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Lecture 24
Let's start with the fundamental commutator for angular momentum and get some of the properties of the eigenvalues. 
You will recognize the methods as similar to that which we used for spin and for the SHO
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Now  since J
`2  and  J

`
z  commute we will choose them to be simultaneously diagonalized. We could have chosen any of 

the J
`

k but we typically choose k=3. We will see that this requirement of simultaneous diagonalization will be necessary 
since some of the eigenvalues are degenerate. Let's call the eigenstate †a,b\ where a is the eigenvalue of J

`2 

i.e. J
`2†a,b\=a†a,b\  and b is the eigenvalue of J

`
z i.e. J

`
z†a,b\=b†a,b\. (Later we will more conveniently set these to 

a=Ñ2 jH j + 1L and b = mÑ where j and m are integers) Now both J
`2 and J

`
z will turn out to be observables so the eigenkets †a,b\ are all orthogonal. (dont forget this)

As in the case of spin and also the SHO we will define
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Now with this lets see if we can figure out what J
`

≤†a,b\  is. 
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will be some sort of normalization constant c so we have that J
`

≤†a,b\=c†a,b±Ñ\.   Now lets see if we can figure out what 
the values of a and b are. (We will get the normalization later)
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This means that there must be some bmax such that  J
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point b2 will end up greater than a. 
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So putting the two together we get a = bmaxHbmax + Ñ) = bminHbmin - Ñ)     The solution to this is that bmin = -bmax

Now you must be able to get from bmin to bmax using the raising operator and incementing b by h so bmax = bmin + NÑ
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where N is an integer. Using bmin = -bmax  we get -bmax= bmax - NÑ   so we get that

 bmax= NÑÅÅÅÅÅÅÅÅ
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 and using a = bmaxHbmax + Ñ) = jÑHjÑ+ ÑL = Ñ2 jH j + 1L   
 So we get that j is integer or half integer

We are now forced into a situation in which the angular momentum eigenvalues are Ñ2 jH j + 1L where j is either integer or 
half-integer. The half integer things will be spin. The integer values will correspond to orbital angular momentum

 Now this will all work if b=mÑ  m=-j,-j+1,-j+2,...+j   that is there are 2j+1 states and we will call †a,b\ ö †j,m\
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   1) We looked at rotations and define J
`
 as the "generator" or rotations i.e. D(e)=1-ieJ

`

   2) this gave us the commutations relationships for J

   3) This leads to the quantization of J into integer or half integer.  i.e. we get spin!

Now we are going to use matrix notation to denote the eigenstates of angular momentum X j ', m '§ J`2
 † j, m\ = jH j + 1L Ñ2 d j' j dm' mX j ', m '§ J` z † j, m\ = mÑd j' j dm' mX j ', m '§ J`≤ † j, m\ = Ñ 

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!H j ¡mL H j ≤ m + 1L  d j' j dm' m≤1

Now we can figure out the matrix elements of the rotation operator
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  etc  This of course goes on forever since j is some integer or half integer, with no limit. In 
practice we will look at systems with a particular value of j, so the matrix notation can be useful
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 The matrix below has an x  in the non-zero elements
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