that can be trivially reinserted into both sides

of the least square problem.

6.2.2.3 Generalized Singular Value Decomposition

�e generalized singular value decomposition (GSVD) [97] of a matrix pair GSVD. OA, L/ simultaneously

decomposes both matrices into

OA = UΣ1
�
0 R

�
QT

L = VΣ2
�
0 R

�
QT ,

(6.14)

with U, V, Q all being orthogonal matrices, and R a upper triangular matrix. �is is the form that e.g. is used

in . An alternative form, which makes it easier to write solutions to least square problems, is

OA = U
�
0 Σ1

�
X−1

L = V
�
0 Σ2

�
X−1.

(6.15)

Two forms are related with each other by

X = Q

0@I 0

0 R−1

1A . (6.16)

GSVD. OA, L/ is closely related to SVD. OAL−1/ (if L invertible), and can be immediately seen by comparing

the GSVD of the quotient matrix OAL−1 = U.Σ1Σ−1
2 /VT with its SVD OAL−1 = UΣVT . Here L†

OA
is the

. OA/-weighted pseudoinverse of L [97]

6.2.2.4 Matrix-Pencil Solution by Inversion, 

G however solves the problem for an arbitrary τ , which is a least square problem with the matrix pencil

. OA +
p
τL/. �is is solved in  by by transforming the least square equation into the form







0@ OAL−1

p
τI

1A LOx −

0@b

0

1A






C

= min!, (6.17)
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and calculate the SVD of OAL−1. L.2/ is strictly speaking singular, and  works around this by using

.L.2/+ ξI/ instead, with ξ = 10−3 (due to the numerical precision and limitation of SVD implementation it

uses).

To show that one can express the solution for arbitrary τ as

LOx =
X
i

σ2i
σi + τ

.U�,i/Tb
σi

V�,i , (6.18)

take the normal equation form of the least square problem (note that in order to come as far as to write OAL−1,

L has full rank) �
. OAL−1/T

p
τI
�0@ OAL−1

p
τI

1A LOx =
�
. OAL−1/T

p
τI
�0@b

0

1A , (6.19)

and insert the aforementioned solution into the le
-hand side

.VΣTΣVT + τI/
X
i

σ2i
σ2i + τ

.U�,i/Tb
σi

V�,i =
X
i

σ2i
σ2i + τ

UT
�,ib
σi

.σ2i + τ/V�,i

=
X
i

σi.UT
�,ib/V�,i

= VΣUTb

(6.20)

(note again that several orthogonality relations are being used), which is the right-hand side. �e regulariza-

tion is therefore a low-pass filter for the singular values, and the Tikhonov filter function

fi.τ/ =
σ2i

σ2i + τ
(6.21)

is clearly visible in the solution. �erefore the solution to the least square problem with a matrix pencil form

can be simply obtained by filter the singular values in Σ−1 by

Σ0−1 = diag. fi.τ/σ−1i /, (6.22)

and then insert into the solutions (6.12) and (6.13).

Regulating the unfolding by adding a identity matrix biases the regularization towards zero in the un-

folded result, and should be avoided. �is approach, especially at ’s scale of ξ = 10−3, can have nasty,

counting statistics dependent side effects. For example, it tends to produce a systematic bias towards low RAA

at high-pT in peripheral collisions due to the Ncoll scaling in heavy ion collisions.
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6.2.2.5 Solution by Generalized SVD

With Σ1, Σ2, the GSVD obtains a pair of singular values .αi/, .βi/, and because of the aforementioned corre-

spondence to SVD. OAL−1/, the singular values of OAL−1 are γi = αi /βi. �e Tikhonov filtered singular values

for the solution with respect to Ox (as opposed to LOx with ) becomes

fi.τ/ =
γ2i

γ2i + τ

Σ0−1 = diag. fi.τ/α−1i /,

(6.23)

with. A comparison with (6.12) and (6.13) and proper book keeping in (6.16) for the rank deficient cases then

gives as solutions to the unfolding

Ox = XΣ0−1UTb

Cov Ox = XΣ0−1.Σ0−1/TXT .
(6.24)

�e key benefit of using GSVD is that now L can be rank deficient, which permits us to perform unfold-

ing with regularization terms unequal the rank of OA, while retaining ’s feature of doing this for many τ

simultaneously. �is is e.g. the case when the unfolding is peformed in D dimensions, and at least D smooth-

ness constraint corresponding to the differential operators ∂.n//∂xni , i = 1, . . . ,D is applied to each point in

space.

6.2.2.6 Multidimensional regularization, masking of unphysical regions

With GSVD available, generalizing the unfolding to multidimension therefore trivially becomes a matter of

filling L with the appropriate derivatives. As with the 1D case, L determines the geometry of the problem. A

typical multidimensional unfolding problem has the form of a tensorial histogram (like a  histogram)

stored in either row-major or column-major indexing. In this case, the regularization matrix is vertically

stacked from derivative operators with different leading dimensions (i.e. number of flat indexing bins one

has to cross to reach the next entry along that dimension), and each of the operator has also to be replicated

along multiple slices of that dimension.
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To illustrate for the 2D case, if L1 is the 1D regularization matrix (e.g. (6.9)), the 2D L2 is then

L2 =

˙
L1 0n×n 0n×n 0n×n � � � 0n×n

0n×n L1 0n×n 0n×n 0n×n

0n×n 0n×n L1 0n×n 0n×n

0n×n 0n×n 0n×n L1 0n×n
...

. . .
...

0n×n 0n×n 0n×n 0n×n � � � L1

L11,� 0n×.n−1/ L12,� 0n×.n−1/ � � � 0n×.n−1/

0n×1 L11,� 0n×.n−1/ L12,� � � � 0n×.n−2/
...

. . . . . .
...

0n×.n−1/ L11,� 0n×.n−1/ L12,� � � � L1n,�

�

, (6.25)

with 0m×n being the m-by-n zero matrix. �e upper half representing the derivative along the dimension

that is stored memory-near (e.g. in the  histogram indexing, the x-axis), and the lower half that is

memory-far (in  histogram indexing, the y-axis). Adding additional blocks can generalize this to higher

dimensions.

6.2.2.7 Implementation using 

�e subprogram library offers the subroutine x (“x” denotes one of the four data types),

which our implementation for the multidimensional unfolding is based on. For the 1D case, we can com-

pare the unfolding result against , and two implementations (unsurprisingly) match within expected

numerical precision. �e remaining scaling and matrix–vector, matrix–matrix multiplications are imple-

mented using  and OpenMP. Either one of the several  and  implementation can be used. In

practice, we are using the Intel Math Kernel Library 10.2.

�e major drawback of a  based implementation is that L is highly sparse in any given dimension,

and A typically becomes increasingly sparse with increasing number of dimensions. �ere is unfortunately

no publicly available sparse GSVD code, and whether writing our own sparse GSVD code, or use existing

sparse SVD and blindly shoot for different τ remain something that has to be explored in the future.

Currently, the unfolding of a 50×50 histogram using our dense -based code takes approximately
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1.5 hour on an Intel Xeon E5420 (2.5GHz with no hardware simultaneous multithreading). Note that this is

also close to the maximum size that can be unfolded within a 32-bit addressable memory using the double

precision GSVD implementation in .

6.2.3 Inversion-Based Algorithms

6.2.3.1 Van Cittert Algorithm

�e van Cittert [98] algorithm is a direct evaluation of the Neuman series of the inverse response

A−1 =
∞X
k=0

.1 − A/k (6.26)

Evaluating series for x := A−1b using Horner’s rule gives the iteration

x.0/ = b

x.k+1/ = b + .1 − A/ x.k/
(6.27)

�e van Cittert algorithm tends to diverge quickly.

6.2.3.2 Reblurring and the Landweber Algorithm

Reblurring is a simple procedure to “regularize” the otherwise rapidly divergent van Cittert algorithm. Its

principle is to limit the contribution of “unmeasurable” frequency components, which are generated in the

process of inverting A. �e reblurring achieves this by filter (and usually blurring) the intermediate steps of

the unfolding.

In the Landweber algorithm considers A itself to describe the frequency cutoff in the process of measuring

b. �erefore, (6.27) is modified by

b 7! ATb

A 7! ATA
(6.28)

And the Landweber algorithm is

x.0/ = b

x.k+1/ = ATb + .1 − ATA/ x.k/
(6.29)
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6.2.3.3 Scaling the Landweber Algorithm

Directly applying an additive algorithm such as the Landweber algorithm will fail on a steeply falling spec-

trum, such as with most spectra in high energy and nuclear physics. �e reason is that the Landweber al-

gorithm, which contains a regularization in the form of the reblurring, will inevitably favor a smooth or

bandwidth limited result. For this to succeed, the problem must be well scaled, which is not the case for

steeply falling spectra.

To my knowledge, no scaled version of the Landweber algorithm has ever been published. Following the

same approach as implemented in the so
ware package  [96] and for the Phillips–Tikhonov regulariza-

tion (compare section 6.2.2.1), the numerical stability can be improved by introducing a scaling vector xini,

which is a initial or guessed unfolding result, that scales the problem closer to unity. Because each iteration

of the Landweber algorithm contains two additive terms, the scaling is more complex than with the Phillips–

Tikhonov regularization for the linear least square problem. A
er experimentation, the approach that was

found to be most stable is

x.0/ = b

x.k+1/ = diag.xini/
h

ATdiag−1.xini/ b + .1 − ATA/ diag−1.xini/ x.k/
i (6.30)

where both additive variates b and x are first prescaled with x−1ini, j, and rescaled with xini, j at the end of the

step.

6.2.4 Expectation–Maximization Algorithm

�e Richardson–Lucy algorithm was independently discovered in optics and optical astronomy [99]. To-

day, it is widely applied in optical astronomy, and implemented in standard data analysis packages such as

 [100] and  [101]. Likely its most prominent usage was to deconvolve images taken by the Hubble

Space Telescope’s incorrectly shaped primary mirror [102]. Shepp & Vardi [103] were the first to describe the

Richardson–Lucy algorithm in a shi
-variant form for positron emission tomography, and also noticed that

it is in fact a special case of the expectation–maximization (EM) algorithm.

�e Richardson–Lucy algorithm calculates a trial folding A xk , and corrects its effect multiplicatively,
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together with a Landweber-style reblurring

x.0/ = b

x.k+1/ = AT

"
b j

.A x.k// j

# (6.31)

�e Richardson–Lucy algorithm was “rediscovered” for high energy physics by D’Agostini [104], and

most peculiarly, for more than a decade, nobody in HEP noticed that D’Agostini’s “Bayesian” is simply the

Richardson–Lucy algorithm.

6.2.5 Overview of Other Algorithms

Since most these algorithms require elaborate, iterative numerical techniques to be employed, determining

and implementing the proper scaling procedure for HEP spectra is nontrivial, and the proper error propa-

gation is usually not known. Given the time constraint, these studies unfortunately have to be le
 for the

future.

6.3 Jet Energy Scale

�e jet energy scale is defined in multiple levels leading from the (idealized) short range interaction to the

detector measurement:

• Parton level. �is is a picture of LO only, usually 2 ! 2 QCD processes, where the final state never

merge. Already in NLO calculations, this is not a well defined energy scale anymore. However, it allows

some elementary hadronization correction for the jet algorithm to be calculated, which can be used to

align the measured cross sections to theoretical calculations.

• Particle level. Event generators, which are tuned against experimental data, describe the structure of

jets with hadronization, and semi-NLO initial and final state radiation. �is allows the jet energy scale

to be defined with respect to a perfect detector.

• Detector level. Detector simulation provides a description of the detector effects due to acceptance,

inefficiency, and finite energy resolution. �is links the measurement to the particle level.

• Detector level, underlying event smeared. Especially in the heavy ion case, fluctuations in the under-

lying event causes a shi
 in the observed jet energy. In some jet algorithm, the clustering can also be
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strongly modified. Because RHIC luminosity (at the moment) does not produce significant pile-up, no

pile-up correction is performed.

�e jet energy scale of PHENIX is determined by a interplay of various particle losses:

• �e detector aperture leads to a position dependent likelihood of large angle jet fragment loss.

• Long-lived neutral hadrons (n, K0
L , ...) are irrecoverably lost due to the lack of hadronic calorimeters.

• �e lack of hadronic calorimeter means that tracking must be used to collect the energy produced by

charged particles. Tracking, which is used to measure the charged hadronic energy, always suffers from

a background from conversions and decay particles, that is largely flat in (the mismeasured) momentum

and has to be rejected by complex tracking cuts. �ese cuts usually becomes progressively inefficient

at increasing pT .

6.3.1 Particle level yield

1. Generate truth/particle level events using LO event generator (e.g. , ), possibly discard

those that do not have significant energy in the PHENIX central arm η range plus sufficient margins.

2. Obtain detector simulation using  and some vertex distribution.

3. For heavy ion collisions, perform event embedding to determine the additional underlying event energy

shi
.

4. Determine a high resolution BBC vertex distribution, obtain a vertex reweighting function from the

measured and integrated BBC vertex distribution and the  vertex distribution.

5. For the reconstructed/detector and truth/particle level events:

(a) Reconstruct the reconstructed/detector level jets using the same procedure as for the data.

(b) Reconstruct the truth/particle level jets without applying any cuts, i.e. with the same jet recon-

struction algorithm on the “naked” generator event.

6. Match truth jets to the reconstructed jets, apply the LO cross section weights, inverse ratio of out-of-

acceptance events, and the vertex weight, obtain a pT-to-prec
T transfer matrix.
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7. Obtain the jet reconstruction efficiency as the ratio between the matched reconstructed jet (with its

truth counterpart η position) vs. the total truth jets that falls inside a specific ∆η.

8. Unfold the measured jet spectrum with the pT-to-prec
T transfer matrix.

9. Unfold the spectrum with the pT-to-prec
T transfer matrix.

10. Correct for jet reconstruction efficiency.

6.3.2 Event Generator and 

For event generators, both  and  are used. �e  event generator offers various “tunes”

to experimental data on jet production and underlying event. �e CDF tune A [105] is used for 

event generation, and the default setting in conjunction with QCD 2! 2 process is used in term of 

(which, unlike , triggers on one process type).

In both  and , the supplied pseudorandom number generators (PRNGs) are replaced with

the Mersenne Twister MT2203 generator. �is choice is mostly motivated by the large scale Monte Carlo

fake jet rejection study with the  event generator, while for detector simulation purpose, the 

3 simulation dominates the computational load, and the distributed event generation is not critical. �e

implementation of MT2203 is discussed in section 3.4.

Unfortunately, especially in the case of , the maintenance of the public/official version in recent

years has been poor. Since PHENIX does not maintain an up-to-date set of bug fixes for event generators,

and few collaborators in PHENIX in fact use , the bug fixes from the ATLAS collaboration has been

applied, resulting in a  essentially identical to that of the ATLAS Collaboration, except for the PRNG

replacement discussed above. For , the ATLAS version only distinguishes from the official version

by the implementation of R-hadrons (hypothetical, hadronic binding states that contain a gluino or squark,

where the decay of the sparticle is suppressed beyond the hadronization time scale by the R-parity), and due

to its irrelevance to SM RHIC physics, the stock  is used, except for the PRNG.
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6.4 p + p Collision at the True Energy Scale

�e p + p measurement process with a detector jet energy transfer function P.pppT |pT / is described by the

Fredholm equation
dN
dpppT

=
Z
dpTP.p

pp
T |pT /

dN
dpT

. (6.32)

Its inversion is accomplished by using unfolding. Once the unfolded dN
dpppT

is obtained, the invariant cross

section is given as
Ed3σ jet

dp3 =
1

2πpT
d2σ jet

dpjet
T dy

=
σBBC

A �BBC

1

pjet
T

1
Nevt

dN jet

dpjet
T

(6.33)

6.4.1 Transfer Matrix

We use  running on  Tune A and  events to produce a truth energy-to-reconstructed

energy transfer matrix, that describes the PHENIX Run-5 jet energy scale. Approximately 15 million events

using 8 event generator
p
Q2 triggers are used to provide a uniform sampling of the pT range.

�e lowest
p
Q2 = 0.375GeV/c trigger is constrained by , which is not designed to generate very

low-
p
Q2, near minimum bias events. Also,

p
Q2 = 64GeV/c is the upper limit, since the kinematical phase

space sampling in  becomes very in efficient at high-xT .

Since it is not desirable to run (computationally costly) detector simulation on events that do not contain a

jet in the vicinity of the PHENIX central arm acceptance, jet reconstruction is run on the generated (particle-

level) event to detect the presence of a jet in the mid-rapidity range. To allow some margin, 150% of the

PHENIX pseudorapidity acceptance plus the jet algorithm radius is used, i.e. |η| < 0.525 + σ for the filter

and |η| < 0.525+ D for anti-k⊥.

All event generator observables are merged by cross section, where we keep track of the σevt, the LO cross

section assigned by the generator for the
p
Q2 trigger, and the ratio of events Rmid where a midrapidity jet is

observed.

Tables 6.1 and 6.2 show the trigger information for the  tune A and  event generators.

Figures 6.1–6.4 show the so evaluated jet energy scale transfer matrix for the combination of the two jet

algorithms, Gaussian filter and anti-kT , and both  tune A and .

�e Gaussian filter exhibits a more pT independent behavior of jets loose energy during reconstruction,

due to the central arm detector edges and inefficiencies. �e anti-kT jet energy scale narrows below 10 GeV,

where however jets can be reconstructed with a higher pT than the particle/generator level jet. At pT < 4,
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CKIN(3) .GeV/c/ σevt .b/ Rmid

0.375 2.763 731× 10−2 0.898 674

0.5 2.763 731× 10−2 0.830 751

0.75 2.763 731× 10−2 0.624 602

1 2.763 731× 10−2 0.415 029

2 1.678 698× 10−2 0.203 455

3 2.604 001× 10−3 0.137 097

4 6.503 315× 10−4 0.116 626

6 8.452 015× 10−5 0.116 522

8 1.824 940× 10−5 0.131 891

12 1.783 908× 10−6 0.164 617

16 2.923 801× 10−7 0.193 316

24 1.607 195× 10−8 0.231 941

32 1.369 009× 10−9 0.249 713

48 1.350 614× 10−11 0.224 487

64 7.806 746× 10−14 0.146 631

Table 6.1: Trigger information for  Tune A
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PTMIN .GeV/c/ σevt .b/ Rmid

0.375 (1.148 38× 10−1)

0.5 (1.222 398× 10−1) 0.951 700

0.75 (1.220 256× 10−1) 0.867 875

1 (1.217 606× 10−1) 0.723 055

2 1.161 378× 10−2 0.249 477

3 1.917 653× 10−3 0.123 094

4 5.028 591× 10−4 0.113 145

6 7.056 593× 10−5 0.134 862

8 1.617 565× 10−5 0.161 898

12 1.725 714× 10−6 0.203 612

16 2.973 515× 10−7 0.231 211

24 1.670 534× 10−8 0.270 607

32 1.378 255× 10−9 0.290 308

48 1.239 910× 10−11 0.286 778

64 7.214 417× 10−14 0.225 576

Table 6.2: Trigger information for . Note that  does not implement low-pT physics, and the values with

σevt > σinel ≈ 42 mb, corresponding to QCD 2 ! 2 processes beyond the meaningful PTMIN range are in brackets.

�ey should be replaced by  Tune A σevt = 2.763 731× 10−2 to avoid unphysical cross sections and imbalance

when merging with  Tune A. Rmid is not listed for PTMIN = 0.375GeV/c due to unstable numerical integration,

and Rmid ≈ 1 can be used as approximation.
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Figure 6.1: Run-5 p + p Gaussian filter P.pppT |pT / using  tune A.

Figure 6.2: Run-5 p + p Gaussian filter P.pppT |pT / using .
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Figure 6.3: Run-5 p + p anti-k⊥ P.pppT |pT / using  tune A.

Figure 6.4: Run-5 p + p anti-k⊥ P.pppT |pT / using .
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the anti-kT transfer matrix also has a noticeable structure from low multiplicities, since a minimum 500MeV

cut is applied to clusters, while for Gaussian filter, this is smeared out by the angular weights.

6.4.2 Efficiency

�e efficiency is also evaluated with the full effect of the fake rejection between pppT = 4–100 GeV/c, and is

parametrized by

�.pppT / = �0erf

( NX
k=0

akTk

"
log10 p

rec
T /.GeV/c/− 1

2.log10 100+ log10 4/
1
2.log10 100− log10 4/

#)
(6.34)

which is algebraically comparable in structure with the ERT 4×4C efficiency.

For Gaussian filter, we obtain for the combined  Tune A/:

�0 = 0.3788± 0.0014

a0 = 2.840± 0.027

a1 = 4.115± 0.045

a2 = 2.674± 0.035

a3 = 1.865± 0.035

a4 = 1.124± 0.037

a5 = 0.553± 0.035

a6 = 0.205± 0.029

a7 = 0.047± 0.021

a8 = 0.0047± 0.0093

(6.35)
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For anti-k⊥, combined  Tune A/:

�0 = 0.3831± 0.0013

a0 = 5.849± 0.030

a1 = 9.907± 0.052

a2 = 7.557± 0.039

a3 = 5.407± 0.038

a4 = 3.366± 0.041

a5 = 1.736± 0.039

a6 = 0.701± 0.030

a7 = 0.192± 0.020

a8 = 0.0296± 0.0090

(6.36)

As for the individual event generators, Gaussian filter with  Tune A gives:

�0 = 0.3854± 0.0020

a0 = 3.146± 0.037

a1 = 4.675± 0.061

a2 = 3.089± 0.048

a3 = 2.153± 0.050

a4 = 1.314± 0.052

a5 = 0.674± 0.048

a6 = 0.271± 0.041

a7 = 0.084± 0.031

a8 = 0.020± 0.013,

(6.37)
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Gaussian filter with :

�0 = 0.3734± 0.0020

a0 = 1.841± 0.038

a1 = 2.237± 0.064

a2 = 1.124± 0.049

a3 = 0.703± 0.048

a4 = 0.349± 0.052

a5 = 0.095± 0.049

a6 = −0.020± 0.040

a7 = −0.046± 0.028

a8 = −0.022± 0.013,

(6.38)

anti-k⊥ with  Tune A:

�0 = 0.3897± 0.0018

a0 = 9.714± 0.042

a1 = 17.168± 0.072

a2 = 13.549± 0.055

a3 = 9.754± 0.054

a4 = 6.099± 0.059

a5 = 3.180± 0.054

a6 = 1.308± 0.043

a7 = 0.373± 0.029

a8 = 0.062± 0.013,

(6.39)
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Figure 6.5: L-curve of the Run-5 p + p σ = 0.3 Gaussian filter Phillips–Tikhonov regularization. �e dot indicates the

nominal regularization used to produce the bin center point, which is a
er the first “kink”. �e inverted kink around

||Cx|| = 0 corresponds approximately to NNyquist, whereas the rise in ||Ax − b|| a
er ||Cx|| > 3 is due to numerical

rounding error in the  SVD routine used by .

and anti-k⊥, 

�0 = 0.3789± 0.0021

a0 = 1.350± 0.040

a1 = 1.454± 0.069

a2 = 0.561± 0.053

a3 = 0.312± 0.049

a4 = 0.148± 0.052

a5 = 0.024± 0.049

a6 = −0.029± 0.039

a7 = −0.031± 0.026

a8 = −0.012± 0.012.

(6.40)
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Figure 6.6: L-curve of the Run-5 p + p D = 0.3 anti-kT Phillips–Tikhonov regularization. �e dot indicates the nominal

regularization used to produce the bin center point, which is a
er the first “kink”. �e inverted kink around ||Cx|| = 0

corresponds approximately to NNyquist, whereas the rise in ||Ax − b|| a
er ||Cx|| > 4is due to numerical rounding error

in the  SVD routine used by .

6.4.3 Spectrum

A Ndof ≈ 7 is used to perform the unfolding. In both Gaussian filter and anti-kT , this location is slightly

beyond the “kink”, which means that the resulting distribution is weakly underregularized.

Figures 6.5 and 6.6 show the L-curve of the Phillips–Tikhonov regularization. �e Cu + Cu exhibits a

very short vertical section, indicating the less stable nature of the unfolding.

Figures 6.7 and 6.8 show the resulting Gaussian filter and anti-kT spectra from unfolding. Figure 6.9

shows the two spectra overlaid on each other.

Consistent with the expectation for both jet algorithms, we observe a cross over, where the Gaussian

filter has a higher cross section at low-pT due to the larger angular range, while for well-collimated jets at

high-pT , the lack of angular weights gives anti-kT a slightly higher cross section than the Gaussian filter. Out

ability to consistently observe this type of subtle NLO jet definition difference provides an excellent test of the

determination of the jet energy scale, jet reconstruction efficiencies, and unfolding.



CHAPTER 6. DATA ANALYSIS II: SPECTRA UNFOLDING 146

Figure 6.7: Run-5 p + p σ = 0.3 Gaussian filter spectrum. Error bars indicate statistical uncertainties, shaded boxes

indicate bin-by-bin systematic uncertainties. �e gray box to the le
 indicates the correlated normalization uncertainty.

Figure 6.8: Run-5 p + p D = 0.3 anti-k⊥ spectrum. Error bars indicate statistical uncertainties, shaded boxes indicate

bin-by-bin systematic uncertainties. �e gray box to the le
 indicates the correlated normalization uncertainty.
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Figure 6.9: Comparison of the Run-5 p + p σ = 0.3 Gaussian filter and D = 0.3 anti-k⊥ spectrum. Error bars indicate

statistical uncertainties, shaded boxes indicate bin-by-bin systematic uncertainties. �e gray box to the le
 indicates

the correlated normalization uncertainty.

No. Description Magnitude

Global scale

1 BBCLL1 cross section 10%

2 BBCLL1 efficiency 5%

3 p + p ERT efficiency saturation level 3%

4 Minimum bias/ERT normalization matching 5%

5 Global energy scale 15%

Quadrature sum 20%

Point-to-point

6 e± contamination for prec
T > 20GeV/c 10%

7 Detector boundaries/fiducial cuts sensitivity 15%

8 Unfolding systematic errors

Table 6.3: Table of systematic uncertainties for the unfolded Run-5 p + p jet spectrum
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6.4.4 Summary of Systematic Uncertainties

Most of uncertainty of the raw spectrum, detailed in section 5.14, also applies to the unfolded spectrum. We

evaluate the systematic uncertainty from the regularization parameter by sampling its “meaningful range”. A

meaningful range of the spectrum unfolding, where the low frequency component of the unfolded spectrum

should behave stably, is found to be between Ndof ≥ 4 and Ndof ≤ NNyquist = N/2, where N is the total

number of points in a 1D unfolding. Since the typical, Monte Carlo based evaluation of the transfer matrix are

not properly bandwidth-limited to avoid aliasing effect of the binning, NNyquist is an information theoretical

limit, to which the unfolding can be stable. Ndof ≥ 4 is from experience, since lower number of degrees

of freedom typically cannot properly reproduce the deviation of a real jet spectrum from the xini generated

either as a perfect power-law, or using spectrum from the LO matrix elements in event generators. To evaluate

the effect of regularization on the shape of the spectrum, a generalized power-law fit is performed, where the

exponent is permitted to change to reproduce the kinematic phase space limiting

dN
dpT

= Apa0+a1pTT . (6.41)

�e systematic uncertainty is then the point-by-point standard deviation of the sampled value of the fit, eval-

uated across the range of the regularization parameter.

Figures 6.10 and 6.10 show the point-to-point regularization dependence evaluated to obtain the unfold-

ing systematic uncertainty.

Table 6.3 summarizes the systematic uncertainties that applies to the measurement of the unfolded jet

spectrum.

6.5 p + p Fragmentation Function

Unlike the spectrum measurement, the relationship between the true and measured fragmentation function

is given as the Fredholm equation for the .pjet
T , p||/ distribution

dN

dpjet,pp
T dprec

||

=
“

dpjet
T dp|| P.p

jet,pp
T , prec

|| |pjet
T , p||/

dN

dpjet
T dp||

. (6.42)

where in case of negligible single particle energy resolution, we have a 4D tensor where one dimension is

diagonal

P.pjet,pp
T , prec

|| |pjet
T , p||/ = P.pjet,pp

T |pjet
T , p||/δ.prec

|| − p||/ (6.43)
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Figure 6.10: Distribution of the regularization dependence of Run-5 p + p Gaussian filter raw unfolded counts at (top

le
) pT = 10.1 GeV/c, (top right) pT = 20.4 GeV/c, (bottom le
) pT = 41.1 GeV/c, (bottom right) pT = 59.9 GeV/c,

evaluated between Ndof ≥ 4 and Ndof ≤ NNyquist
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Figure 6.11: Distribution of the regularization dependence of Run-5 p + p anti-kT raw unfolded counts at (top le
)

pT = 10.1 GeV/c, (top right) pT = 20.4 GeV/c, (bottom le
) pT = 41.1 GeV/c, (bottom right) pT = 59.9 GeV/c,

evaluated between Ndof ≥ 4 and Ndof ≤ NNyquist
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Figure 6.12: Cluster reconstruction efficiency as function of the longitudinal momentum fraction z for pjet
T =

11.1 GeV/c.

�e fragmentation function, which is normalized per reconstructed jet, is obtained by dividing the true en-

ergy scale, .pjet
T , p||/ distribution by the true energy scale

D.z/ =
1

�.z, pjet
T /

 
dNjet

dpjet
T

!−1
dN

dpjet
T dz

=
1

�.z, pjet
T /

 
dNjet

dpjet
T

!−1

pjet dN

dpjet
T dp||

ˇ̌̌̌
ˇ̌
z=p|| /pjet

(6.44)

with �.z, pjet
T / being the single particle efficiencies that is evaluated using  events and  detector

simulation. �e cluster efficiency is largely independent of z and the jet pT , and therefore a constant function

is used. For the tracking efficiency, the magnetic field bending and electron conversion cuts result in a z

dependence, and a field bending saturation plus polynomial fit are used to parametrize the tracking efficiency

for different jet pT .

Figures 6.12 and 6.13 shows the Run-5 p + p tracking and cluster efficiency as function of z.

Since the DC efficiency deviates from the , due to the lack of modeling of broken wires and bad

pad pixel, the DC efficiency is corrected by comparing the run dependent observation of track distributions,

and aligning the efficiency using two regions in the west arm that are visually without defects. �e observed

DC efficiency divided by the  simulation has been observed to 0.898± 0.023.

Figure 6.14 shows the Run-5 p + p charged and neutral fragmentation function, obtained using the 2D

Phillips–Tikhonov unfolding.
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Figure 6.13: Run-5 p + p tracking reconstruction efficiency as function of the longitudinal momentum fraction z, for

top row, le
 pjet
T = 11.1 GeV/c, right pjet

T = 13.1 GeV/c, bottom row, le
 pjet
T = 15.4 GeV/c, right pjet

T = 18.3 GeV/c.

Fit function for pjet
T = 18.3 GeV/c will be constrained to the highest efficiency point.
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Figure 6.14: Run-5 p + p charged and neutral fragmentation function, obtained using the 2D Phillips–Tikhonov unfold-

ing. �e different jet pT bins are are vertically scaled by integer powers of ten for clarity. Error bars indicate statistical

uncertainties, shaded boxes indicate bin-by-bin unfolding systematic uncertainties. �e gray box to the le
 indicates

the correlated normalization uncertainty.



CHAPTER 6. DATA ANALYSIS II: SPECTRA UNFOLDING 154

Figure 6.15: Run-5 p + p three particle requirement bias as function of the longitudinal momentum fraction z, for the

charged (le
) fragmentation function and neutral (right) fragmentation function at pjet
T = 18.3 GeV/c.

6.5.1 Summary of Systematic Uncertainties

From fits the z dependent efficiency using  simulation, we obtain a systematic uncertainty for the

overall tracking efficiency of 10% and cluster efficiency of 5%. �e run dependent efficiency variation was

observed to be 2.3%. �e inefficiency to hard fragmenting jets due to the the three particle multiplicity re-

quirement for the jet reconstruction is evaluated and quoted as a z dependent, upward systematic uncertainty.

Unfolding systematic uncertainty is evaluated using power law times the Review of Particle Physics D.z/

fits, where we vary the unfolding regularization between 4× 4 until the Nyquist frequency, properly taking

into account the 2D tensor nature of the unfolding.

Figure 6.15 shows the fragmentation function ratios, a
er divided by before applying the three particle

requirement, for both the charged and neutral fragmentation function, for the most severe pjet
T = 18.3GeV/c.

Table 6.4 summarizes the systematic uncertainties that applies to the measurement of the unfolded jet

fragmentation function.

6.6 Cu + Cu Collisions at the Detector Energy Scale

�e Cu + Cu jet event energy scale and the associated efficiency can be determined by embedding either p + p

events simulated by detector simulation, or using the measured p + p event. �e latter can be difficult if the

detector configuration differs significantly between the p + p and heavy ion runs. �e PHENIX Run-5 with
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No. Description Charged magnitude Neutral magnitude

Global scale

1 Tracking efficiency 10% —

2 Cluster efficiency — 5%

3 DC efficiency 2.3% —

Quadrature sum 10% 5%

4 Unfolding normalization

Point-to-point

5 �ree particle jet requirement

6 Unfolding systematic errors

Table 6.4: Table of systematic uncertainties for the unfolded Run-5 p + p jet fragmentation functions

both p + p and Cu + Cu in the same run is a notable exception.

Embedding using actual heavy ion underlying event avoids any parametrization of the underlying event,

whose interaction with jet reconstruction algorithms can be very complex and difficult to study. However,

since jets are always present in the data, and the jet production is in fact enhanced byNcoll, it is crucial to avoid

intrinsic jet production in the minimum bias Cu + Cu events to contaminate the evaluation of the energy scale.

�is causes a slightly paradoxical situation where the low jet yield e.g. at RHIC’s
p
sNN = 200 GeV Cu + Cu

system hurts the statistics of the measurement, but benefits the evaluation of the energy scale. In my case, the

intrinsic jets are removed by both fake jet rejection, and requiring an angular alignment of ∆R < 0.3 for the

input and embedded jet.

�e problem with intrinsic jets may initially appear surprising, since you would expect some amount of

intrinsic jet production to produce combinatorial overlap and contribute to the energy scale. But note that

the “naïve” embedding do not preserve the correct yield ratio, and a real overlap with a high-pT processes

always is rarer in reality. Embedding with correct yield ratio is therefore a costly approach, but may be an

interesting venue to explore for experiments that have higher energy, such at the LHC, and larger problem of

removing intrinsic jets with the naïve embedding.

Embedding with measured p + p events has the additional difficulty that the set of p + p events is usually

contaminated with nonreal jet events arising from the tracking background. During embedding, these jets
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Figure 6.16: Run-5 Cu + Cu 0–10% P.pCuCu
T |pppT / by embedding  tune A and  jets into minimum bias

heavy ion events.

have to be detected and removed.

dN
dpCuCu

T
=
Z
dpppT P.pCuCu

T |pppT /
dN
dpppT

. (6.45)

6.6.1 Embedding Procedure

Embedding starts with a stream of p + p events from  simulated  and  events, and another

stream of minimum bias Cu + Cu events.

Because we observe the energy scale in distinct centrality bins, the embedding reuses the p + p events by

replicating them in centrality bins of 20%. Since the PHENIX acceptance is vertex dependent, a ∆z = 5 cm

vertex bin is used, and both p + p and Cu + Cu events are required to fall inside the same bin. In addition, to

simulate the proper DC hit of the combined event, the DC hit position of the p + p event is shi
ed to align at

the same vertex z position as the Cu + Cu event.

Figures 6.16–6.20 show the Run-5 Cu + Cu P.pCuCu
T |pppT / for different centralities using embedding of

 tune A and  jets into minimum bias heavy ion events.
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Figure 6.17: Run-5 Cu + Cu 10–30% P.pCuCu
T |pppT / by embedding  tune A and  jets into minimum bias

heavy ion events.

Figure 6.18: Run-5 Cu + Cu 30–50% P.pCuCu
T |pppT / by embedding  tune A and  jets into minimum bias

heavy ion events.
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Figure 6.19: Run-5 Cu + Cu 50–70% P.pCuCu
T |pppT / by embedding  tune A and  jets into minimum bias

heavy ion events.

Figure 6.20: Run-5 Cu + Cu 70–90% P.pCuCu
T |pppT / by embedding  tune A and  jets into minimum bias

heavy ion events.
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Figure 6.21: Run-5 Cu + Cu jet reconstruction efficiencies without fake rejection. Top row, le
 to right: 0–10%, 10–30%,

30–50%, bottom row, le
 to right: 50–70%, 70–90%. �e pT region where the efficiency exceeds unity are beyond the

statistical reach in Cu + Cu.

6.6.2 Efficiency

�e same equation as (6.34) is used here to parametrize the efficiency turn on for the fake rejection. In the

case where the fake rejection is turned off, there is no saturation, and a pure Chebyshev polynomial form

is used to parametrize the residual pT dependent effect of the different charged fraction–z max cut and the

centrality dependent, random benefit the jet may receive from the background

�.pppT / =
NX
k=0

akTk

"
log10 p

rec
T /.GeV/c/− 1

2.log10 100+ log10 4/
1
2.log10 100− log10 4/

#
(6.46)

Here, a0 roughly takes over the function of �0 as the base value of the efficiency.

Figures 6.21–6.24 show the Run-5 Cu + Cu jet reconstruction efficiencies for different centralities, and

with no fake rejection, fake rejection at g 0 > 11.5 .GeV/c/2, 17.8 .GeV/c/2, and 27.4 .GeV/c/2.

Tables 6.5–6.9 lists the coefficients for the parametrization of the Run-5 Cu + Cu jet reconstruction effi-

ciencies for different centralities, and with no fake rejection, with fake rejection level at g 0 > 11.5 .GeV/c/2,

17.8 .GeV/c/2, and 27.4 .GeV/c/2.
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Figure 6.22: Run-5 Cu + Cu jet reconstruction efficiencies with fake rejection at g 0 > 11.5 .GeV/c/2. Top row, le
 to

right: 0–10%, 10–30%, 30–50%, bottom row, le
 to right: 50–70%, 70–90%.

Figure 6.23: Run-5 Cu + Cu jet reconstruction efficiencies with fake rejection at g 0 > 17.8 .GeV/c/2. Top row, le
 to

right: 0–10%, 10–30%, 30–50%, bottom row, le
 to right: 50–70%, 70–90%.



CHAPTER 6. DATA ANALYSIS II: SPECTRA UNFOLDING 161

Figure 6.24: Run-5 Cu + Cu jet reconstruction efficiencies with fake rejection at g 0 > 27.4 .GeV/c/2. Top row, le
 to

right: 0–10%, 10–30%, 30–50%, bottom row, le
 to right: 50–70%, 70–90%.

0–10% 10–30% 30–50% 50–70% 70–90%

a0 0.954± 0.048 0.940± 0.037 0.915± 0.034 0.896± 0.037 0.865± 0.030

a1 0.027± 0.092 0.041± 0.070 0.055± 0.066 0.092± 0.070 0.112± 0.057

a2 0.042± 0.079 0.046± 0.060 0.028± 0.056 0.027± 0.060 0.000± 0.049

a3 0.022± 0.066 0.026± 0.049 0.015± 0.047 0.037± 0.049 0.039± 0.040

a4 −0.008± 0.045 −0.006± 0.033 −0.016± 0.031 0.004± 0.032 −0.002± 0.027

a5 −0.003± 0.028 −0.010± 0.020 −0.019± 0.020 −0.010± 0.020 −0.009± 0.017

Table 6.5: Parametrization using the saturation level and Chebyshev polynomial coefficients for the level efficiency

without fake rejection.
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0–10% 10–30% 30–50% 50–70% 70–90%

�0 0.961± 0.028 0.977± 0.027 0.902± 0.012 0.915± 0.015 0.896± 0.011

a0 5.196± 0.087 2.489± 0.055 7.746± 0.052 5.053± 0.043 4.531± 0.030

a1 8.11± 0.13 3.338± 0.076 12.703± 0.068 7.987± 0.056 7.044± 0.036

a2 5.34± 0.12 1.829± 0.076 8.664± 0.077 5.184± 0.063 4.419± 0.044

a3 3.56± 0.14 1.419± 0.071 5.756± 0.082 3.523± 0.065 3.075± 0.044

a4 1.54± 0.14 0.592± 0.073 2.683± 0.089 1.625± 0.071 1.448± 0.048

a5 0.271± 0.057 0.034± 0.031 0.567± 0.038 0.301± 0.030 0.252± 0.022

Table 6.6: Parametrization using the saturation level and Chebyshev polynomial coefficients for the g 0 > 11.5 .GeV/c/2

fake rejection level efficiency.

0–10% 10–30% 30–50% 50–70% 70–90%

�0 0.969± 0.027 0.949± 0.018 0.918± 0.014 0.931± 0.015 0.8963± 0.0092

a0 5.658± 0.047 4.769± 0.031 6.531± 0.025 4.823± 0.021 5.4342± 0.0084

a1 9.383± 0.061 7.780± 0.039 10.966± 0.031 7.946± 0.026 9.0198± 0.0097

a2 6.320± 0.073 5.132± 0.049 7.437± 0.039 5.255± 0.033 5.984± 0.012

a3 4.120± 0.068 3.444± 0.045 4.813± 0.037 3.512± 0.031 3.979± 0.012

a4 2.024± 0.070 1.760± 0.047 2.386± 0.039 1.830± 0.033 2.095± 0.014

a5 0.467± 0.031 0.402± 0.021 0.562± 0.017 0.440± 0.015 0.5166± 0.0067

Table 6.7: Parametrization using the saturation level and Chebyshev polynomial coefficients for the g 0 > 17.8 .GeV/c/2

fake rejection level efficiency.
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0–10% 10–30% 30–50% 50–70%

�0 0.954± 0.014 0.930± 0.028 0.9175± 0.0095 0.8970± 0.0099

a0 14.72496± 0.00080 14.756± 0.070 14.76716± 0.00050 23.135640± 0.000071

a0 26.40629± 0.00088 26.434± 0.053 26.45024± 0.00054 41.793580± 0.000082

a0 19.7375± 0.0012 19.68± 0.12 19.64942± 0.00072 31.47597± 0.00013

a0 12.8510± 0.0025 12.74± 0.22 12.6540± 0.0012 20.1916± 0.0011

a0 6.8379± 0.0030 6.73± 0.21 6.6546± 0.0013 10.51858± 0.00016

a0 2.4877± 0.0015 2.42± 0.12 2.37848± 0.00087 3.809879± 0.000084

a0 0.45334± 0.00094 0.427± 0.032 0.41427± 0.00058 0.718874± 0.000069

Table 6.8: Parametrization using the saturation level and Chebyshev polynomial coefficients for the g 0 > 27.4 .GeV/c/2

fake rejection level efficiency, part one of the centralities.

70–90%

�0 0.8835± 0.0090

a0 23.2142± 0.0017

a0 41.8376± 0.0020

a0 31.2367± 0.0034

a0 19.7559± 0.0048

a0 10.1177± 0.0036

a0 3.5891± 0.0021

a0 0.6494± 0.0018

Table 6.9: Parametrization using the saturation level and Chebyshev polynomial coefficients for the g 0 > 27.4 .GeV/c/2

fake rejection level efficiency, part two of the centralities.
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6.6.3 RAA

�e nuclear modification factor RAA is defined as the TAB = Ncollσinel corrected ratio between the heavy ion

collision yield and the p + p collision cross section

RAA =
N−1

evt dNCuCu/dpT
hTABidσpp /dpT

. (6.47)

From the Run-5 Cu + Cu spectrum unfolded to the p + p energy scale, it is now possible to divide out the

efficiency evaluated above, to obtain the ratio of the so corrected Cu + Cu spectrum to the p + p raw spectrum.

Since the p + p raw spectrum does not contain any correlated uncertainty, the division is straightforward.

Superimposing the raw Cu + Cu spectrum divided by the TAB times the p + p raw spectrum gives a rough

check on the size of the suppression of the RAA simply from the input spectrum and uncorrected for the

underlying event smearing, and the additional downward correction using unfolding. In central Cu + Cu

collision, there is in fact already a sizable suppression without any correction.

When comparing the spectrum without fake rejection and with our nominal fake rejection level, one can

see the effect of the fake jet in the central to mid-peripheral collisions. However, above a jet pCuCu
T ≈ 17GeV,

there is little to none difference between the raw, unrejected spectrum, and the spectrum with fake rejection,

but with the inefficiency obtained from embedding p + p jets. �is gives a strong constraint that the observed

suppression is not caused by the fake rejection.

Figures 6.25–6.29 show, for different centralities, the Run-5 Cu + Cu RAA raw, a
er fake rejection, and

unfolded to the p + p (detector) energy scale.

Figure 6.30 shows the Run-5 Cu + Cu RAA unfolded to the p + p (detector) energy scale.

6.6.4 RCP

�e RCP is calculated by dividing the hTABi scaled unfolded spectra of different centralities by the hTABi, most

peripheral 70–90% centrality. When evaluating the uncertainties, the division take the full covariance matrix

into account.

Figure 6.30 shows the Run-5 Cu + Cu RCP unfolded to the p + p (detector) energy scale.

6.6.5 Summary of Systematic Uncertainties

Like the unfolded p + p spectrum, the RAA systematic uncertainty is also based on the systematic uncertainty

of the raw jet spectrum (section 5.14). Since we are evaluating a ratio, the finite acceptance partially cancel,
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Figure 6.25: Run-5 Cu + Cu 0–10% centrality RAA raw, a
er fake rejection, and unfolded to the p + p (detector) energy

scale. Error bars indicate statistical uncertainties, shaded boxes indicate bin-by-bin unfolding systematic uncertainties.

�e gray box to the le
 indicates the correlated normalization uncertainty.

Figure 6.26: Run-5 Cu + Cu 10–30% centrality RAA raw, a
er fake rejection, and unfolded to the p + p (detector) energy

scale. Error bars indicate statistical uncertainties, shaded boxes indicate bin-by-bin unfolding systematic uncertainties.

�e gray box to the le
 indicates the correlated normalization uncertainty.
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Figure 6.27: Run-5 Cu + Cu 30–50% centrality RAA raw, a
er fake rejection, and unfolded to the p + p (detector) energy

scale. Error bars indicate statistical uncertainties, shaded boxes indicate bin-by-bin unfolding systematic uncertainties.

�e gray box to the le
 indicates the correlated normalization uncertainty.

Figure 6.28: Run-5 Cu + Cu 50–70% centrality RAA raw, a
er fake rejection, and unfolded to the p + p (detector) energy

scale. Error bars indicate statistical uncertainties, shaded boxes indicate bin-by-bin unfolding systematic uncertainties.

�e gray box to the le
 indicates the correlated normalization uncertainty.
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Figure 6.29: Run-5 Cu + Cu 70–90% centrality RAA raw, a
er fake rejection, and unfolded to the p + p (detector) energy

scale. Error bars indicate statistical uncertainties, shaded boxes indicate bin-by-bin unfolding systematic uncertainties.

�e gray box to the le
 indicates the correlated normalization uncertainty.

Figure 6.30: Run-5 Cu + Cu RAA in the p + p (detector) energy scale. Error bars indicate statistical uncertainties, shaded

boxes indicate bin-by-bin unfolding systematic uncertainties. �e gray box to the le
 indicates the correlated normal-

ization uncertainty.
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Figure 6.31: Run-5 Cu + Cu RCP in the p + p (detector) energy scale. Error bars indicate statistical uncertainties, shaded

boxes indicate bin-by-bin unfolding systematic uncertainties.

No. Description Magnitude

Global scale

1 BBCLL1 cross section 5%

2 BBCLL1 efficiency 1.5%

3 p + p ERT efficiency saturation level 2%

4 Minimum bias/ERT normalization matching 5%

5 Cu + Cu vs. p + p EMCal/DC acceptance difference 5%

6 Cu + Cu vs. p + p energy scale difference 10%

Quadrature sum 13%

Point-to-point

7 e± contamination for prec
T > 20GeV/c 10%

8 Unfolding systematic errors

Table 6.10: Table of systematic uncertainties for the raw jet spectrum.
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and a 5% uncertainty is quoted based on the observation of the EMCal and DC acceptance difference between

Run-5 p + p and Cu + Cu. Similarly, the energy scale from sector E/p calibration between Run-5 p + p and

Cu + Cu are consistent within 2%, and consequently, the impact on an exponent −5 power law spectrum is

about 10%.
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Chapter 7

Discussion

In this thesis, we developed a Gaussian filter based jet reconstruction method, and an associated fake rejection

strategy. Combining both, this approach notably can be applied to

1. p + p and heavy ion collisions, where the effect of the elliptic flow can be fully parametrized

2. moderate energy jets in an high multiplicity environment

3. a detector with small aperture, where furthermore the background modulated by a nontrivial efficiency

variation can be fully taken into account

I believe that it can be stated fairly that even now, three years a
er the development of these tools, other jet

reconstruction algorithms have yet to demonstrate the features listed above at the performance shown in this

thesis.

�is thesis laid out much of the fundamentals how to perform jet reconstruction in p + p heavy ion colli-

sion at PHENIX. I demonstrated that even with a detector consisting of two ∆η×∆ϕ = 0.7× π
4 spectrometer

arms (but efficiently triggered), it is possible to measure a fully energy corrected jet spectrum up to x ≈ 0.6

and a jet fragmentation function up to z ≈ 0.8. Two years a
er producing these results, this is still the highest

x at RHIC and the only jet fragmentation function obtained at RHIC.

Strong suppression of jets in central Cu + Cu collisions was observed. �e level at the central 0–10% and

moderate pT ≈ 12 GeV/c is about RAA ≈ 0.4 and comparable to the single particle suppression level, while

all centralities gain suppression with increasing pT to a peripheral 70–90% RAA ≈ 0.8 at 25GeV/c. �is may

be indicating that there is a significant initial state effect at high pT , which was difficult to access so far at

RHIC using single particle yield.

An initial attempt was undertaken to extract the dijet azimuthal correlation function. No significant k⊥

broadening was observed. Assuming L = 1 fm, the statistical uncertainty of hkTi < 0.5 GeV/c would trans-

lates into a strong constraint of Oq < 0.3 GeV2/fm. �is may be an initial indication that the k⊥ broadening
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with the BDMPS-Z type energy loss is not present. But more work is going to be needed in this area to produce

an effective constraint.
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Appendix A

ElementaryMathematical Tools

A.1 Floating Arithmetic

To facilitate discussion about numerical algorithms and accuracy, I will first review the IEEE 754-1985 and

754-2008 representation of floating point numbers.

�e binary16, binary32, binary64 and binary128 formats are all represented by the bit tuple

.S, E0 , . . . , Ew−1 , d1 , . . . , dp−1/ (A.1)

where E0, d1 are the most significant bits (MSB) of the biased exponent and trailing significand (with the

leading bit d0 suppressed as being implicit) field. Taking the tailing significand field as an integer, its value is

T = .d1d2 . . . dp−1/2 =
p−1X
k=1

dk2p−1−k . (A.2)

�e biased exponent is obtained by offsetting its binary value as

E = .E0E1 . . . Ew−1/2 + Ebias =
w−1X
k=0

Ek2w−1−k + Ebias. (A.3)

Ignoring for simplicity the representation of infinities and not-a-numbers (NaN), the three finite number

representations are

• Normal numbers with 1 ≤ E ≤ 2w − 2

Nx = .−1/S.1+ 21−pT/2E−Ebias (A.4)

where the addition of one corresponds to the restoration of the implicit significand bit.

• Subnormal numbers with E = 0, T ≠ 0

Nx = .−1/S.0+ 21−pT/2Emin (A.5)

where Emin = 2− 2w−1.
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• Signed zero E = 0, T = 0

Nx = .−1/S.+0/ (A.6)

Most of the following discussion is intended for the binary32 format, which specifies a significand consisting

of p = 24 implicit binary digits, an exponent width of w = 8. Another format used in this thesis is the

storage of detector cut parameters as binary16, which has p = 11 and w = 5.

In computer arithmetics, specification of the precision of an operation is usually normalized to the ex-

pected rounding error from finite precision, denoted as the unit in the last place (ULP).

A.2 Error Propagation

It is quite peculiar to discuss error propagation in a PhD thesis, the topic usually being assumed to be familiar

to every undergraduate student. However, the full-fledged form of error propagation and propagation of

covariances is rarely taught at that level, and a
er these first classes, the matter of error propagation is quickly

considered as closed. Yet one of the key derived quantity for spectra unfolding is the measurement of ratios,

where we would like to obtain the full bin-to-bin covariance of the ratio with correlated, unfolded spectra.

�erefore, we have the misfortune here to dig out this topic again.

Using the Taylor expansion of statistical moments and keeping terms up to the second moment, the ex-

pectation value is

EŒ f.X,Y/� = E
�
f.µX , µY /+ fX.µX , µY /.X − µX /+ fY.µX , µY /.Y − µY /

+
1
2
fXX.µX , µY /.X − µX /2 +

1
2
fYY.µX , µY /.Y − µY /2

+ fXY.µX , µY /.X − µX /.Y − µY /+ OŒ.X +Y/3 �
�

≈ f.µX , µY /+
1
2
fXX.µX , µY /Var.X/+

1
2
fYY.µX , µY /Var.Y/

+ fXY.µX , µY /Cov.X,Y/.

(A.7)

One notices that contribution of uncertainty to the propagated mean appears, which the commonly taught,

“elementary” error analysis suppresses. Analogously, the variance

VarŒ f.X,Y/� = EfŒ f.X,Y/− f.µX , µY /�2g (A.8)
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evaluates to

VarŒ f.X,Y/� ≈ f 2X.µX , µY /Var.X/+ f 2Y .µX , µY /Var.Y/

+ 2fX.µX , µY / fY.µX , µY /Cov.X,Y/,
(A.9)

which is just the special case of the general result

CovŒ f.U,V/, g.X,Y/� = EfŒ f.U,V/− f.µU , µV /�Œ g.X,Y/− g.µX , µY /�g

= fU.µU , µV /gX.µX , µY /Cov.U, X/

+ fU.µU , µV /gY.µX , µY /Cov.U,Y/

+ fV.µU , µV /gX.µX , µY /Cov.V, X/

+ fV.µU , µV /gY.µX , µY /Cov.V,Y/.

(A.10)

Two main types of error propagation are encountered when working with histograms, linear combination

for histogram merging and scaling, and taking the quotient to obtain ratios. For the linear combination

f.X,Y/ = aX + bY , one can readily check that the linearity

E.aX + bY/ = aE.X/+ bE.Y/ (A.11)

Cov.aU + bV, cX + dY/ = acCov.U, X/+ adCov.U,Y/+ bcCov.V, X/+ bdCov.V,Y/ (A.12)

is fully preserved with the moment expansion. For the less trivial quotient f.X,Y/ = X/Y ,

fX.X,Y/ =
1
Y
, fY.X,Y/ = −

X
Y 2 (A.13)

fXX.X,Y/ = 0, fYY.X,Y/ =
2X
Y 3 , fXY.X,Y/ = −

1
Y 2 , (A.14)

and we obtain as the propagated values

E
�
X
Y

�
=

E.X/
E.Y/ +

E.X/Var.Y/
E3.Y/ −

Cov.X,Y/
E2.Y/

(A.15)

Cov
�
U
V
,
X
Y

�
=

Cov.U, X/
E.V/E.Y/ −

E.X/Cov.U,Y/
E.V/E2.Y/ −

E.U/Cov.V, X/
E2.V/E.Y/ +

E.U/E.X/Cov.V,Y/
E2.V/E2.Y/

. (A.16)

For the ratio of two independent measurements, no correlation exists between the numerator and the de-

nominator, and the above expression simplifies to

Cov
�
X1
Y1
,
X2
Y2

�
=

Cov.X1 , X2/
E.Y1/E.Y2/

+
E.X1/E.X2/Cov.Y1 ,Y2/

ŒE.Y1/E.Y2/�2
, (A.17)

which is the generalization of the familiar

Var
�
X
Y

�
=

Var.X/
E2.Y/ +

E2.X/Var.Y/
E4.Y/

(A.18)

for uncorrelated variates.



APPENDIX A. ELEMENTARY MATHEMATICAL TOOLS 175

A.3 Kinematics

A.3.1 Rapidity and Pseudorapidity

�e standard Lorentz boost along x3 in matrix form (suppressing the invariant coordinates x1, x2) and for

Minkowski coordinates is �
ct 0

x03

�
=

�
γ −βγ

−βγ γ

��
ct

x3

�
(A.19)

�is transform is diagonalized by going into the light cone coordinate x± ≡ ct ± x3, and the boost is then

ct 0 ± x03 = .γct − βγx3/± .γx3 − βγct/ = .γ ∓ γβ/.ct ± x3/, (A.20)

and therefore

x±0 = .γ ∓ γβ/x± =

s
1∓ β
1± β

x±. (A.21)

�is is in turn similar to the homomorphism between the Lorentz group and the Möbius group, where the

Lorentz vector is a 2× 2 Hermitian matrix in SL.2,ℂ/

X =

�
ct + x3 x1 − ix2

x1 + ix2 ct − x3

�
. (A.22)

Using the Lie algebra structure of the Lorentz group, one can observe that the finite Lorentz boost evolves

linearly (and therefore more “naturally”) with a rapidity variable y, i.e. by setting

e y =

s
1+ β
1− β

, (A.23)

and the light cone coordinate now transforms as
�
x+0

x−0

�
=

�
e−y 0

0 e y

��
x+

x−

�
. (A.24)

or expressed as the hyperbolic transformation in SL.2,ℂ/

B ≡

�
e y/2 0

0 e−y/2

�
, X0 = B X B†. (A.25)

Symmetrization and antisymmetrization of either form gives back the boost according to the Minkowski

coordinates as �
ct 0

x03

�
=

�
cosh y − sinh y

− sinh y cosh y

��
ct

x3

�
. (A.26)
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For a four vector p in the momentum space, the rapidity (and accounting for the sign) is therefore

y =
sgn p3
2

ln
E + p3c
E − p3c

(A.27)

and a convenient, boost invariant quantity for high momentum particle can be defined by setting zero mass,

which gives the purely Cartesian defined pseudorapidity

η =
sgn p3
2

ln
|p|+ p3
|p|− p3

= tanh−1 p3
|p|

, (A.28)

with the last step being the hyperbolic Weierstrass substitution.

A common mistake made by most high-energy physics frameworks such as  and  is to use

numerically unstable “textbook” formula to calculate rapidity. In midrapidity,

cos θ =
p3
|p|

⪡ 1 (A.29)

and is suitable to represent the angle accurately as a floating point number, while in the forward direction

cos θ ≈ 1 and becomes a fixed point number, where the kinematics is stored purely in the mantissa. Two

methods can be used to also cover the forward kinematics. Examining the sine gives immediately

sin θ =
q
1− tanh2 η =

1
cosh η

(A.30)

and the pseudorapidity evaluates to

η = cosh−1 |p|
pT
. (A.31)

Another, potentially more efficient method (since standard C library typically implements cosh−1.�/ using

two logarithms) is to note that
1+
p
1− x2

1−
p
1− x2

=

 
1+
p
1− x2

x

!2
, (A.32)

which gives

η = sgn p3 ln
1+

p
1− sin2 θ

sin θ
. (A.33)

Applying the tangent half-angle formula to (A.33) in fact gives another strangely popular, yet given that a

transcendent function is needed to access half angles in the first place, a numerically undesirable relation for

the pseudorapidity

η = − ln
�

tan
�
θ
2

��
. (A.34)
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A.3.2 Angular Range Reduction

Range reduction is a well-known problem in computer arithmetics, when trigonometric functions has to be

implemented without loss of precision for large arguments. �e Cody and Waite range reduction [106] is a

standard approach to increase the effective mantissa length in order to avoid the subtractive loss of precision

when obtaining ϕ∗. In the following implementation, a three coefficient Cody and Waite range reduction

ϕ∗ = Œ.ϕ − kC1/− kC2 �− kC3. (A.35)

is used for the azimuth, where k ∈ ℤ and −π < ϕ∗ ≤ π. Eight bits are reserved for an exact multiplication,

which gives a range reduction sufficient for |ϕ| < 512π ≈ 1608.5, which is completely sufficient (except for

unintended, numerically unstable situations with run away arguments). �e coefficients for IEEE 754 single

precision are

C1 =
3217
512

C2 = −
38 263

2 147 483 648

C3 = 2π −
13 493 037 705
2 147 483 648

≈ −2.225 772 67× 10−10

(A.36)

and for double precision

C1 =
27 633 741 218 861
4 398 046 511 104

C2 = −
26 691 486 927 953

1 237 940 039 285 380 274 899 124 224

C3 = 2π −
7 778 206 666 007 221 413 453 810 769
1 237 940 039 285 380 274 899 124 224

≈ 3.537 488 226 454 280 448 1× 10−28

(A.37)

Range reduction over the entire range of machine floating point numbers can be implement using the

Payne and Hanek range reduction. Here, typically 2k /π is expanded into 16-bit integer digits (to facilitate

multiplication on 32-bit architectures).

A.4 Pseudorandom Number Generation

In the classification of pseudorandom number generators (PRNG), the Mersenne Twister (MT) is a twisted

generalized feedback shi
 register (TGFSR), where the twist matrix is in the rational normal form, and with
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added state bit reflection and tempering. �e period length of MT is given by l = 2nw−r − 1, n being the

degree of recurrence, w the word size in bits, and r is the separation point of one word (defined as the number

of bits of the lower bitmask). Choosing the period length to be a Mersenne prime simplifies the primitivity

test necessary for the twist matrix search.

Unlike the popular MT19937 and the SFMT – a later MT version that is more adapted for the single

instruction, multiple data (SIMD) architectures –, a reduced degree of recurrence allows a computationally

feasible search of different twist matrices and tempering bitmasks using the “dynamic creator” [107], and

therefore provides a parallel stream PRNG for distributed event generation with guaranteed no stream over-

lap. Each stream is characterized by a, being the coefficients of the rational normal form twist matrix, and

.b, c/ which is a pair of tempering bitmasks. Among the commercially available SIMD PRNG libraries, the

Intel Math Kernel Library [108] provides 210 MT2203 generators, the ClearSpeed Random Number Genera-

tor Library [109] 960 MT2203, while the IBM Cell Broadband Engine SDK [110] 210 MT1279 and MT2281

each. Note that even for MT1279, l ≈ 1.041 × 10385 is more than 300 orders of magnitude larger than the

number of baryons in the observable universe.

A Streaming SIMD Extension 2 (SSE2) assembly based implementation of MT2203 was written for -

 and ’s  (and later also used for  and ). �e generated streams is identi-

cal to Intel Math Kernel Library 9.x. �e typical performance on an Intel Core 2 processor is measured to

be 9.1 cycle/element, slightly faster than Intel Math Kernel Library (10.2 cycle/element), and significantly

outperforming other popular MT19937 implementations found in high energy physics libraries, like 

(22cycle/element, used e.g. by the ATLAS Collaboration). Similar to the revised reference code by Nishimura

& Matsumoto (the initial reference code had a bad seeding procedure), scalar seeding of the FSR is done us-

ing two multiplicative congruential generators (MCG), both have been reviewed in the table of MCG by

Knuth [111]. �ese are the Lavaux & Janssens multiplier (1 664 525, line 16 in aforementioned table), and the

Waterman multiplier (1 566 083 941, line 14 in the table).

Since I initially was preparing for simulation on the order of 104–105 parallel processes, a large scale

search for MT2203 parameters was performed, which covers 1/16 of the total parameter space, and resulted

in 344,682 possible combinations of MT2203. But ultimately, 1024  processes using the MT2203 pa-

rameters from the Intel Math Kernel Library proved to be sufficient.
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Appendix B

Implementing Gaussian Filter Algorithm

B.1 IIR Approximation

Unlike I. T. Young and L. J. van Vliet [70], who used a traditional, Lp norm optimization (with increasing p) to

approximate the minimax optimization, an initial guess is found here by brute force (randomized) sampling

of the phase space. �is gives

d1 ≈ 1.047+ 1.277i

d3 ≈ 1.664+ 0.472i
(B.1)

which is about ∆Re d ≈ ∆ Im d ≈ 10−3 away from the true minimum. �is initial guess already contains

alternating extrema, and is therefore sufficiently close to express the problem directly in a Remez form. �e

solution can be found by solving the problem for an equiripple design, where the alternating extrema are of

equal magnitude.

Implementing the equiripple design algorithm requires an 1-dimensional minimizer and a nonlinear

solver for systems of equations. In our case, it is implemented (for simplicity) using  [112].

�e solution (to 20 decimal digits) is

d1 = 1.047 190 104 512 483 612 5+ 1.276 949 802 260 221 097 3 i

d3 = 1.664 976 595 012 524 238 0+ 0.472 723 701 118 885 756 46 i
(B.2)

while the norm of the approximation residual is L∞ = 3.578× 10−3, which is a 20.7% improvement over the

poles published by Young and van Vliet.

Note that modulo the ±ω symmetry and the trivial minimum H1,4.ω = 0/ = 1, the minimax design

here has five nontrivial extrema, giving four minimax constraints, which is the same four degrees of freedom

in d1, d3. Because of the pole structure, there is also no other possible solution with the extrema inverted. By
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Figure B.1: �e residual approximation error H1,4Œexp.iω/� − exp.−2ω2/ and the complex function |H1,4.z/ −

expŒ−2.arg z/2 �|, with the poles marked by “×”.

comparison, the poles by Young and van Vliet results in a double (quartic as opposed to a parabolic) minimum

at H1,4.ω = 0/, therefore missing one remaining minimax constraint. �is should serve as a cautionary tale

to blindly trust a locally minimizing conjugate gradient optimization, as Young and van Vliet claiming to have

used.

Figure B.1 shows the error function of the minimax design in both the frequency and the complex z

domain.

B.2 SIMD Biquad Filter

�e discrete, IIR realization of the Gaussian filter, as described in section 3.2.1.1, can be efficiently imple-

mented using single instruction, multiple data (SIMD) methods, such as using the Streaming SIMD Extension

(SSE) in Intel and AMD processors.

For this section and below, I will use an assembly “semi-pseudocode”, where I show the algorithm using

IA-32/x86-64 opcode mnemonic defined in [113], and the AT&T operand syntax, for which a modern ref-

erence can be found in [114]. For clarity and brevity, load/store operations are provided symbolically, and

constants are provided as immediates (vs. explicitly loading them and pass by register/address). C99 [115]

and POSIX [116] constants are used. Compare also D. E. Knuth [117] for some of these notations.

Since the original SSE does perform multiply–accumulate (MAC) as a single operation, an extra register

is needed every time. A biquad fits – some path planning required – tightly into eight total XMM registers on

IA-32. �erefore, the implementation of a IIR biquad on IA-32 SSE assembly is quite instructive. �e ability
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of instruction pipelining is sacrificed to achieve the register usage.

Four XMM registers are occupied by the biquad coefficients. In the direct form 1 (DF1) realization [118],

the direct and recursive delay lines each occupy two registers, completely occupying all registers, but the

registers can be successively freed for MAC. While the direct form 2 (DF2) is usually considered simpler, this

however not necessarily true for small number of registers, where the duplication of the combined delay line

and coding the MAC around the register containing wi−1 becomes the dominant issue, and therefore, the

DF2 is missing one register to even gain a clear advantage in term of pipelining.

For an eight register DF1 realization, we start with the initialization

%xmm0 xi−1

%xmm1 xi−2

%xmm2 yi−1

%xmm3 yi−2

�e loop is dynamically unrolled, i.e. the delay line is mapped on to a ring buffer of length N = 2, where the

indexing is explicitly hard-coded, and is repeated N times until the loop cycle is completed. Note how %xmm1

and %xmm3 are strategically freed for further multiply–accumulation, and one %xmm1$ %xmm0 is embedded

to complete the loop unrolling:

mulps b2, %xmm1

mulps a2, %xmm3

subps %xmm3, %xmm1

movaps %xmm0, %xmm3

mulps b1, %xmm3

addps %xmm1, %xmm3

movaps %xmm2, %xmm1

mulps a1, %xmm1

subps %xmm1, %xmm3

Now load

%xmm1 xi

then assemble the biquad output
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addps %xmm1, %xmm3

and store

yi  %xmm3

To complete the loop, repeat above with the register exchange %xmm1 $ %xmm0, %xmm3 $ %xmm2 and add

loop bookkeeping.

B.3 SIMD Exponential Function

�e continuous realization of the Gaussian filter, as described in section 3.2.1.4, involves the evaluation of

large number of exponentially weighted distance squares, and the performance can be enhanced using SIMD,

which calculates the exponential function of an array in parallel. However, the SSE instruction set (unlike

the x87 FPU) on IA-32/x86-64 does not provide transcendental functions, which must be implemented in a

subprogram library. �is section describes the implementation of such a function.

Several comparable implementation of the (vector or scalar) exponential functions are currently available

for Intel and AMD central processing units (CPUs):

1. Glibc, which evaluates the exponential function using the x87 FPU opcode f2xm1, is typically the most

inefficient approach when multiple vector elements are exponentiated simultaneously. Since switching

the FPU precision incurs a considerable latency, usually  is still evaluated with either double or the

Intel extended precision (64-bit mantissa). Consequently, this approach provides a 0.5 ulp implemen-

tation.

2. �e Intel Short Vector Math Library () [119] provides with  a fully IEEE Std 754 [120]

compliant implementation, i.e. with defined behavior with infinity, NaN, and subnormal (or denormal)

[121] input and output (not “flush-to-zero”) with 8 XMM register footprint. Its accuracy is significantly

lower than 1 ulp.

3. �e AMD Core Math Library () [122] provide with ___ a non-IEEE Std 754 imple-

mentation with 8 XMM register footprint. Subnormal output triggers a “flush-to-zero” behavior. �e

implementation is x86-64 architecture only.
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Here I will describe an implementation that has a footprint of four %xmm registers (i.e. inlineable on

IA-32 while having four accumulation registers) and achieves an execution latency of < 20 cpe on Intel Core

2 architecture.

On floating point units with fast multiplication, the exponential function is typically implemented with

an accurate approximation g.x∗/ ≈ exp.x∗/ in a small interval, then with an additive range reduction in the

form of x∗ = x − kC to generalize g.x∗/ into the full definition range, and the unrestricted approximation

becomes

exp.x∗/ ≈ exp.Ck /g.x∗/. (B.3)

For a so
ware implementation without any tables (in order to maintain cacheability) and on a hardware with

binary arithmetic, C = ln 2 is the natural choice as exp.Ck / = 2k can be applied without any floating point

operations.

Typically, exp.x∗/ is implemented within an interval of width C. However, when implementing in SSE,

which implements all four IEEE Std 754 binary rounding modes ([121] and [113], section 4.8.4), but is unable

to revert to central rounding efficiently, extending the range to accomodate the different range reduction

results from all rounding modes is usually more efficient than enforcing the rounding mode.

�e argument x of an exponential function has a range in which there is no overflow and underflow lim-

ited by x ∈ Œ−.ln 2/−12e−1 , .ln 2/−12e−1/ ⊂ Œ−2e , 2e �, therefore a Cody and Waite range reduction is com-

pletely sufficient. Section A.3.2 already described the Cody and Waite range reduction with three coefficients

for the azimuth angle. Empirically, it can be shown that a two coefficient version achives the neccessary preci-

sion. In the two coefficient form of the Cody and Waite range reduction, C is expanded into as C = C1+C2,

and the range reduction becomes

x∗ = .x − kC1/− kC2. (B.4)

Since |k| ≤ 1
2 e ln 2 < e, iteratively rounding Ci = ni2−.m−e/, ni ∈ ℤ for i = 1, 2 gives

C1 =
22 713
32 768

,

C2 = ln 2− C1 ≈ 1.428 606 82× 10−8.
(B.5)

In the semi-pseudocode notation, the range reduction is:

%xmm0 x

movaps %xmm0, %xmm2
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Implementation xworst exp.xworst/− exp.xworst/ .ulp/

_ −
14 324 743
524 288

+1.05

 −
14 638 661
536 870 912

−3.22

___ −
2 862 199
32 768

−8.30× 106

Table B.1: Accuracy and the worst argument of the SIMD IEEE 754 single precision exp functions, the Gaussian filter

_, the Intel  , and the AMD  ___, for the round to the nearest (even) mode. �e

large inaccuracy of ___ is due to the flush-to-zero behavior for subnormalized results.

Rounding mode xworst exp.xworst/− exp.xworst/ .ulp/

nearest (even) −
14 324 743
524 288

+1.05

directed +∞
363 249
4 096

+2.32

directed −∞ −
8 863 745

34 359 738 368
−3.56

directed 0
11 628 949
524 288

−2.55

Table B.2: Accuracy and worst argument of the Gaussian filter SIMD IEEE 754 single precision exp function for different

rounding modes.

mulps .ln 2/−1, %xmm2

minps FLT_MAX_EXP− 1, %xmm2

cvtps2dq %xmm2, %xmm3

cvtdq2ps %xmm3, %xmm2

movaps %xmm2, %xmm1

mulps C1, %xmm1

mulps C2, %xmm2

subps %xmm1, %xmm0

subps %xmm2, %xmm0
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Figure B.2: �e worst case accuracy as function of the exponent for the Gaussian filter _. �e horizontal axis

for the negative arguments is reversed for clarity.
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Figure B.3: �e worst case accuracy as function of the exponent for the Intel Compiler 12.0.1.107  . �e

horizontal axis for the negative arguments is reversed for clarity.
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Figure B.4: �e worst case accuracy as function of the exponent for the AMD Core Math Library 4.4.0 ___.

�e horizontal axis for the negative arguments is reversed for clarity. �e large (off scale) inaccuracy of −8.3× 106 ulp

is due to the flush-to-zero behavior for subnormalized results.
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For the range x∗ ∈ Œ−C,C �, a 7th order polynomial minimax approximation to exp.x∗/ is the lowest or-

der that results in an implementation suitable for a single precision implementation with a precision < 1ulp.

�e minimax approximation can be computed using the Remez algorithm [75] modified by exchanging ex-

trema of relative approximation errors. However, rounding error in the lowest order coefficients typically

degrate the approximation, which makes using the unconstrained minimax approximation, and can be ap-

proximatively minimized by evaluate the minimax approximation with the constraint of the lowest order

coefficients being machine numbers (see e.g. [123], p. 51ff)

Ng.x∗/ = 1+ x∗ + O.x∗2/. (B.6)

�is gives rounded to single precision

Ng.x∗/ = 1+ x∗ +
1 048 577x∗2

2 097 152
+
11 184 819x∗3

67 108 864
+
11 183 107x∗4

268 435 456
+

+
8 946 659x∗5

1 073 741 824
+
12 127 477x∗6

8 589 934 592
+

13 847 623x∗7

68 719 476 736
.

(B.7)

Machine implementation of the above using the Horner scheme should be obvious.

Handling subnormal results can be expensive and  omits it all together. Among several paths to

implement it, the version found to exhibit the best pipelining prescales the exponent by .m + 1/ and rescale

the result by 2−.m+1/. �e prescale is generated by comparison (and therefore potentially offloads the operand

to a nonarithmetic execution unit).

�e exponent generation with subnormal handling is then:

movdqa FLT_MIN_EXP, %xmm1

movdqa FLT_MIN_EXP− FLT_MANT_DIG, %xmm2

pcmpgtd %xmm3, %xmm1

pcmpgtd %xmm3, %xmm2

pand FLT_MANT_DIG, %xmm1

paddd FLT_EXP_BIAS, %xmm3

psubd %xmm1, %xmm3

paddd FLT_EXP_BIAS, %xmm1

pslld $23, %xmm3

pslld $23, %xmm1

mulps %xmm3, %xmm0
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CPU model Stepping �reading _  ___

AMD Opteron 848 1 ST 28.43 37.31 25.15

AMD Phenom II X4 955 2 ST 21.11 37.32 25.22

Intel Core 2 Duo T7500 10 ST 16.63 17.84 20.13

Intel Xeon L5640 2 ST 15.09 16.12 18.11

Intel Xeon X5660 2 SMT 18.47 19.78 22.04

Table B.3: �e speed of the SIMD IEEE 754 single precision exp functions, the Gaussian filter _, the Intel

 , and the AMD  ___, measured in clocks per element (cpe) on selected x86-64 CPUs

(running in 64-bit mode), either single threaded (ST) or using simultaneous multithreading (SMT), averaged over 1010

values uniformly distributed within the valid argument range. �e systematic uncertainty is ≈ 0.1 cpe, the statistical

measurement uncertainties are < 0.02 cpe.

mulps %xmm1, %xmm0

andnps %xmm0, %xmm2

exp.x/ %xmm2

where FLT_EXP_BIAS = 127 is the IEEE 754 single precision exponent bias, and not defined by either C99

or POSIX.

Figures B.2–B.4, shows the worst case accuracy in the round to the nearest (even) mode of the implemen-

tation described here, Intel , and AMD .

Table B.1 lists the accuracy and worst argument in the the nearest (even) mode of the implementation

described here, Intel , and AMD . Table B.2 lists the accuracy and worst argument of the imple-

mentation described here for all four IEEE 754 rounding modes.

�e performance of the different implementations are measured in clocks per element (cpe), i.e. the ef-

fective number of elapsed CPU clock ticks for each of the four IEEE 754 single precision argument in the

128-bit SSE vector. �e processor time stamp counter is used to measure the elapsed clock ticks, which on

IA-32 and AMD64, is accessible using the rdtsc instruction, that moves the 64-bit unsigned integer value

into the register pair %eax (low bits) and %edx (high bits). �e overhead of the C++ loop is measured by re-

peating the loop with the nop instruction, while the impact of the rdtsc instruction overhead is minimized

by measuring 108 vector evaluations at once.
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Table B.3 compares the speed of the Gaussian filter _, the Intel  , and the AMD

 ___, measured in clocks per element, on four different CPU.
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