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A new regime of calculable phenomena in QCD?

= QCD is the right theory of Strong Interactions (Wilczeck)
= Notoriously hard to calculate

= Regimes where QCD simplifies - Calculations can be
done

= High Q?
Well Tested - pQCD

= High Temperature/Baryon Density
RHIC and Lower energy Heavy lon Physics
Observables often difficult to quantify and/or interpret

Hopes for a different situation at RHIC!

= Cold high baryon density QCD - nice but not testable in the lab?
« High Gluon Densities at low-x

Reliable non-perturbative calculations of experimental observables
Testable in the laboratory : lepton-A, pA



What is a color glass condensate?
A layman’s view

gluons ~ x7 ,i.e. there are more of XG(X)
them as you go to lower x ]

Ly
= Vviolates unitarity /
Idea (many theorists) : Gluons saturate,

and the distribution stops growing.

Recently, a new way to look at this phenomena (McLerran, Venogopolan etc)
Idea: at low x there are so many gluons, that the guantum occupation
numbers gets so large that the situation looks classical.

Can use renormalization group methods to do a calculation of this effect.
Depends only on a “scale”

Ace? = (M/7R?)(dN,0,/dy) ~ 2-D gluon density
Gluons are bosons (interacting) — a bose condensate!
Gluons Till up the available states, so putting more gluons in means they have
to go into a higher energy state - higher pt
Higher pt -> smaller transverse size

= Probes of a particular Q2 go blind to these small partons. Fixes up unitarity for a
fixed Q2.

X



Why the idea Is attractive

= Continues the theme of bulk matter, high
density/temperature - a “gluon plasma”

= Condensed matter type many body phenomena -
condensates
= Gluons (bosons! Interacting bosons) are in a single guantum state
= Gluons form a glass
= Long time scale coming from “frustration”
= Robust calculations in QCD using reliable
“renormalization group” methods
= A method used (and trusted) in all branches of physics

= Depends on a single scale
s Acgc? ™ (M/7R?) (AN, ,/dy) ~ 2-D gluon density

gluon



Why a glass?

m Glass - ala condensed matter -

A glass is a material with

= long time scale

« Think of Window glass, which is a liquid -
years for it to “pour”

= induced by “frustration”

=« E.g. Spin glass

= Neighboring red and blue are “happy”

= Neighboring red and red are “frustrated”
= In Color Condensate we have “relativistic frustration”

= Model Break Nucleus into Gluon Field, and Source
= “Source” - quarks and gluons at high-x, Lorenz time dialated clock runs slow

= Gluon field at low-x. Clock runs fast, but motion is governed by “source”, and a long time
scale governs the motion of the gluons. They are “frustrated”

Work Work Lorentz Time
2 Work Work Dialated Spokesman W...0o.r. k.. W..

'ﬂ 'ﬁ. 'ﬁ: T ﬁ 6"\ Y Frustrated

AN - Mook,
a\ Hard working f-\iﬁm Gluons
TNB B B Gluons S E OF

e e o R. Seto



\ proton

dN/dy ~ R3~ A

Nucleus

Saturation
Region



How do you experimentally see this?

= Look at Gluon Structure
Functions at low-x (M. Brooks) XG(X)

= Atsaturation itshouldturn -
over

= Measure in pA

= Direct photons (Paul) \

« J/y production
problems in interpretation
Production mechanisms

Suppression

= Open Charm
= Change of quark st ure
functions with Q2 - use Dreh< A
Yan as a probe
= Diffractive cross section
= J.C Peng/S. White

= Other things?
= Pt Broadening?
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pA at R H I C [ Tracking Chambers -
Run Various Nuclei to chart out ﬁ\ 1 fruen
effects L0 M//;_
= Need pp to “Normalize” { :lf;;: 1 Effiﬁ””' }
= PA Needed for heavy ion program e 2 (= oy ===
PAU assume L=vL(pp)XL(AA) . ENO
= 100(p) x 100(Au) or 250(p) x 100(Au)
As Example - PHENIX TN e
= Would like to measure X;, X, ,Q2 Huon Magnets il
= For 2->1 Process (Sea quarks) e.g. Drell Muon Identifier
Yan, X=x,-X, , M?=Sx,X
= For 2 2 Process, e.g. (gluon = Muon Arms
gﬁ;{rﬁu}%j) Direct Photon, Open . (10°-30°) (12°-30°)
Need to measure Outgoing Jet - = B>2GeV
Tough - Perhaps add a Jet = Central Arms (70°-110° not
= For the purpose of this talk - shown)
assume present PHENIX, upgrades = Electrons/Photons

suggested at end



The Simulation (Pythia)

5 COMMON /PAWC/ in memory

= Level of simulation work is :
primitive - only primary
processes, perfect detector
(1.e. only angle and energy cuts
- note: for electron arm, 1 used Yary
full azimuth)

= For 2->2 Processes, since we
only measure one of the
outgoing partons, what do we SO e
do?

=» Use correlation of x, with y.
= Coverage for Muon arms
Then compare to a model.

Note: correlation is not as good to y~2-5
for open charm when detecting »x, ~10-3

only the leptons = Q2 ~5GeV?




Model a gluon distribution
= For proton use GRV94.

= For Nucleus start with GRV94.
For x,<10-2 flatten gluon

distribution, XG(X)

= Note: the Nucleus side was
modeled as a neutron

In the exp't, compare pp, pd,
PA.

= X, X, — fraction of nucleon
momentum carried by parton

= X, Refers to Nucleus
= Low X, will be at high y

Faking up the saturation

Q2=10

“Flattened”Gluon Distri

bution



Charm

2000/10/25 17.15

= Detect only leptons T al
= Require u* u-, ue in event op— =T
| LOOk at y|ept0n ﬂ 2oo|o\/|+ Muon
1 Month runnin T oo | Hon
- 9 pA ™[~ “south | North
= Plenty of statistics even if 7o 000 |
= Saturation effect is less -l i
= Hard cuts needed s
= Need Study of Backgrounds e
N ] // All leptons from Charm Detected leptons
y SOOKTM = o 360
lepton o 2500 |- veon. 1ses




250x100
Look aty,,,

Turns out going to 250
doesn’'t help much unless
one extends y coverage of
detector




Improving the situation

Measure associated jet to get x, , X, , Q2

= Very tough. Associated current jet is often at small
angles and must me disentangled from the
fragmentation jet which heads down the beampipe.

Improve muon acceptance with a very forward

detector located in the tunnel. x,~10-4 for ¢>1°

Large acceptance photon detector in the
forward region

Q. Can we use the D-Y to get the gluon
distribution?



s For x,=5x10-3

= Require Jet w/ direct y to
be > 10 GeV.
= Jet angle < 20 degrees

® Can we reconstruct a 10
GeV Jet?

® Can we separate it from the
beam fragments?
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Direct Photons

m  fTorward calorimeter (STAR?)
= Reguire Ey>5GeV

= 100x100
= (note- to get counts/month, .

multiply by 35) o
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Conclusions

= PA presents this community with a new vista of
QCD research

= More specifically - the realm of high gluon density

= this region has the potential to give experimentalists,
firm, experimentally verifiable non-perturbative
predictions

=« The simplest of these can be tested with the present
machine/experiments
= There may be a host of new phenomena (ala condensed
matter, many body physics) associated with this
regime of QCD, which will become understandable as
experiments progress.
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