Some Trigger Oldies but Goldies M. J. TANNENBAUM BNL/PHENIX Brookhaven National Laboratory Upton, NY 11973-5000 USA

- \heartsuit For Matthias' trigger question, I want an E_T trigger which doesn't suffer distortion from 'fragmentation' or hadronization, compared to a cluster counting trigger with a low threshold which I think is better done in the mvd.
 - \heartsuit As for EMCAL thresholds, normally I would use 4:
 - 1) highest for single cluster= γ or π^0
 - 2) lower for back-to-back π^0 or γ pairs
- 3) lowest EMC luster seed in each arm for e^{\pm} pair trigger, but we know this threshold, it must be 1 GeV or less to see the J/Ψ
- 4) 1.2 to 1.5 GeV EMCluster threshold as a seed for the single e^{\pm} trigger for charm. Again, we know this threshold.

Maybe the trigger 2 can have the same threshold as trigger 4, but it is unlikely. Alternatively, if we are lucky we can use trigger 3) threshold for singles also.

 \heartsuit I had discussed an electron trigger algorithm in PN85 6/10/93. It matches clusters in the EMCAL with an energy $E > E_{\rm thresh}$ with rings in the RICH. The only complication is that the EMcal measures η , ϕ while the RICH measures η and $\lambda = \delta + \phi$, where δ is the local tangent angle of the trajectory relative to the radial direction, also called α , β (???) in PHENIX. The good news is that since the EMCAL gives you the E of the cluster in question you know $\delta = \lambda_{\rm RICH} - \phi_{\rm EMCAL}$.

PHENIX TRIGGER WORKING GROUP 2/11/00

1.1 Track from the origin

For a particle emitted from the origin $\tau = 0$ and $\lambda_N = \phi_0$, the azimuthal angle of emission:

$$\sin \delta = \frac{R}{2\rho} \tag{5}$$

$$\sin(\phi - \phi_0) = \frac{R}{2\rho} = \sin \delta \tag{6}$$

1.2 Field-free region

These equations work just as well for a field free region, inner radius R_i , outer radius R_o in which case $\rho_{io} = \infty$, with the result

$$\sin \delta_o = \frac{R_i}{R_o} \sin \delta_i \tag{7}$$

$$\phi_o - \phi_i = \delta_i - \sin^{-1}\left(\frac{R_i \sin \delta_i}{R_o}\right) . \tag{8}$$

Note that the trajectory vector does not change in the field free region, but the local tangent angle δ to the radius changes because the azimuthal coordinate ϕ of the trajectory changes.

RICH IMAGES 2 4 0 NOT \$ 45

- ALL 3 TRAJECTORIES IMAGE AT THE

 SAME POINT \$ = AZIMUTHAL COORDINATE

 AT RICH FOR INFINITE MOMENTUM TRACL
- THE SAME 2= \$00
- POR TRACKS WITH THE SAME 2000

 \$ \$ = S Sm ' P/2P

collision event for a charged particle multiplicity of $dN_c/dy = 1000$. The hit pixel in the Figure 2.43: A typical hit pattern on the Cherenkov detector for a simulated Au + Au central

Figure 6.1: Schematic of PHENIX detector including the tracking subystem.

$$\phi_c - \phi = \delta - \sin^{-1}(rac{R\sin\delta}{R_c})$$
 $\lambda = \phi + \delta$ $\phi_c - \lambda = \sin^{-1}(rac{R\sin\delta}{R_c})$ $\sin\delta \sim rac{p_T^{
m cutoff}(R)}{p_T}$

AS PT INCREASES

MJT E-trigger strategy PN85 6/10/93

- Match λ , η hits on RICH
 - To η , ϕ_c hits on EMCal
 - within 1 ns of $\beta = 1$
 - charged only
 - for different slices of E
 - or for $E > E_{\text{thresh}}$
- \bullet Then Match p and E when tracks are available
- Then Reject Dalitz & Conversions
 - when HBD is available
 - or with low magnetic field setting
- Also Select Dalitz and Conversions!
 - see 'Charm in PHENIX—a signal or a background?

http://www.phenix.bnl.gov/~sapin/charm96.ps.gz

- see many experts largely concentrated in light/heavy PWG