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Lecture 21- 1 dimensional barrier problems
OK so now we have looked at a couple different potentials- the square potential and the SHO potential - both in 1 
dimension. We will continue to stay in one dimension. In each of these cases, the potentials were infinite at the sides, so 
the particles were always bound. We know that is not true in real life. Bonds break; Springs break; we might guess that 
these things lead to decays, and other funny things like tunneling. We will start looking at such cases - and take as a first 
model, just square shaped potentials - to make things easy. 

We will start with the time independent schroedinger eqn - that is we will look at solutions which have a particular 
defined energy (eigenfunctions of energy). Such solutions also have a defined momentum (up to a sign) and hence are not 
localized. Here we can think of a couple of examples. The first is a beam of particles. Classically you think of a beam of 
particles like a stream of bullets from a machine-gun. Well localized things that come one after another. Quantum 
mechancially though, we think of a wave coming in. That is why we can consider a beam as an unlocalized thing, i.e. Dx 
is large. A second example is a particle in a finite potential well. You may think its locallized, but its not. It can leak out 
since some of the wavefuntion (in the position representation) Xx†a\ has to lie outside the well - since the particle is NOT 
localized. Hence the phenomenon of decay. We will look at beams hitting finite barriers and potential wells first, then 
move on to particles stuck in a finite potential. 

Beams and curreents

Clearly a wavefunction for a beam will need a different normalization procedure.  Before we required that Ÿ-¶
¶ » yHxL »2 „ x be finite.  For  beam which extends to ¶ this would be infinite, so what we do is to define Ÿa
b » yHxL »2 „ x be finite. This should count up the number of particles in the interval (b-a). So Ÿa
b » yHxL »2 „ x = N , i.e. the number of particles between a and b. This means » yHxL »2 „ x =r(x)dx=dN where » yHxL »2=r(x) has units of particles/unit length, giving y(x) units of length-1ê2. In 3-D r(x)  has units of length-3, so y(x) 

has units of length-3ê2. As a 1-D example a beam of  104 neutrons ê cm with momentum 
Ñk would have a wave function  yHxL = 104ê2 eiHkx-wtL cm-1ê2. Note that "particles" does not have a unit. 

A beam of particles is a current, so we need to think about the current density J”÷  which is a vector quantity. Lets think 
about this in 3-D first and think about electric charge and electric current. We have the continuity eqn drÅÅÅÅÅÅÅ

dt
+“

”÷÷
· J”÷ =0. This 

just says that if you look at some unit volume, the change in the charge inside that unit volume is just the divergence of the 
current - i.e. the amount of water in the sink is equal to the current of the water coming in the faucet - the water going out 
the drain. Now in 1-D we can just write this as drÅÅÅÅÅÅÅ

dt
+ d JxÅÅÅÅÅÅÅÅÅÅÅ

dx
=0. Now r(x) = » yHxL »2, so what is J? We want to figure out what 

drÅÅÅÅÅÅÅ
dt

 is. Hopefully it will be a derivative of x and then we can find J. The only eqn we have around to help us is the 
Schroedinger eqn. We will use the time dependent one we found in lecture Ñ dÅÅÅÅÅÅ

dt
†a, t\= H

` †a,t\ . We will need to put this 
into the x representation.  Ñ dÅÅÅÅÅÅ

dt
 Xx †a, t\=Xx§H` †a,t\ Xx§H` †a,t\ =Xx§ p̀2

ÅÅÅÅÅÅÅÅÅ
2 m

+ V HxL†a,t\ = 1ÅÅÅÅÅÅÅÅÅ
2 m

Xx§ p̀2 †a, t\ + V HxL Xx†a,t\ Xx§ p̀2 †a, t\ = Xx§ p̀ p̀ †a, t\ = Ÿ „ x ' Xx§ p̀ †x '\ Xx '§ p̀ †a, t\ = - Ñ2 Ÿ „ x ' dÅÅÅÅÅÅÅ
dx

 dHx - x 'L dÅÅÅÅÅÅÅÅ
dx'

Xx ' †a, t\=-Ñ2 dÅÅÅÅÅÅÅ
dx

 dÅÅÅÅÅÅÅ
dx

Xx †a, t\=-Ñ2 d2
ÅÅÅÅÅÅÅÅÅÅ
dx2Xx †a, t\   So Ñ dÅÅÅÅÅÅ

dt
 Xx †a, t\=- Ñ2

ÅÅÅÅÅÅÅÅÅ
2 m

 d2
ÅÅÅÅÅÅÅÅÅÅ
dx2 Xx †a, t\+V HxL Xx†a,t\      and setting y(x,t)=Xx†a,t\ 

- Ñ2
ÅÅÅÅÅÅÅÅÅ
2 m

 d2
ÅÅÅÅÅÅÅÅÅÅ
dx2 yHx, tL+V HxLy(x,t)= Ñ dÅÅÅÅÅÅ

dt
y(x,t)  
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and writing H
`

 as - Ñ2
ÅÅÅÅÅÅÅÅÅ
2 m

 d2
ÅÅÅÅÅÅÅÅÅÅ
dx2 +V HxL   (i.e. H

`
 in the position representation) we can write H

`
y(x,t)= Ñ dÅÅÅÅÅÅ

dt
y(x,t)  so

dÅÅÅÅÅÅ
dt

y(x,t) = - iÅÅÅÅ
Ñ

H
`

y(x,t)    and its complex conjugate dÅÅÅÅÅÅ
dt

 y*(x,t) = iÅÅÅÅ
Ñ

 H
`

 y*(x,t)

Now dÅÅÅÅÅÅ
dt

 y* y=y* dÅÅÅÅÅÅ
dt

 y+y dÅÅÅÅÅÅ
dt

y*= -y* iÅÅÅÅ
Ñ

H
`

y(x,t)+y iÅÅÅÅ
Ñ

 H
`

 y*(x,t)    now since V(x)=0

dÅÅÅÅÅÅ
dt

 y* y = iÑÅÅÅÅÅÅÅÅÅ
2 m

 Iy* d2
ÅÅÅÅÅÅÅÅÅÅ
dx2  y - y d2

ÅÅÅÅÅÅÅÅÅÅ
dx2  y*M = - dÅÅÅÅÅÅÅ

dx
[ ÑÅÅÅÅÅÅÅÅÅÅÅ

2 mi
 Iy* dyÅÅÅÅÅÅÅÅ

dx
- y dy*

ÅÅÅÅÅÅÅÅÅÅ
dx

M]    so 
dÅÅÅÅÅÅ
dt

 y* y+ dÅÅÅÅÅÅÅ
dx

[ ÑÅÅÅÅÅÅÅÅÅÅÅ
2 mi

 Iy* dyÅÅÅÅÅÅÅÅ
dx

- y dy*
ÅÅÅÅÅÅÅÅÅÅ
dx

M]=0     and comparing this to dy* yÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dt

+ d JxÅÅÅÅÅÅÅÅÅÅÅ
dx

=0 we see that

 in 1-D Jx= ÑÅÅÅÅÅÅÅÅÅÅÅ
2 mi

(y* dyÅÅÅÅÅÅÅÅ
dx

- y dy*
ÅÅÅÅÅÅÅÅÅÅ
dx

M      in   3-D  J”÷ = ÑÅÅÅÅÅÅÅÅÅÅÅ
2 mi

(y* õ”÷÷ y - yõ”÷÷ y*L   
The units are time-1 for 1-D and length-2  time-1 for 3 D

Note on the units of J for 1-D and 3-D. 

3-D   drÅÅÅÅÅÅÅ
dt

+“
”÷÷ · J

”÷
=0     Ÿvolume » yHr”L »2 „3 r = ŸvolumerHr”L „3 r =N Ø  units of rHr”L are 1 êL3 Ø  units of drÅÅÅÅÅÅÅ

dt
are 1 ê HL3T) Ø  

units of  “”÷÷ · J
”÷
  are 1 ê HL3T) Ø  units of  J

”÷
  are 1 ê HL2T)    i.e. like charge êcm2 êsec

 1-D drÅÅÅÅÅÅÅ
dt

+ d JxÅÅÅÅÅÅÅÅÅÅÅ
dx

=0  Ÿa
b » yHxL »2 „ x = Ÿ rHxL „ x =N Ø  units of rHxL are 1 êL Ø  units of drÅÅÅÅÅÅÅ

dt
are 1 ê HLT) Ø  units of   dÅÅÅÅÅÅÅ

dx
J 

are 1 ê HLT) Ø  units of  J  are 1 êT    i.e. like charge êsec

We want to think about a beam hitting some sort of barier. Some of it gets reflected and some get transmitted. Lets assume 
that before and after the barrier its just represented by a plane wave, over some potential that changes only at the barrier, 
e.g. a step function. There in an incoming wave function, a reflected wave function, and a transmitted wave function.  
V=0 before the barrier and V after the function

yinc = AeiHk1  x-w1  tL  Einc = Ñw1 = Ñ2  k1
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

yrefl = BeiHk1  x+w1  tL  Erefl = Einc

ytrabs = CeiHk2  x-w1  tL  Etrans =Ñw2 = Ñ2  k2
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

+ V

If you dont quite get all this, dont worry, it will become clear in a moment. We then get for the currents

Jinc = ÑÅÅÅÅÅÅÅÅÅÅÅ
2 mi

 2 ik1 … A …2    Jrefl = ÑÅÅÅÅÅÅÅÅÅÅÅ
2 mi

 2 ik1 … B …2   Jtrans = ÑÅÅÅÅÅÅÅÅÅÅÅ
2 mi

 2 ik2 … C …2
We would like to figure out how much stuff is reflected, and how much is transmitted so we define transmission and 
reflection coefficients as

T = À JtransÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Jinc

À = … CÅÅÅÅÅ
A

…2 k2ÅÅÅÅÅÅÅ
k1

     and R= À JreflÅÅÅÅÅÅÅÅÅÅÅÅ
Jinc

À = … BÅÅÅÅÅ
A

…2
 

Setting up the problem

We will assume the potential to be square like. That way we can divide the problem up into pieces where the potential is 
constant (and the Sch eqn is easy to solve) and then just match stuff up at the boundaries.  Here is a typical barrier. You 
can see the height of the barier which is V, the sides of the barrier are at ±a,  the energy of the beam E, and the three 
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regions where the potential V is just a constant.  

V(x)

I II
III

V

E

x-a a

V(x)

I II
III

V

E

x-a a

ikjjj-
Ñ2

ÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

 
∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x2 + V HxLy{zzz j HxL = Ej HxL Ø -

∑2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ x2  j HxL =

2 m
ÅÅÅÅÅÅÅÅÅÅÅÅ
Ñ2  HE - V HxLL j HxL

Now V(x)=0 in regions I and III, and V(x)=V in region II. If we set k2= 2 m
—2

HE − V HxLL  then the diff eqn is easy to 
solve in each of the three regions, since k is a constant and in this case positive (in each of the three regions). The 
solutions are either sines and cosines, or e≤ikx. Either works, but the exponentials are easier since they are eigenfunctions 
of momentum, and hence you can see which way they are going. The general solution in each of the three regions is a 
combination of e+ikx and e-ikx.  Lets denote k1

2 = 2 m
—2

E  i.e. the relevant k for regions I and III  and k2
2 = 2 mÅÅÅÅÅÅÅÅÅ

Ñ2  HE - V L for 
region II. Now we can write down general solutions in all three regions

jI HxL = Aeik1  x +Be-ik1  x      jIIHxL = Ceik2  x +De-ik2 x       jIIIHxL = Feik1 x +Ge-ik1 x        

Solutions like e+ikx  have a positve eigenvalue for the momentum so they have positive moemtum and are going forward 
(+x direction). Solutions like e-ikx  are going in the -x direction. Now lets clarify our problem. We have a beam coming in 
from the left. It does something at the boundary at x=-a, and something else at the boundary at +a. What we expect is that 
some of the beam is transmitted and some is reflected. You might have a question as to why beam is reflected at x=+a, 
when it is not expected classically - we shall see. In region III however, there is no reflected wave - there is nothing out 
past x=a to reflect off of. Hence we will set the wave going in the -x direction in region III to zero, i.e. G=0. Now we 
already know what the k's are. We need to see if we can find out what the coefficents are. We  get the transmission 
coefficient T = … FÅÅÅÅÅ

A
…2 

kregion IIIÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kregionI

 and for the reflection coeficient R = … BÅÅÅÅÅ
A

…2.

There is a normalization condition which sets A=1 (i.e. that is the incoming beam).  We need to find B and A. The way we 
do this is to match the wave functions and their first derivatives at the boundaries. Why must these things be matched? If 
the wave functions did not match then the first derivative would be infinite. Since the momentum is cacluated in the x 
representation as the first derivative - this would give an infinite momentum - an unphysical result. If the first derivatives 
did not match then the second derivative would be infinite. Looking at the Schroedinger eqn we see that such an infinity in 
the second derivative would mean the the Sch. eqn could not be satisfied at the discontinuity.  OK so we will require 
jI H-aL=jIIH-aL ,  jIIHaL=jIIIHaL and  d jI H-aLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dx
= d jIIH-aLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dx
,   d jIIHaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dx
= d jIIIHaLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dx
. Now these will give us 4 eqns which we will 

have to solve. This is a pain, but I will do it in a second. Lets first take an easier problem to solve algebraically, that is just 
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a single step. 

A single step
V(x)

I II

V

E

x

0

V(x)

I II

V

E

x

0

Now there are only two regions.  k1
2 = 2 m

—2
 E  in region I and k2

2 = 2 mÅÅÅÅÅÅÅÅÅ
Ñ2  HE - V L for region II. 

jI HxL = Aeik1  x +Be-ik1  x      jIIHxL = Ceik2  x    and we have set D=0 since there is nothing to reflect off of for x>0       
Now  jI H0L=jIIH0L    and d jI H0LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dx
= d jIIH0LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

dx
   are the matching conditions. We will set A=1, so we have two eqn's and the two 

unkowns B and C. So

eik1  x +Be-ik1  x=Ceik2  x   and k1 eik1  x - Bk1 e-ik1 x = Ck2eik2 x    These must be true at x=0 so

1+B=C   and    k1 - Bk1 = Ck2 Ø

k1 - Bk1=(1+B)k2     Ø B= 1-k2êk1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+k2êk1

   and C = 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1+k2êk1

  giving us

  T = » C »2 J k2ÅÅÅÅÅÅÅ
k1

N2
= 4 k2êk1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1+k2êk1L2 and R = » B »2 = À 1-k2êk1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1+k2êk1
À2   where k2ÅÅÅÅÅÅÅ

k1
="#############1 - VÅÅÅÅÅ

E

  Lets take some cases. When V=1/2 E then the reflection coefficient is about 3%, so the funny QM effect is small but real. 
Lets vary V. 

  1) V=E    k2ÅÅÅÅÅÅÅ
k1

=0   T=0, R=1 full reflection

  2) 0>V<E  0< k2ÅÅÅÅÅÅÅ
k1

<1 T and R non-zero

  3) V~0    k2ÅÅÅÅÅÅÅ
k1

=1    T=1 R=0 no reflection

  4) V<0     k2ÅÅÅÅÅÅÅ
k1

>1   T and R non-zero, i.e. there is reflection again!

  When V is small compared to E then the reflection coefficient is ~0 as we might expect. When V=E then then T=0 and 
the whole beam is reflected. Suppose V is negative, i.e. we are shooting a beam off of a cliff. 

  

  Now what happens if V>E???   Then k2ÅÅÅÅÅÅÅ
k1

 is imaginary. Now we use the incoming beam as the defining beam, which is 

moving forward so k1 has to be real. This means that k2 is imaginary. Since k2 = "#############1 - VÅÅÅÅÅ
E

 k1  lets write k2 = ik2 so  
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k2="#############VÅÅÅÅÅ
E

- 1  k1 which in this case is real.  Then we have jIIHxL = Ceik2 x = Ce-k2 x

We see that we no longer have a traveling wave, but rather an exponentially dying wave function  BUT it actually 
penetrates into the barrier. As you might guess this sets things up for tunneling. 

V(x)

I II

V

E

x

0

V(x)

I II

V

E

x

0

Back to the tunneling problem

Ok, let's write down the 4 eqn we have from matching the wave functions and the derivatives across the boundaries

Ae-ik1  a +Be+ik1  a = Ce-ik2  a +De+ik2  a          

Ceik2  a +De-ik2  a = Feik1  a

-Ak1 e-ik1  a +Bk1 e+ik1  a = -Ck2 e-ik2  a +Dk2 e+ik2 a          

Ck2 eik2  a -Dk2 e-ik2  a = Fk1 eik1  a  where we have already set G=0

1ÅÅÅÅÅ
T

= … AÅÅÅÅÅ
F

…2 = 1 + 1ÅÅÅÅ
4

 J k1
2-k2

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

k1  k2
N2

 sin2H2 k2 aL    and plugging in  k1
2 = 2 m

—2
E  and k2

2 = 2 mÅÅÅÅÅÅÅÅÅ
Ñ2  HE - V L we get 

1ÅÅÅÅÅ
T

= 1 + V2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 EHE-V L sin2H2 k2 aL     and R=1-T

Now lets take a look at some cases.  In the case we are thinking about where E>V, then k2 is real, and everything makes 
sense. Suppose , however, that E < V . Can it get over the barrier? This is a simillar situation to the one we had in the 
single step. Lets have a look. Again lets set  k2 = ik2, where k2 is real.  (note- my convention is different than the 
book)Then

1ÅÅÅÅÅ
T

= 1 - V2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 EHV-EL sin2H2 ik2 aL. 

What is sin(ik) ?  sinq = 1ÅÅÅÅÅÅÅ
2 i

 Heiq - e-iqL so sin(ik)= 1ÅÅÅÅÅÅÅ
2 i

 He-k - ekL=  - 1ÅÅÅÅÅÅÅ
2 i

 Hek - e-kL= - 1ÅÅÅÅ
i

 sinhHkL
sin2 HikL = -sinh2(k)  so

1ÅÅÅÅÅ
T

= 1 + V2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 EHV-EL sinh2(2 k2 a)   k2 = "########################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  HV - EL    k2 is real for E<V

Now lets rewrite the three solutions
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jI HxL = Aeik1  x +Be-ik1  x      jIIHxL = Ce-k2  x +Dek2 x       jIIIHxL = Feik1 x 

V(x)

I II
III

V

E

x-a a

V(x)

I II
III

V

E

x-a a

1 2 3 4

0.2

0.4

0.6

0.8

1

qm21.nb 7



Now let take a look at the following case where the potential energy in region II is negative. 

V(x)

I II
III

-V

E

x

-a a

V(x)

I II
III

-V

E

x

-a a

Rewriting things in terms of »V» to make things easier to think about we get   k2
2 = 2 mÅÅÅÅÅÅÅÅÅ

Ñ2  HE + » V »L we get 
1ÅÅÅÅÅ
T

= 1 + V2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 EHE+»V »L sin2H2 k2 aL     and R=1-T. Now for both this case and the original case of a postive V when E>V we get 

perfect transmission for 2 k2 a=np. In this case  2a"#############################2 mÅÅÅÅÅÅÅÅÅ
Ñ2  HE + » V »L =np and solving for E we get

E(perfect transmissionL = 1ÅÅÅÅÅÅÅÅÅ
2 m

 I npÑÅÅÅÅÅÅÅÅÅÅ
2 a

M2-»V»
An attractive square wave potential is a reasonable model for the scattering of a beam of electrons by atoms. If  you shoot 
a beam of electrons at a rare gas, at certain energies, the electrons penetrate perfectly - this is the Ramsauer-Townsend 
effect. Again - a wierdness of QM. Here is a picture of the transmission coefficent  vs the energy of the beam in eV. 
Where V=-5 eV and a=1000 angstrons, i.e. a thin layer of gas

0.201 0.202 0.203 0.204 0.205 0.206

0.2

0.4

0.6

0.8

1

1.2

1.4

For more pictures with labels see qm21cont.pdf

More difficult potentials- e.g. the SHO
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The is a standard approximation method called the WKB Approximation (for Wentzel, Kramers, Brillouin) to figure stuff 
out for more complex potentials. I will not actually derive it here but I will just give you the result. 

WKB:

T=exp(-2Ÿx1
x2 k „ x)   where k="#############################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  HV HxL - EL   and x1  and x2 are the classical turning points, that is the points were 

E=V(x)  (so V Hx1)=E   and V Hx2L = EL
T=expI-2 Ÿx1

x2 „ x "#############################2 mÅÅÅÅÅÅÅÅÅ
Ñ2  HV HxL - EL M

Also the energies allowed in the well will obey the condition
1ÅÅÅÅÅÅÅÅ

2 p
 Ÿx1

x2è!!!!!!!!!!!!!!!!!!!!!!!!!!!!2 mHE - V HxLL  „ x = In + 1ÅÅÅÅ
2
M ÑÅÅÅÅ

2

Lets see these formula at work.  First for a a couple of non-transmission problems

How about the infinite potential well with walls at 0 and a? Here within the well V=0
1ÅÅÅÅÅÅÅÅ

2 p
 Ÿ0

aè!!!!!!!!!!!2 mE  dx =
è!!!!!!!!!!!!2 mEÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 p
a=In + 1ÅÅÅÅ

2
M ÑÅÅÅÅ

2
    and we get 2 mE = 4 p2

ÅÅÅÅÅÅÅÅÅÅÅ
a2  Ñ

2
ÅÅÅÅÅÅÅ
4

 In + 1ÅÅÅÅ
2
M2      EWKB = Ñ2  p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 ma2  In + 1ÅÅÅÅ

2
M2

The right answer is of course Ereal = Ñ2  p2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 ma2  HnL2   which is not bad for n reasonably large. This tells us something - the 

WKB is a semi-classical approxinmation and is good for large quantum numbers. Note that in this case the n=1 state is off 
by more than 100% but for n=10, its good to about 10%.

Now the SHO where the edges walls go to infinity.

V HxL = 1ÅÅÅÅ
2

 mw2 x2    and after some work we get En = In + 1ÅÅÅÅ
2
M Ñw  which is exactly the right answer.

Now lets try the only tunneling problem we have done, the square potential barrier.  Remember 

1ÅÅÅÅÅ
T

= 1 + V2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 EHV-EL sinh2(2 k2 a) . Lets let E<<V  so k2="########################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  HV - EL    where 

 we will assume  that 2 k2 a  is large and  since sinhHzL = 1ÅÅÅÅ
2

 H ez - e-zM we will assume that the e-z term is negligible

 T real ~4 EVÅÅÅÅÅÅÅÅÅ
V2 A 1ÅÅÅÅ

2
 expI2 a "#####################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  V - E ME-2
~16 EÅÅÅÅÅ

V
expI-4 a "#####################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  V - E M    and  

TWKB =expI-2 Ÿx1
x2 „ x "#############################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  HV HxL - EL M=expI-2 Ÿ-a
a „ x "########################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  HV - EL M=expI-2 "########################2 mÅÅÅÅÅÅÅÅÅ
Ñ2  HV - EL Ha + aLM = expI-4 a "#####################2 mÅÅÅÅÅÅÅÅÅ

Ñ2  V - E M    which is off by 16E/V (i.e. if  E~1/16V then it would be exact otherwise its off)
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