J/ Ψ measurement with the PHENIX muon arms in d-Au interactions at $\sqrt{s_{_{\rm NN}}} = 200 \, {\rm GeV}$

APS April Meeting Philadelphia, April 5-8, 2003

David Silvermyr, LANL

Outline

Physics Motivation

- J/ Ψ production, gluon shadowing.

PHENIX Muon Arms

- acceptance, performance.

State of the analysis

- a first look at J/ Ψ -> $\mu^+\mu^-$ for dAu at RHIC

J/Ѱ Suppression

<u>J/Ψ suppression – an effective signature of Quark-Gluon Plasma (QGP)</u> formation?

Color screening in a QGP would destroy cc⁻ pairs before they can hadronize into charmonium

But ordinary nuclear effects also absorb or modify J/Ψ 's

We need a comprehensive understanding of open charm and charmonium production

Gluon Shadowing

 $R(x,Q^2,A) ≡ f_i^A(x,Q^2) / [A f_i^N(x,Q^2)] < 1 →$ Shadowing (partons recombining) resulting in e.g. lower J/Ψ yields..

Gluon shadowing effects for nuclei, for the relevant x and Q^2 regions for the PHENIX muon arms, have large uncertainties. Kopeliovich et al., predict approx. a factor of 2 lower R_{d} values than Eskola et al.

Kinematics

 x_F is defined as $x_F = 2*p_z/sqrt(s)$. With the help of $\tau = m^2/s$, we can obtain x_1 and x_2 : $x_1 = 1/2*(x_F + sqrt(x_F^2 + 4*\tau));$ $x_2 = x_1 - x_F$

At the large s value of RHIC, τ is small, as is therefore also x_2 . The x_2 distributions are plotted for simulated J/ Ψ 's.

PHENIX Muon Arms

2 Muon Trackers =
2x3 stations
2 Muon Identifiers
= 2x5 planes

South Arm: Began operations in 2001-2002 run.

South Arm Tracking North Arm Stations Muon 12 510 10.5° Magnet Muon Identifiers 180° 120° Muon Muon 60° Electron 0° + Photon -60° -120° ladron -180° -3 2 Rapidity

North Arm: Installed in 2002.

Acceptance : $1.2 < |\eta| < 2.4$ $\Delta \Phi = 2\pi$

Muon minimum momentum ~ 2 GeV/c

Run-2 pp

Preliminary results:

South MUTR radiograph:

Significant improvements in hardware and software and machine performance since then.

Run-3 (dAu): improved performance

South MUTR:

South

A subset of the data has been analyzed with online code.

An order of magnitude improvement of the statistics in the peak should be expected in the real production pass.

Trigger and detector eff. are not yet completely determined. PH

North

Note: <u>not</u> the same subset of the data as has been processed for the South arm.

Direct comparisons between the yield in the two arms are thus meaningless for now.

Summary and Outlook

 J/Ψ peaks were observed for both muon arms, already while the dAu run was still going on.

Production pass to analyze all the data is to be started RSN. Approximately an order of magnitude more data than presented here should be available.

Improving our alignment will lead to improved mass resolution

Efforts are underway to determine trigger and detector efficiencies throughout the run.

Upcoming p-p run (Apr-May) will together with the dAu results also give a baseline for comparisons with the upcoming high statistics Au-Au (Nov -Jun) run.

	\sim	
Brazil	University of São Paulo, São Paulo DLI	13
China	Academia Sinica, Taipei, Taiwan	
	China Institute of Atomic Energy, Beijing	
	Peking University, Beijing	
France	LPC, University de Clermont-Ferrand, Clermont-Ferrand	
	Dapnia, CEA Saclay, Gif-sur-Yvette	
	IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, Orsay	
	LLR, Ecòle Polytechnique, CNRS-IN2P3, Palaiseau	
	SUBATECH, Ecòle des Mines at Nantes, Nantes	
Germany	University of Münster, Münster	
Hungary	Central Research Institute for Physics (KFKI), Budapest	
,	Debrecen University, Debrecen	
	Eötvös Loránd University (ELTE), Budapest	
India	Banaras Hindu University, Banaras	
	Bhabha Atomic Research Centre, Bombay	
Israel	Weizmann Institute, Rehovot	
Japan	Center for Nuclear Study, University of Tokyo, Tokyo	
	Hiroshima University, Higashi-Hiroshima	
	KEK, Institute for High Energy Physics, Tsukuba	
	Kvoto University, Kvoto	4
	Nagasaki Institute of Applied Science, Nagasaki	
	RIKEN, Institute for Physical and Chemical Research, Wako	
	RIKEN-BNL Research Center, Upton, NY	US
	University of Tokyo, Bunkyo-ku, Tokyo	
	Tokyo Institute of Technology, Tokyo	
	University of Tsukuba, Tsukuba	
	Waseda University, Tokyo	
S. Korea	Cyclotron Application Laboratory, KAERI, Seoul	
e	Kangnung National University, Kangnung	
	Korea University, Seoul	
	Myong Ji University, Yongin City	
	System Electronics Laboratory, Seoul Nat, University, Seoul	
	Yonsei University Seoul	
Russia	Institute of High Energy Physics, Protovino	
Rubbia	Joint Institute for Nuclear Research, Dubna	
	Kurchatov Institute Moscow	
	PNPL St. Petersburg Nuclear Physics Institute, St. Petersbu	ina
	St Petershurg State Technical University St Petershurg	.9
Sweden	Lund University Lund	
oweden	Euna onversity, Euna	

(1)

12 Countries; 57 Institutions; 460 Participants*

A Abilene Christian University, Abilene, TX Brookhaven National Laboratory, Upton, NY University of California - Riverside, Riverside, CA University of Colorado, Boulder, CO Columbia University, Nevis Laboratories, Irvington, NY Florida State University, Tallahassee, FL Georgia State University, Atlanta, GA University of Illinois Urbana Champaign, Urbana-Champaign, IL Iowa State University and Ames Laboratory, Ames, IA Los Alamos National Laboratory, Los Alamos, NM Lawrence Livermore National Laboratory, Livermore, CA University of New Mexico, Albuquerque, NM New Mexico State University, Las Cruces, NM Dept. of Chemistry, Stony Brook Univ., Stony Brook, NY Dept. Phys. and Astronomy, Stony Brook Univ., Stony Brook, NY Oak Ridge National Laboratory, Oak Ridge, TN University of Tennessee, Knoxville, TN Vanderbilt University, Nashville, TN *as of July 2002