J/Ψ and open charm measurements at RHIC/PHENIX

CIPANP 2003 NYC, May 19-24

David Silvermyr, LANL

Outline

Physics with Open Charm and Charmonium

- for p-p, d-Au and Au-Au at RHIC

Open Charm Measurements

- via single electron spectra: at 130 and 200 GeV.
- **J/Ψ Production Measurements**
- J/ Ψ -> $\mu^+\mu^-$, e⁺e⁻ for p-p, Au-Au (and d-Au) at 200 GeV

Charm Physics

p-p

- Comparison with pQCD calculation
- Measurement of gluon density G(x)
- Base line for charm physics in pA and AA
- p(d)-A
 - Gluon shadowing
 - Energy loss of gluons in cold nuclear matter
 - Base line (normal nuclear effect) for charm physics in AA

A-A

- Gluon shadowing
- Energy loss of charm in high density matter
- Thermal production of charm in high temperature QGP

Single lepton spectra at high p_T is a useful way to study charm/heavyquark production.

PHENIX Central Arms & Electron Measurements

• High resolution tracking and momentum measurement from Drift Chamber. Matching with Pad Chambers.

• Good electron identification from Ring Imaging Cherenkov detector and Electromagnetic Calorimeter.

• High performance Level-1/Level-2 trigger.

Centrality selection with Beam -Beam Counters and Zero-Degree Calorimeters.

Measure electron between $|\eta| \ll 0.35$ and $p \gg 0.2 GeV$

Charm and Single Electrons at RHIC

Expected at RHIC that charm decay can be the dominant component of single electron in $p_T > 1.5 \text{ GeV/c}$

Large production cross section of charm ($300-600 \ \mu b$)

- Production of high pt pions strongly suppressed relative to binary collision scaling
- Production of charm quark roughly scale with binary collisions.

PHENIX observed excess in single electron yield over expectation from light meson decays and photon conversions => charm signal at RHIC

Open Charm in PHENIX: Run-1 AuAu Single Electron data

Compared single electron signal with the expected charm contribution $EdN_e/dp^3 = T_{AA}Ed\sigma/dp^3$

T_{AA}: nuclear overlap integral

Edo/dp³: electron spectrum from charm decay calculated using PYTHIA

=> Reasonable agreement

Assuming that all single electron signal is from charm decay and with binary collision scaling, charm cross section at 130 GeV is obtained as:

 $\sigma_{cc}^{0-10\%} = 380 \pm 60 \text{ (stat)} \pm 200 \text{ (sys)} \text{ }\mu\text{b},$ $\sigma_{cc}^{0-92\%} = 420 \pm 33 \text{ (stat)} \pm 250 \text{ (sys)} \text{ }\mu\text{b}$

Comparison with other Experiments

Single electron cross sections and charm cross sections are compared with Solid curves: PYTHIA Shaded band: NLO QCD

Assuming binary collision scaling, PHENIX data are consistent with \sqrt{s} systematics (within large uncertainties)!

Run-2 AuAu Single Electron Result

The yield of non-photonic electron at 200 GeV is higher than 130 GeV The increase is consistent with PYTHIA charm calculation

 $(\sigma_{cc} (130 \text{ GeV}) = 330 \ \mu b, \ \sigma_{cc} (200 \text{ GeV}) = 650 \ \mu b)$

Large systematic uncertainty due to material thickness without converter. The error will be reduced in the final result.

Centrality Dependence

PHENIX data consistent with the PYTHIA charm spectrum scaled by number of binary collisions in all centrality bins!

J/Ψ **Production**

p-p : study of production mechanism and cross sections Color evaporation model, Color singlet model, Color octet model Polarization, Rapidity dependence (electron and muon channels) Production of J/Ψ , Ψ' ,.. states Base line for pA and AA p(d)-A : study of "normal nuclear effect": shadowing and energy loss Nuclear dependence of $\sigma(J/\Psi)$: A^{α} or σ_{abs} (nuclear absorption) Base line for AA A-A : study of "medium effect" in high density matter J/Ψ suppression : signature of QGP (Matsui/Satz)

J/ Ψ formation by c quark coalescence at RHIC/LHC ?

Comparisons between various collision species are very important. Studies done via both dielectron and dimuon channels in PHENIX.

Run-2 AuAu Dielectrons

Analysis limited by statistics. 3 centrality bins are used: 0-20%, 20-40%, 40-90%.

Statistics

20-40 % most central bin

Based on unlike and like-sign counts, the most probable signal and the associated 90 % confidence limits are calculated.

Centrality dependence

Disfavor models with enhancement relative to binary collision scaling. Cannot discriminate between models that lead to suppression relative The binary collision scaling.

PHENIX Muon Arms

(Run-2 p-p and onwards: Electrons are still detected in the central arms..)

Run-2 pp Results

Clear J/ Ψ signals seen in both central and muon arms. Resolutions in agreement with expectations.

Rapidity Distribution

Integrated cross-section : 3.98 \pm 0.62 (stat) \pm 0.56 (sys) \pm 0.41(abs) µb Estimated B decay feed down contribution : < 4% (@ 200 GeV)

Combination of electron and muon results and phenomenological and exponential fits gives:

 $<p_{T}> = 1.80 \pm 0.23 \text{ (stat)} \pm 0.16 \text{ (sys) GeV/c}$

Comparisons with other Experiments

Phenomenological fit for average p_T ; p = 0.531, q = 0.188Cross-section well described by Color Evaporation Model.

J/Y Suppression / Gluon Shadowing

<u>J/Ψ suppression : an effective signature of Quark-Gluon Plasma (QGP)</u> <u>formation?</u>

Color screening in a QGP would destroy cc⁻ pairs before they can hadronize into charmonium

Ordinary nuclear effects, like gluon shadowing, can also affect J/ Ψ 's. These can be studied in e.g. d-Au collisions.

Gluon shadowing effects for nuclei, for the relevant x and Q² regions for PHENIX, have large uncertainties (e.g. Eskola vs Kopeliovich)

Run-3 dAu : South muon arm

Run-3 dAu : Central arms

(Analyzed another subset of the data)

Top plot shows subtracted difference using like-sign as background estimate, bottom is with using mixed events.

Run-3 dAu : North muon arm

Note: yet another different data sample, no corrections for detector & trigger eff. or acceptance.

Direct comparisons between the yield in the arms are thus meaningless for now.

But hopefully not for too long..

Run-3 p-p : North muon arm

Summary

Charm production measured by single electron spectra

- consistent with binary collision scaling

The first J/ Ψ 's in p-p and Au-Au interactions at RHIC have been obtained

- p-p cross section in agreement with color evaporation model
- Au-Au centrality dependence disfavors enhancement models

First d-Au run recently completed. More substantial yields were obtained.

- Should give us more understanding about e.g. gluon shadowing
- Baseline for comparisons with the upcoming high statistics Au-Au run

Outlook

There are quite a few results and work-in-progress, that were not covered here, e.g.:

- Single muon (high pT) spectra
- Au-Au J/ Ψ dimuon analysis
- e-µ coincidences (alt. charm measurement)

The p-p part of Run-3 is ongoing and should result in a significantly improved p-p data sample.

In the near future, a high luminosity Au-Au run is expected.

For the longer term, a Si-Vertex upgrade is being worked on.

- would enable direct measurements of open charm via secondary vertices.

A lot more to look forward to!

		\sim	
	Brazil	University of São Paulo, São Paulo DLI	13
	China	Academia Sinica, Taipei, Taiwan	
		China Institute of Atomic Energy, Beijing	
		Peking University, Beijing	
	France	LPC, University de Clermont-Ferrand, Clermont-Ferrand	
		Dapnia, CEA Saclay, Gif-sur-Yvette	
		IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay	
		LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau	
		SUBATECH, Ecòle des Mines at Nantes, Nantes	
	Germany	University of Münster, Münster	
	Hungary	Central Research Institute for Physics (KFKI), Budapest	
	,	Debrecen University, Debrecen	
		Eötvös Loránd University (ELTE), Budapest	
	India	Banaras Hindu University, Banaras	
		Bhabha Atomic Research Centre, Bombay	
	Israel	Weizmann Institute, Rehovot	
	Japan	Center for Nuclear Study, University of Tokyo, Tokyo	
		Hiroshima University, Higashi-Hiroshima	
		KEK, Institute for High Energy Physics, Tsukuba	
		Kvoto University, Kvoto	4
		Nagasaki Institute of Applied Science, Nagasaki	
		RIKEN, Institute for Physical and Chemical Research, Wako	
		RIKEN-BNL Research Center, Upton, NY	US
		University of Tokyo, Bunkyo-ku, Tokyo	
		Tokyo Institute of Technology, Tokyo	
		University of Tsukuba, Tsukuba	
		Waseda University, Tokyo	
	S. Korea	Cyclotron Application Laboratory, KAERI, Seoul	
	e	Kangnung National University, Kangnung	
		Korea University, Seoul	
		Myong Ji University, Yongin City	
		System Electronics Laboratory, Seoul Nat, University, Seoul	
		Yonsei University Seoul	
	Russia	Institute of High Energy Physics, Protovino	
	Rubbia	Joint Institute for Nuclear Research, Dubna	
		Kurchatov Institute Moscow	
		PNPL St. Petersburg Nuclear Physics Institute, St. Petersbu	ira
		St Petershurg State Technical University St Petershurg	.9
	Sweden	Lund University Lund	
	owenen	Euna onversity, Euna	

12 Countries; 57 Institutions; 460 Participants*

A Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN *as of July 2002

♥ △

Luminosity summary

Run	Year	Species	s ^{1/2} [GeV]	∫Ldt	N _{tot}
01	2000	Au-Au	130	1 μb ⁻¹	10M
02	2001/2002	Au-Au	200	$24 \ \mu b^{-1}$	170M
		p-p	200	0.15 pb ⁻¹	3.7G
03	2002/2003	d-Au	200	2.74 nb ⁻¹	5.5G
]	p-p	200	ongo	ing

Kinematics

