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Abstract

Quark-gluon plasma (QGP) is a new state of matter comprised of the deconfined quarks
and gluons. It is expected to exist in the early Universe, a few µsec after the Big Bang
or in a core of neutron star. Ultra-relativistic heavy ion collision is a unique tool to
reach such a very hot and/or dense state on the earth.

Elliptic flow is one of the most promising probe to explore the early stage of heavy
ion collisions. It is defined by the second harmonics of the azimuthal anisotropy (v2)
with respect to the reaction plane. Once the local thermal equilibrium is attained,
elliptic flow is determined through (1) the initial geometry overlap, and (2) the initial
density profile. Therefore, elliptic flow could be sensitive to the possible local thermal
equilibrium in the produced matter.

The elliptic flow of identified hadrons has been measured for a broad range of cen-
trality selection and up to transverse momentum pT = 4 GeV/c in the PHENIX ex-
periment at the Relativistic Heavy Ion Collider (RHIC) in Au + Au collisions. The
statistics is increased by a factor 20 compared to previous measurements, and it en-
able us to study detailed centrality dependence of v2 for identified hadrons. Particle
identification has been performed with Time-Of-Flight Counter and Electro-Magnetic
Calorimeter by measuring mass square calculated from flight time, flight path length,
and momentum (π±, K±, p/p̄, d/d̄) and invariant mass reconstruction from the decay
product (φ → K+K−). The magnitude of v2 has been measured with the event plane
method. Event plane is determined by the Beam-Beam Counter (BBC) located at for-
ward and backward rapidities, and the elliptic flow of produced hadrons are obtained at
the Central arm spectrometer at mid rapidity with respect to the event plane. The large
rapidity interval, |∆η| ∼ 3, between the Central arm and the BBC has an advantage to
reduce the possible non-flow effects, which are correlations among particles and are not
oriented from the reaction plane and becomes dilute the true signal of elliptic flow.

Distinct features of the results are follows;

• The transverse momentum dependence of v2 shows the mass ordering at low pT,
i.e. smaller v2 for heavier hadrons at a given pT (v2(π) > v2(K) > v2(p) ≥ v2(φ) >
v2(d)).

• At higher pT, however, v2 for mesons saturate earlier than that for baryons while
the v2 for baryons are still increasing with pT (v2(π) ≈ v2(K) ≈ v2(φ) < v2(p) ≈
v2(d)).

• v2 increase with centrality. The centrality dependence of v2 is qualitatively con-
sistent with that of initial geometry overlap (eccentricity) estimated by Glauber
Monte Carlo simulation.
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In order to study the relation between the inital spatial anisotropy (eccentricity, 〈ε〉)
and final elliptic flow, the eccentricity scaling of v2 has been studied for a wide range of
centrality. We have observed that the participant eccentricity, which is defined by the
principal axes of participating nucleons, is the relevant geometric quantity to explain
the scaling of v2/〈ε〉 across Au + Au and Cu + Cu collisions. This result suggest
that v2/〈ε〉 is determined by the number density of nucleons even if the system size is
different.

We have developed an extended Blast-wave model, in which collective flow is de-
fined by the gradient of density profile, in order to study the sensitivity of the initial
density profile to v2. Freeze-out temperature (T ) and the radial flow velocity (βT ) have
been extracted for both transverse momentum spectra and v2, independently. We have
observed that extracted T from v2 are about 100 − 200 MeV larger than that from
spectra and the results obtained from Ncoll density profile have always smaller χ2/NDF
for both spectra and v2. This result may suggest that the v2 is developed by the number
of collisions among the constituents since the number of collisions are closely related
to the degree of thermalization. The average radial flow velocity is almost same for
spectra and v2. In order to see the sensitivity of the eccentricity in the measured v2,
we have performed the Blast-wave fitting with the simple 1D in-plane expansion of the
system. By expanding the initial density profile, we have observed that T from v2 fit
decreases with the eccentricity, while those from spectra fit and the radial flow velocity
are almost unchanged. T from v2 fit is as large as the chemical freeze-out temperature
if we assume that the kinetic freeze-out takes place at the 〈ε〉 obtained by the azimuthal
HBT analysis. Larger T from v2 fit than that from spectra fit at the kinetic freeze-
out may suggest that the freeze-out of v2 could be earlier than that of spectra. These
results are consistent with the picture of the collective in-plane expansion, where the
initial eccentricity is quenched and the magnitude of v2 is developed through the time
evolution.

The quark number scaling of v2 has been further examined. We have observed that
quark number scaling of v2 works for pT/nq > 1 GeV/c, where nq denote the number of
constituent quarks in each hadron (nq = 2 for mesons, 3 for baryons and 6 for deuterons).
However, clear mass dependence has been observed for pT/nq < 1 GeV/c. By assuming
that v2 is driven by the transverse kinetic energy (KET = mT −m0) instead of pT, we
have observed that the quark number scaling with KET holds for π, K and p in all
centrality classes and for almost all KET range, except for low KET, KET/nq < 0.3
GeV. Since the pressure gradient is directly linked to the transverse kinetic energy, this
results could suggest that the collective pressure gradient is the driving force of elliptic
flow. We have also observed that the quark number scaling with KET works for φ and
d in minimum bias and in other centrality bins. Since φ mesons do not suffer from the
hadronic interactions, the observation of the quark number scaling of v2 for φ mesons
could indicate the partonic collectivity in the pre-hadronic phase of heavy ion collisions.
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Chapter 1

Introduction

The ultimate goal of the experiments with relativistic heavy ion collisions is to study
the properties of the quark-gluon plasma (QGP), which is a new state of matter at
very high density and/or very high temperatures. It is expected that a new state of
matter may be created under such extreme conditions, where quarks and gluons are no
longer confined inside hadrons and can move freely. The relativistic heavy ion collision
offer a unique opportunity to achieve those conditions on the earth. In this chapter,
we introduce the quantum chromodynamics (QCD) which is the essential theory to
describe the relativistic heavy ion collisions, and introduce the major feature of the the
experimental observables at the Relativistic Heavy Ion Collider (RHIC).

1.1 Quantum Chromodynamics (QCD)

Quantum Chromodynamics (QCD) is the theory to describe the strong forces between
quarks, where they are the fundamental building blocks of the matter and carry the
color charge analogous to the electric charge in quantum electrodynamics (QED). In
QCD, gluons are the force medians and they carry the strong force, as photons carry
the electromagnetic force in QED. While photons carry no electric charge, gluons also
carry color charge and they can interact among themselves.

The classical Lagrangian density for QCD is

Lcl =

Nf
∑

f

q̄f (iγµDµ −mf) qf −
1

4
F a
µνF

µν
a (1.1)

where qf is the quark field of flavor f and mass mf (f runs from 1 to 3). The covariant
derivative, Dµ is

Dµ = ∂µ + ig
λa
2
Aaµ (1.2)

where λa is the eight Gell-Mann matrices. F a
µν is the gluon field strength tensor defined

as
F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν (1.3)

1
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where Aa
µ is the gluon field (a runs from 1 to 8), and fabc is the structure constants of

the SU(3) group. g is defined as g ≡
√

4παs, and αs is the coupling constant of the
strong force, which represent the strength of the interactions between quark-gluon, and
gluon-gluon interactions.

At short distances, the running coupling constant for the strong force becomes small
by the anti-screening feature of the color charge because the gluons are not neutral in
color. This property is known as asymptotic freedom. Asymptotic freedom means
that the typical length scale decreases (or the momentum scale increases) the coupling
constants decreases. Because of the smaller coupling constants at smaller distance, per-
tubative QCD (pQCD) calculation can only be performed for interactions with large
momentum transfers (Q). As one can see in Fig. 1.1, the measurements of running
coupling constants are in very good agreement with the calculations by pQCD. Al-
though pQCD works very well involving larger momentum transfers, it cannot be used
to calculate for the processes with larger distances (or smaller momentum transfers).

Figure 1.1: The running strong coupling constants as a function of momentum transfers
Q by various types of measurements in different experiments, compared to the QCD
predictions [1].

A typical form of phenomelogical QCD qq̄ pair potential is

Vqq̄ = −a(r)
r

+Kr (1.4)
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where r is the distance between q and q̄, and K is the string tension between quark pair.
The first term is the color Coulomb potential, and the second term is the linear confining
potential which is the unique properties of QCD: the potential increase linearly with
the increase of distance.

In the strong coupling regime, the energy to separete two quarks increases linearly
with increasing the distance between them. A new qq̄ pair is produced when the energy
contained between the two quarks becomes more than the twice of the rest momentum
of a quark. Therefore, no deconfined quarks have ever been observed. It is known as
confinement of quarks.

In order to study the strong coupling regime where the perturbative QCD calcula-
tions is not valid, Lattice QCD calculations is considered as a strong tool to perform
with numerical path integrals of the QCD Lagrangian on a four-dimensional Euclidean
lattice with box size L and lattice spacing a. A modern thermodynamical lattice QCD
at finite temperature and density suggests that quarks and gluons are deconfined if
sufficiently high temperature and/or density are reached.

Fig. 1.2 shows the energy density divided by T 4 as a function of temperature scaled
by the critical temperature Tc calculated by Lattice QCD [2]. Current calculations
shows that ε/T 4 increases rapidly around a critical temperature Tc ' 155 − 175 MeV.
And its values of critical temperatures corresponds to an critical energy density εc '
0.5 − 1 GeV/fm3 [2]. Because ε/T 4 corresponds to the number of degrees of freedom,
this rapid increase of ε/T 4 indicate a transition to a new state of matter, namely quark-
gluon plasma (QGP).
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Figure 1.2: The energy density divided by T 4 (ε/T 4) as a function of temperature scaled
by the critical temperature Tc calculated in Lattice QCD simulation [2]. The arrows on
the right side indicate the values of ε/T 4 for the Stefan-Boltzmann limit.
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1.2 Relativistic Heavy Ion Collisions

Table 1.1: Summary of current and proposed heavy ion programs with facilities, the
typical ion beams, and the center of mass energy per nucleon pair
Machine Location Ion beam

√
s (GeV) Start of experimental program

AGS BNL 16O, 28Si 5.4 Oct, 1986
197Au 4.8 Apr, 1992

SPS CERN 16O, 32S 19.4 Sep, 1986
208Pb 17.4 Nov, 1994

RHIC BNL 197Au 130 2000
197Au 200 2001

d + 197Au 200 2003
197Au 62.4 2004
197Cu 200 2005
197Au 200 2007

LHC CERN 208Pb 5600 2007 (projected)

As seen in Chapter 1.1, QCD predicts a very hot and dense matter consists of decon-
fined quarks and gluons, quark-gluon plasma (QGP). Relativistic heavy ion collisions is
considered to be a unique tool to create such a state of matter under extremely high
temperature and/or density on the earth. QGP phase is also expected to exist in the
early Universe (after a few micro sec after the Big-Bang), and in the interior of neutron
stars. Therefore the observation and study the matter under such extreme conditions
has an impact not only on the nuclear physics, but also on the astrophyics and the
high-energy physics.

Since 1980’s various experiments have taken place both at the Brookhaven National
Laboratory (BNL) and European Organization for Nuclear Research (CERN). Table
1.1 summarize the current and proposed heavy ion programs at BNL and CERN. While
both AGS and SPS were provided beams with fixed target experiments, RHIC and LHC
are the colliders, where two heavy ions accelerate up to nearly the speed of light and
collide each other.

The relativistic heavy ion collisions are dynamic processes with typical time scales
of an order 10 fm/c. Even if the QGP is created in collisions, the system expands and
cools rapidly back to a hadron gas through a QCD phase transition. In order to probe
the formation of the QGP, the signals which is sensitive to the QCD phase transitions
should be observed as many as possible.

1.2.1 Collision Geometry

In relativistic heavy ion collisions, the geometry of the collisions can be defined by the
participant spectator model. Fig. 1.3 shows a schematic view of heavy ion collision
between symmetric Lorentz contracted projectile and target nuclei in the center of mass
frame. The impact parameter b is the distance between the center of nuclei and char-
acterize the centrality of collision. The nucleons taking part in the primary collisions
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Figure 1.3: A schematic view of the geometry for a heavy ion collision.

are called as participants and the rest that are not participated in the collisions are
called as spectators.

In most heavy ion experiments, the impact parameter is estimated by measuring the
size of the participants and/or the spectators. The participants and the spectators are
well separated experimentally because the spectator keeps it longitudinal velocity and
mostly emitted in the forward (backward) rapidity, while the secondary particles from
participants are peaked around mid-rapidity.

Once the impact parameter of the collision is determined, the Glauber Model [3] pro-
vides the number of participant nucleons (Npart), number of nucleon-nucleon collisions
(Ncoll), and the spatial eccentricity (ε) for a given impact parameter. These quantities
can be calculated analytically or numerically under the following assumptions;

• Collisions of two nuclei are expressed in terms of the individual interactions of the
constituent nucleons.

• At high energies, nucleons travels on straight line trajectories and are essentially
undeflected.

• Inelastic nucleon-nucleon cross-section is independent of the number of collisions
for a nucleon underwent before.

Analytical expressions of these quantities can be found in Appendix A.
What is the relation between these quantities and the experimental observables ? In

proton-nucleus collisions, the total multiplicity scales with the number of participants
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Npart (in other words, ”wounded nucleons”) [4]. In nucleus-nucleus collisions, it is also
found that the total multiplicity is proportional to be Npart [5]. Npart is scaled with the
volume of the interaction region, therefore the total multiplicity is given by

dN

dy
∝ Npart ∝ A. (1.5)

For processes involving large momentum transfer (hard scattering processes), all
nucleon-nucleon collisions are assumed to be independent because of their small cross-
sections. Therefore, the cross-sections for hard-scattering processes should scale with
the number of binary nucleon-nucleon collisions.

Perfect fluid hydrodynamics suggest that initial anisotropy in the coordinate space
are directly converted into the momentum anisotropy in the final momentum space.
Since hydrodynamic model always assumes the local thermal equilibrium, the relation
between initial spatial eccentricity and the final momentum anisotropy could provide
the signal of possible thermalization in the early stage of heavy ion collisions.

1.2.2 Time Evolution

Figure 1.4: A sketch of the space-time picture of a relativistic heavy-ion collision.

Fig. 1.4 shows a simplified space-time evolution of a heavy ion collision which consists
of 4 stages; (i) a parton cascade stage, (ii) a QGP phase, (iii) an interacting hadron gas
phase and (iv) a free hadron stage.
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Parton cascade stage: 0 < τ < τ0

Several models are proposed to describe the dynamics of initial parton-parton scattering
in heavy ion collisions: the color-string models [6], color glass condensate [7], and per-
turbative QCD models [8]. The parton production mechanism in parton cascade stage,
however, is not well understood, and it is being actively studied both from theoretical
and experimental point of view.

QGP phase and QCD phase transition: τ0 < τ < τf

The frequent scatterings of the partons leads to the local thermal equilibrim at τ0. Once
the local thermal equilibrium is attained, the relativistic hydrodynamics can be used to
describe the evolution of the system. The basic equations of relativistic hydrodynamics
are the conservation of the energy-momentum tensor and the baryon number

∂µT
µν = 0 (1.6)

∂µj
µ
B = 0 (1.7)

where T µν is the energy momentum tensor, and jµB is the baryon number current. In
the perfect fluid approximation, they are given by

T µν = (ε + P )uµuν − gµνP (1.8)

jµB = nBu
µ (1.9)

uµ = γ(1, vx, vy, vz) (1.10)

where ε is the local energy density, P is the local pressure, nB is the baryon number
density, and uµ is the fluid four-velocity. There are 6 unknown variables: ε, P , nB,
and vx, vy, vz, and the conservation laws in Eq. (1.6) and (1.7) contains 5 independent
equations. The equation of state (EOS) relating ε and P provides an additional equation
to solve the space time evolution of six thermodynamical variables.

Once an equation of state is choosen, one can solve the set of equations until the
system undergoes a freeze-out at τ = τf with the full numerical integration using the
full 3D hydrodynamics, or with assuming some symmetry and simplify the equations in
just one or two dimensions.

Freeze-out and free hadrons stage: τf < τ

The plasma expansion lead the drop of temperature, eventually hadronization takes
place and relative number of species of the emitted particles is fixed at chemical freeze-
out temperature. The particles are rescattering each other until the hadronic interac-
tions no longer occured. Kinetic freeze-out happens if the kinetic equilibrium is no
longer maintained, and no further hadronic intearctions occur until the free streaming
particles are detected.

Only the hadrons from the free hadrons stage can be detected in the heavy ion
experiments. It is very challenging to probe the early stage of the heavy ion collisions
with hadrons measured in the final stage.
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1.3 Major Features of Experimental Observables at

RHIC

In this section, we present the selected experimental observables obtained at RHIC and
discuss the relation to the collision dynamics and the bulk properties of QGP.

1.3.1 Achieved Energy Density
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Figure 1.5: εBj · τ as a function of number of participants (Np) in different
√
sNN [9].

The average transverse energy of particles (dET/dy) can be used to estimate the
energy density achieved in the heavy ion collisions with the Bjorken formula [9]

εBj =
1

πR2τ

dET
dy

(1.11)

where τ is the formation time and R is the radius of nucleus. Eq. (1.11) is derived from
perfect fluid hydrodynamics with free streaming particles at τ , which is defined as the
proper time when the system reaches local thermal equilibrium.

Fig. 1.5 shows the Bjorken energy density for three different center-of-mass energies
calculated from the measured dET/dy. For the 5 % most central collisions, εBj · τ was
2.2 ± 0.2, 4.7 ± 0.5, and 5.4 ± 0.6 GeV fm−2c−1 for

√
sNN = 19.6, 130 and 200 GeV,

respectively. An estimate with τ = 0.6 (1.0) fm gives εBj = 9 (5.4) GeV/fm3 for
√
sNN

= 200 GeV, which is larger than the critical energy density εc ∼ 1 GeV/fm3 prediced
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from Lattice QCD calculations. Thus, the energy density of the matter created at top
RHIC energy is well above the threshold for QGP formation.

1.3.2 Radial Flow
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Figure 1.6: Centrality dependence of transverse mass mT distributions for π±, K± and
p(p̄) in Au + Au collisions at

√
sNN = 200 GeV. The lines on each spectra represent the

fitting results with mT exponential function [10].

The produced hadrons carry informations about the collision dynamics and the his-
tory for entire space-time evolution of the system, so that the measurements of the
transverse momentum distributions of identified hadrons could be an essential tool to
study the collision dynamics.

Fig. 1.6 shows the transverse mass spectra for identified particles in different central-
ity selections. The transverse mass spectra can be described by an exponential shape

E
d3σ

dp3
∝ exp

(

−mT

T

)

(1.12)

where mT=
√

m2
0 + p2

T denotes the transverse mass of hadrons, m0 is the hadron mass,
pT is the transverse momentum, and T is the inverse slope parameter. The inverse slope
parameter is often interpreted as the temperature of the system. In the high energy
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p + p/p + A collisions, the inverse slope parameters are common (T ≈ 150 MeV) for
various particle species [11]. This phoenomenon is known as ”mT scaling” and suggest
that the spectra of hadrons with different masses would have similar slopes.
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Figure 1.7: Centrality and mass dependence of inverse slope parameter T in Au +
Au collisions at

√
sNN = 200 GeV. The dotted lines represent a linear fit of the data for

each centrality bin with Eq. (1.14) [10].

Fig. 1.7 summarize the centrality and particle type dependence of the inverse slope
parameters in Au + Au collisions. The inverse slope parameters increase with increasing
particles mass in all centrality bins. For central collisions, the slope is more rapidly
increasing for heavier particles. These mass dependence of slope parameters are not
observed in p+p/p+A collisions. Such mass dependences are considered as the evidence
of common outward radial flow created by the strong interaction among the produced
particles, and well describe the phenomelogical hydrodynamical model (blast-wave
model) [12]. The collective radial flow are incorporated into the trasverse mass spectra
as

dN

mTdmT

= AmT

∫ ∞

0

rdrI0

(

pT sinh ρ

Tf

)

K1

(

mT cosh ρ

Tf

)

(1.13)

where I0 and K1 represent the modified Bessel functions of first and second kind respec-
tively, ρ = tanh−1 β(r) denotes the transverse rapidity, β(r) is the radial flow velocity,
and Tf is the kinetic freeze-out temperature. In the limit of m � Tf , m � pT, and
Tf � mβ2 the inverse slope parameter becomes

Teff ' Tf +
1

2
m0 〈β〉2 . (1.14)

Eq. (1.14) shows the heavier the particles, the more they gain momentum or energy
from the radial flow velocity, and thus the effective temperature becomes larger.
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1.3.3 Azimuthal Anisotropy

Figure 1.8: A sketch of the non-central nucleus-nucleus collision.

Azimuthal anisotropic emission of particles in momentum-space is expected to be
sensitive to the early stage of collisions. In non-central collisions, the initial overlap of
two nuclei in the transverse plane becomes almond shape as depicted in Fig. 1.8. The
reaction plane is defined as the plane where the directions of beam and the vector
connecting the center of both nuclei (impact parameter). The azimuthal anisotropy of
emitted particles is quantitatively evaluated by using Fourier expansion series as

E
d3N

dp3
=

1

2π

dN

pTdpTdy
(1 + 2v1 cos (φlab − Ψ) + 2v2 cos (2[φlab − Ψ]) + ...) (1.15)

where φlab is the azimuthal angle of emitted particles in the fixed labratory frame, Ψ
denotes the azimuthal angle of the reaction plane, and vn is the magnitude of each
harmonics [13]. In this thesis, we only focus on elliptic flow (v2), which is the 2nd

harmonics of Fourier expansion in Eq. (1.15).
There are several reasons why elliptic flow is thought to be sensitive to the early

stage of heavy ion collisions.

1. Thermalization

The magnitude of elliptic flow is strongly influenced by the relation between the mean
free path λ and the typical length scale of the system R. If thermalization is achieved,
that is λ � R, the magnitude of elliptic flow is proportional to the initial eccentricity
(v2 ∝ ε). Since the ratio of λ/R is characterized as the degrees of thermalization
(Knudsen number), the ratio v2/ε could be an indicator of possible thermalization in
the early stage of heavy ion collisions.
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2. Sensitive to the equation of state

In the hydrodynamical picture, the pressure gradient is the driving force of the elliptic
flow. In non-central collisions, the pressure gradients between the produced matter
and the external vacuum is steeper in the direction of reaction plane (in-plane) than in
the direction of perpendicular to the reaction plane (out-of-plane). The larger in-plane
pressure gradient convert the initial spatial eccentricity into the in-plane elliptic flow
in the final momentum space. The pressure gradient is closely related to the EOS so
that the emission pattern of elliptic flow could be sensitive to the existence of the QGP
phase in the early stage.

The magnitude of elliptic flow could also be sensitive to the phase transition. If
the phase transition is of the first order, the pressure stays constants during the phase
transition. This results in vanishing the speed of sound cs =

√

∂P/∂ε (softening the
EOS). Hence, the magnitude of elliptic flow significantly reduces if the softening of EOS
happens.

3. Self-quenching signal with time

The observed elliptic flow is sensitive to the time scale of equilibrirum. The system
expands radially before the hydrodynamical evolution, thus the initial spatial anisotropy
is reduced by the time when equilibrium is achieved. The observed v2 could be diluted
if equilibration does not occur early times of collisions. In the late evolution stage, the
stronger in-plane pressure gradient could also lead the system expanding more rapidly
in that direction, therefore reducing the initial spatial anisotropy.

Fig. 1.9 shows the PHENIX results of v2 for identified hadrons as a function of
pT in minimum bias events. The data shows that for pT < 2 GeV/c, the particles
with lighter mass have a larger v2 for a given pT, which is in good agreement with the
hydrodynamical model calculation. Since the hydrodynamical model assumes the very
rapid thermal equilibrium (τ ' 0.6 fm/c), the results of v2 suggest that the local thermal
equilibrium could be attained at very early time in the heavy ion collisions. A striking
feature is that the observed v2 for pT > 2 GeV/c of p and p̄ are larger than that of π and
K. This trend is in sharp contrast to the its pT dependence of hydrodynamical model
calculation, which would predict to keep the same mass ordering for entire pT range.
Such a behavior of v2 is predicted by the quark coalescence/recombination mechanism
[15].

Assuming the quarks and antiquarks distributions are the same, the invariant spec-
trum of mesons and baryons are proportional to the product of the invariant spectra of
constituents in the coalescence model [16]. The hadron spectra at mid-rapidity are

dNM

d2pT
(pT ) = CM(pT )

(

dNq

d2pT
(pT/2)

)2

(1.16)

dNB

d2pT
(pT ) = CB(pT )

(

dNq

d2pT
(pT/3)

)3

(1.17)

where NM , NB, Nq denote the yield of mesons, baryons and quarks, CM and CB are the
probabilities for qq̄ → meson and qqq → baryon coalescence [15]. If partons have only
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Figure 1.9: v2 as a function of pT for identified π, K and p in minimum bias events in Au
+ Au collisions at

√
sNN = 200 GeV. The lines represent the result of a hydrodynamical

calculations including a first-order phase transition with freeze-out temperature of 120
MeV [14].

elliptic flow, i.e.,
dNq

pTdpTdφq
=

1

2π

dNq

pTdpT
(1 + 2v2,q cos (2φq)) (1.18)

where φq is the azimuthal angle of partons relative to the direction of reaction plane. v2

is defined as

v2 =

∫ 2π

0
dφ cos (2φ)dN/pTdpTdφ
∫ 2π

0
dφ dN/pTdpTdφ

(1.19)

then from Eq. (1.16), one immediately obtains the elliptic flow of meson and baryons
with the assumption of vq2 � 1

vM2 (pT ) ≈ 2v2,q

(pT
2

)

(1.20)

vB2 (pT ) ≈ 3v2,q

(pT
3

)

(1.21)

where pT is the transverse momentum of hadrons.
Fig. 1.10 demonstrates the quark number scaling of v2 as a function of pT/nq in

minimum bias events from PHENIX and STAR experiments, where nq denotes the
number of constituent quarks in each hadron [17]. The scaled v2 values above 0.6
GeV/c lie on a universal curve for all particle species, except for π. The deviation for
π may be caused by the resonance decay contributions [18, 19], or it may be difficult
to describe the pion production by a constituent quark model because the assumed
constituent quark masses are significantly larger than current quark masses [15, 20].
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This results support the picture of hadron production via the coalescence of con-
stituent quarks with collective anisotropic flow and suggest that the elliptic flow has
been established in the partonic phase in the heavy ion collisions. One could see that
the quark number scaling of v2 breaks for pT < 0.6 GeV/c. There is another scaling
variable, KET = mT−m0 (GeV), which can describe the scaling of v2 in entire pT range
up to pT = 4 - 5 GeV/c. The validity of quark number scaling of v2 with KET will be
discussed in the thesis.

1.3.4 Blast-wave model

As we already discussed in Section 1.2.2 and 1.3.3, the space-time evolution of the
QGP phase can be described by relativistic hydrodynamics. And the calculation of
hydrodynamical model is consistent with the results of v2 for pT < 2 GeV/c. Since
the hydrodynamical model assumes local thermal equilibrium, the agreement of v2 with
hydrodynamical model prediction indicates that the local thermal equilibrium is attained
very rapidly (τ ∼ 1 fm/c).

In order to describe the evolution of heavy ion collisions, full 3-D hydrodynamical
simulation should be perfomed with Eq. (1.6) - (1.10). Instead of employing full 3-D
hydrodynamical simulation, one could solve the set of equations analytically with some
assumptions. Blast-wave model is one of the hydro-inspired model which help us to
verify the configuration just after the thermal kinetic freeze-out.
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Figure 1.11: Transverse momentum spectra for positive (left) and negative (right) π, K,
p in 0 − 5 % centrality (top) and 60 − 92 % centrality (bottom). Solid lines represent
the fitting results by Blast-wave model.

Fig. 1.11 shows transverse momentum spectra for π, K and p in most central
(0− 5 %) and peripheral (60− 92 %) events [21]. The calculation by Blast-wave model
is in good agreement with the data as shown by the solid lines in the figure. The
parameters are extracted by fitting single transverse momentum spectra for π, K and p
simultaneously with the Blast-wave model. It is found that the freeze-out temperature
(average radial flow velocity) increase (decrease) from central to peripheral collisions.
This anti-correlation of T and 〈βT 〉 is consistent with the collective expansion picture.

Several blast-wave framework also trys to fit the v2 with additional parameters: ε,
β2, where ε is the spatial eccentricity at the freeze-out, and β2 is the 2nd harmonic
coefficient of radial flow velocity or radial transverse rapidity [22]. Since these models
consider the bulk properties where the kinetic freeze-out takes place, the parameters are
extracted by fitting single particle spectra and v2 simultaneously.

However, v2 is thougt to be more sensitive to the early stage of heavy ion collisions
compared to the single particle spectra, one can expect that v2 has different sensitivities
on the parameters from transverse momentum spectra. Thus, one could extract bulk
properties, such as temperature and radial flow velocity, in the early stage of collisions
by comparing with measured v2 and blast-wave model.
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1.4 Thesis Motivation

In this chapter, we reviewed several observables which is thought to be the signatures of
the QGP. The estimated Bjorken energy density is larger than 5 GeV/fm3, which is well
above the critical energy density predicted by the Lattice QCD calculations. The results
of single particle transverse momentum spectra are consistent with the description by
the model with collective transverse expansion.

The results of v2 for identified hadrons at pT < 2 GeV/c are in good agreement
with the calculation of ideal hydrodynamical model with very rapid thermalization,
τ0 ∼ 1 fm/c. It indicate that the thermal equilibrium have been attained for early
stage of heavy ion collisions at RHIC. For pT > 2 GeV/c, however, the deviation from
hydrodynamic model is observed and that trend of v2 can be well described with the
quark coalescence mechanism. This results indicate that the elliptic flow was developed
in the partonic phase of heavy ion collisions.

In this thesis, we present the measurements of centrality dependence of identified
hadron elliptic flow in

√
sNN = 200 GeV Au + Au collisions at RHIC-PHENIX experi-

ment. Our main goals are as follows;

1. Study the relation between initial geometry overlap (eccentricity) and final mo-
mentum elliptic flow.

2. Study the sensitivity of initial density profile to the elliptic flow by Blast-wave
model, and extract freeze-out temperature (T ) and radial flow velocity (βT ).

3. Test the validity of the quark number scaling of v2 for several different centrality
with π, K, p, d and φ

As we already shown in 1.3.3, elliptic flow is expected to be proportional to the
eccentricity if the local thermal equilibrium is achieved. Therefore, it is important to
measure the centrality dependence of elliptic flow in order to understand how the initial
eccentricity is converted into the final elliptic flow. We examine the eccentricity scaling
of v2 in Au + Au and Cu + Cu collisions with several different definitions of eccentricity,
and also study the sensitivity of scaled v2 with different density profile, namely number
of participant and number of collision density.

The blast-wave model successfully describes the transverse momentum spectra in
heavy ion collisions. Several blast-wave models also describe the elliptic flow by simul-
taneous fitting with both spectra and v2. However, magnitude of v2 saturate earlier
than pT spectra so that v2 may have different sensitivity to the early stage of heavy
ion collisions. The sensitivity of v2 to the density profile are studied and extract bulk
thermodynamic properties, such as freeze-out temperature and radial flow velocity, by
the extended blast-wave model. It takes into account the density and velocity profiles
estimated by Glauber model, while the usual blast-wave model assume that density is
constant inside the overlap zone and velocity profile is proportional to the transverse
radius r =

√

x2 + y2.
Quark number scaling of v2 suggest that the existence of universal curve for hadrons

with ligth quarks for pT/nq > 0.6 GeV/c, and that the coalescence of constituent quarks
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could be dominant particie production at that pT range. Quark number scaling of v2 has
been studied in minimum bias events. However, the magnitude of v2 strongly depends
on the collision centrality. Therefore, it is crucial to test the validity of quark number
scaling for each centrality, from central to peripheral collisions. We study the validity of
the quark number scaling of v2 for identified hadrons in the measured centrality range.

More concrete evidence of quark coalescence would be provided by the measurment
of v2 for φ meson. Because the lifetime of φ meson in vacuum is larger (≈ 45 fm/c)
compared to the typical length scales of the medium (∼ 10 fm), and the cross-section for
scattering of strange hadrons by non-strange hadrons are small (∼ 9 mb) [23]. Thus, if
elliptic flow was developed in a phase involving hadrons interacting with their hadronic
cross sections, one would expect that v2 of the φ could be significantly smaller than
that of other hadrons. On the other hand, if the elliptic flow was established in the pre-
hadronic phase, the φ meson provide an important test for the quark number scaling as
we already discussed in the last section. Since its mass is similar to that of the proton,
its v2 should be additive with the v2 of the two constituent quarks.
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Experimental Apparatus

2.1 Relativistic Heavy Ion Collider (RHIC)

(a) (b)

Figure 2.1: (a) A schematic of the RHIC complex. (b) The layout of the detectors
around the RHIC tunnel.

The Relativistic Heavy Ion Collider (RHIC) [24, 25] is located at Brookhaven Na-
tional Laboratory (BNL) and is the highest energy collider in the world. RHIC is capable
of colliding a wide variety of particle species from A = 1 (protons) to A ∼ 200 (gold),
at present. One obtains energies up to 100 GeV per nucleon for Au + Au collisions and
up to 250 GeV for protons. The designed luminosity 1 is 2× 1026 cm−2 s−1 for Au ions
and 1.4× 1031 cm−2 s−1 for protons. A schematic of the RHIC complex is shown in Fig.
2.1.

The RHIC consists of two quasi-circular concentric accelerator/storage rings on a
common horizontal plane, one (”Blue Ring”) for clockwise and the other (”Yellow Ring”)
for counter-clockwise beams. The circumference of RHIC ring is 3.8-km. An existing

1the number of interactions per unit time per unit cross-section

18
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chain of hadron accelerators, i.e., the Tandem Van de Graff, the Booster, and the Al-
ternating Gradient Synchrotron (AGS) are used as the heavy ion injector to the collider
rings.

2.2 PHENIX Detector Overview

The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is one of the
large experiments at RHIC. The PHENIX detector comprises four instrumented spec-
trometers or arms and three global detectors [26]. The detector consists of a number of
subsystems. The rapidity and φ coverages and other features of these subsystems used
in this thesis is given in Table 2.1.

Table 2.1: Summary of PHENIX detector subsystems used in this thesis
Element ∆η ∆φ Purpose and special features

Magnet
Central (CM) ±0.35 360o Up to 1.15 T m

Global detectors
Beam-beam (BBC) ±(3.0 to 3.9) 360o Start timing, fast vertex

ZDC ±2 mrad 360o Minimum bias trigger

Tracking
Drift Chamber (DC) ±0.35 90o×2 Good momentum and mass resolution

∆m/m = 1.0 % at m = 1 GeV

Pad Chambers (PC) ±0.35 90o×2 Pattern recognition, tracking
for nonbend direction

Particle identification
Time-of-Flight (TOF) ±0.35 45o Good hadron identification, σ < 100 ps

PbSc EMCal ±0.35 90o+45o For both calorimeters, photon and electron
detection and energy measurement

Table 2.2 provide the recorded integrated luminosity at PHENIX and the statistics
on the total number of events achieved by PHENIX in Runs 1 through 5.
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Table 2.2: Summary of PHENIX data sets acquired in RHIC Runs 1 through 5.
Run Year Species

√
sNN (GeV)

∫

Ldt Ntot

01 2000 Au + Au 130 1 µb−1 10 M

02 2001/2002 Au + Au 200 24 µb−1 170 M
p+ p 200 6.35 pb−1 3.7 G

03 2002/2003 d + Au 200 2.74 nb−1 5.5 G
p+ p 200 0.15 pb−1 3.7 G

04 2003/2004 Au + Au 200 241 µb−1 1.5 G
Au + Au 62.4 9 µb−1 58 M

05 2004/2005 Cu + Cu 200 3 nb−1 8.6 G
Cu + Cu 62.4 0.19 nb−1 0.4 G
Cu + Cu 22.5 2.7 µb−1 9 M
p+ p 200 3.8 pb−1 85 B

2.3 PHENIX Central Magnet (CM)

The PHENIX magnet system [27] is composed of three spectrometer magnets with warm
iron yokes and water-cooled copper coils. The Central Magnet (CM) is energized by
two pairs of concentric coils, which are ”Outer” and ”Inner” coils, and provides a field
around the interaction vertex that is parallel to the beam. A schematic drawings of
magnet system is shown in Fig. 2.2.

The data in this thesis only consisted of the ”Inner + Outer” configuration. Since
the field is a very good approximation phi-symmetric and axial so that most of the
bending of charged particle’s trajectory occurs in phi, and not in theta. The parameters
for the central magnet are shown in Table 2.3.

2.4 The Global Detectors

The global properties of the heavy ion collisions, including the collision vertex along
the beam direction, the trigger and timing information, the collision centrality, the
multiplicity, and the event plane are characterized by a set of global detectors around
the beam line. In this thesis, the Zero Degree Calorimeters (ZDC), and the Beam Beam
Counters (BBC) are used.

2.4.1 Zero Degree Calorimeter (ZDC)

Fig. 2.3 A) shows an overhead drawing of the PHENIX interaction region. A pair of
ZDC (Zero Degree Calorimeter) [28] are located on either side of the interaction region,
18 m away, and behind the DX magnet in order to provide universal characterization of
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South Muon Magnet

North Muon Magnet

Figure 2.2: Line drawings of the PHENIX magnets, shown in perspective and cut away
to show the interior structures. Arrows indicate the beam line of the colliding beams in
RHIC.

Table 2.3: Parameters for the PHENIX Central Magnet

Parameter CM CM
CM Coils Inner and Outer Outer Only

Field configuration Axial Axial
Field integral 0.43 to 1.15 0.78

(T-m) (Θ=90o) (Θ=90o)
Wt. (metric tons) 421 421

Pseudorapidity coverage -0.35 < η < 0.35 -0.35 < η < 0.35
Polar angle coverage 70o < Θ < 110o 70o < Θ < 110o

Amp-turns 541,000 248,000
Power (kW) 928 600

Average coil temp. (oC) 23.8(I)/32.1(O) 32.1
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heavy ion collisions. Because of the DX magnet, any charged particles are swept away
before hitting the ZDC. Fig. 2.3 B) shows the locations of neutrons, gold, and protons
after going through the DX magnet.

The ZDC is a small hadron calorimeter, consisting of layers of tungsten plates and
scintillator slabs as shown in Fig. 2.4 and detects neutron multiplicities from the heavy
ion collisions, giving one of the collision centrality measures. The ZDC pair at each
crossing point is also used as a luminosity monitor in steering the beams to collide.

Figure 2.3: A) An overhead view of the interaction region showing the location of the
ZDCs as either end, just after the DX magnets and in the crotch where the two rings
merge. B) A frontal view of the ZDC and beam-pipe with the locations of neutrons,
gold and proton after they are swept by the DX magnet.

2.4.2 Beam-Beam Counter (BBC)

The main role of the BBC (Beam-Beam Counter) [29] is

• to provide the start time for the TOF measurements

• to produce the signal for the PHENIX LVL1 trigger

• to measure the collision vertex point along the beam axis

The BBC consists of two identical sets of counters installed on both sides of the
collision point along the beam axis. The BBC is placed 144 cm from the collision point
and surround the beam pipe, which covered a pseudorapidity range from 3.0 to 3.9 over
the full azimuth. Fig. 2.5 shows the photographs of BBC. Each element of BBC is
one-inch diameter mesh-dynode photomultiplier tubes (Hamamatsu R6178) equipped
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Figure 2.4: A photo of 1 module of the ZDC. The top shows the PMMA fibers which
are sandwiched between tungsten plates. These fibers generate and guide cerenkov light
to the Hamamatsu R329-2 PMT. The red arrow on the left shows the impact position
of the beam.
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with 3 cm quartz on the head of the PMT as Cherenkov radiator as shown in Fig. 2.5
(a). Each BBC is composed of 64 PMT elements (Fig. 2.5 (b)) and is installed on the
mounting structure surrounding the beam pipe as shown in Fig. 2.5 (c).

The BBC was made to satisfy the following requirements;

1. The BBC must have a capability to function over a large dynamic range from 1
to 30 MIP’s in order to cover from p+p to central Au + Au collisions.

2. The BBC is required to be radiation hard because the location of BBC, which is
around the beam pipe near the collision point, is very high-level radiation area.

3. The BBC needs to work in a high magnetic field environment (∼ 3 kG) since the
BBC is installed just behind the central magnet.

Figure 2.5: (a) Signle Beam-Beam Counter consisting of one-inch mesh dynode photo-
multiplier tubes mounted on a 3 cm quartz radiator. (b) A BBC array comprising 64
elements. (c) The BBC is shown mounted on the PHENIX detector. The beam pipe
can be seen in the middle of the picture. The BBC installed on the mounting structure
just behind the central spectrometer magnet.

For both ZDC and BBC, the start time and z-vertex position are determined by
using the measured time difference between the south and north detectors and known
distance between the two detectors. The start time (T0) and the z-vertex position (zvtx)
are calculated as

T0 = (T1 + T2)/2 (2.1)

zvtx = c · (T1 − T2)/2 (2.2)

where T1 and T2 are the average timing of particles in each counter and c is the speed
of light. Typically, the ZDC z-vertex is measured with a resolution of 2.5 cm with an
intrinsic timing resolution of 150 ps, and the resolution of BBC z-vertex is 0.6 cm with
timing resolution of 40 ps [30].



CHAPTER 2. EXPERIMENTAL APPARATUS 25

2.5 The Central Arm Spectrometers

The PHENIX central arm spectrometers consists of two arms, which is east arm (right)
and west arm (left). Each arm covers 90o in azimuth and |η| < 0.35 2. As shown in
the Fig. 2.6, each spectrometers consists of layers of tracking and particle identification
subsystems.

Figure 2.6: The layout of PHENIX central arm spectrometers viewed along the beam
axis in Run4 configuration.

The PHENIX central arm spectrometers have three main tracking device, which is
Drift Chamber (DC), Pad Chambers (PC), and Time Expansion Chamber (TEC), to
measure the momentum of charged particles, reconstruct invariant masses of particle
pairs and contributes to particle identification. The three tracking subdetectors are
optimized for different purposes.

1. The Drift Chamber (DC) provide high resolution pT measurements and position
information used to match tracks for outer subsystems.

2. Three Pad Chambers (PC) designated PC1, PC2, and PC3 provide three di-
mentional position measurements along the straight line trajectories for charged
hadrons outside the magnetic field. PC1 also determine the three-dimensional
momentum vector by providing polar angle θ for charged tracks at the exit of the
DC.

3. The Time Expansion Chamber (TEC) provides additional tracking and particle
identification.

2Pseudorapidity, η = − ln (tan (θ/2)). θ is polar angle.
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Particle identification is provided by Ring Imaging CHerenkov counter (RICH), Time
Expansion Chamber (TEC), Time-Of-Flight (TOF), Lead Scintillator Electromagnetic
Calorimeter (PbSc), and Lead Glass Electromagnetic Calorimeter (PbGl). RICH pro-
vide excellent separation of electrons from hadrons over a wide range of momenta in
0.2 < p < 5.0 GeV/c or greater. TEC is an additional tracking device which helps
with moemntum resolution at high pT, and provides electron identification below 2.5
GeV/c through a measurement of dE/dx. The main role of TOF is to provide good
hadron separation out to 2.4 (4.0) GeV/c for π/K (K/p) with about 100 ps timing
resolution. The EMCal system (PbSc and PbGl) provide a measurement of energy and
spatial position of photons and electrons.

In the following sections, we introduce the PHENIX central arm spectrometers fo-
cusing on the subsystems which are used in this analysis: DC, PC, PbSc, and TOF.
More details about the PHENIX detector can be found in [31, 32, 33].

2.5.1 The Drift Chamber (DC)

R = 2.02 m

90
o

R = 2.46 m

2.
5 

m

Ti  frame

mylar  window

Figure 2.7: Drawing of the Drift Chamber Frame.

The Drift Chamber (DC) [34] is located in the east and west arm at a radial distance
of 2.02 < R < 2.46 m, respectively. One of them is the mirror copy of each other, and
each DC covers 90o in azimuth and 1.8 m along the z direction which corresponds to
|η| < 0.35. The schematic drawing of DC frame is shown in Fig. 2.7.
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DC is intended to measure momentum of charged particles with high resolution,
∆pT/pT≈ 0.5%. In order to achieve high momentum resolution, the DC has to satisfy
the following requirements:

• Single wire resolution better than 150 µm in the r-φ.

• Single wire efficiency better than 99 %.

• Single wire two track separation better than 1.5 mm.

• Spatial resolution in the z direction better than 2 mm.

cathode plane

X1 − planes

U1 − planes

V1 − planes

X2 − planes

U2 − planes

anode plane

wire

sense (anode)
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Gate wires

Back wire
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~ 
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Figure 2.8: The layout of wire position within one sector and inside the anode plane
(left). A schematic diagram, top view, of the stereo wire orientation (right).

DC frame can be divided in 20 identical sectors each covering 4.5o in φ. Every sector
is filled with six modules of different types: X1, U1, V1, X2, U2, and V2 as shown in
Fig. 2.8.

Each module contains 4 sense (anode) planes and 4 cathode planes forming cells
with a 2 to 2.5 cm drift space in the φ direction. The X1 and X2 wire cells are running
in parallel to the beam to perform precise track measurements in r-φ. The U and V
layers begin in one sector on one side of the frame and end in neighboring sectors on the
opposite side. Angle between U, V stereo wires and X wires is about ± 6o and measure
z coordinate of the track. Each of the X and U, V stereo cells contain 12 and 4 anode
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(sense) wires, respectively so that there are 40 drift cells in the DC located at different
radii. The sense wires (anode) are also electrically isolated in the middle by a low mass
kapton strip. The number of readout channels is, therefore, doubled, about 3200 × 2 =
6400 channels, for each arm. It is necessary to reduce the track density on a signle wire
and perform reliable pattern recognition for the largest track multiplicities at RHIC.

2.5.2 The Pad Chamber (PC)

The Pad Chambers (PC) [35] are multi-wire proportional chambers. The three layers of
Pad Chambers are located at the radial distance of 2.5 m (PC1), 4.2 m (PC2), and 4.9 m
(PC3) from the interaction region as shown in Fig. 2.6. The PC system determines space
points along the straight line particle trajectories since the PCs are located well outside
the magnetic field (R > 2.4 m). The PCs are the only non-projective detectors in the
central arm tracking system, and thus are critical elements of the pattern recognition.
PC1 is also essntial for determining the 3-dimentional momentum vector by providing
the z coordinate at the exit of the DC.

Figure 2.9: Vertical cut through a pad chamber.

Each detector contains a single plane of wires inside a gas volume bounded by two
cathode planes as shown in Fig. 2.9. One cathode is finely segmented into an array
of pixels. The charge induced on a number of pixels when a charged particle starts an
avalanche on an anode wire, is read out through specially designed readout electronics.

The design of pixels is driven by the need for good position resolution in the z-
coordinate and a low occupancy even in the high track multiplicities. The design goal
for the position resolution was 4 mm so that an anode wire spacing of about 8 mm was
motivated. Finally, for a geometrical reasons, a spacing of 8.4 mm was chosen. A cell
area of 8.4 × 8.4 mm2 was adopted since a square cell geometry was desired.
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Figure 2.10: The pad an pixel geometry (left). A cell defined by three pixels is at the
center of the right picture.

A special pad design was invented, where each cell contains three pixels and an
avalanche must be sensed by all three pixels to form a valid hit in the cell in order to
reduce the amount of electric and other noise. This arrangement is, however, costly in
terms of electronic channels. Thus, the interleaved pixels were ganged together as shown
in the Fig. 2.10. Nine pixels are connected to a group and to a common readout channel,
such that the three pixels in a cell are always connected to different but neighbouring
channels and each cell is defined by its unique channel triplet. This solution saves a
factor of nine in readout channels compared to readout of every pixel and a factor of
three compared to a readout pad geometry where a cell is the actual electrode connected
to an electronics channel.

The performance of PCs are summrized in the Table 2.4 [36].

Table 2.4: Summary of Pad Chamber performance

Chamber Wire distance z resolution perp. resolution radiation thickness

(mm) (mm) (mm)

PC1 8.4 1.7 2.5 1.2 %

PC2 13.6 3.1 3.9 2.4 %

PC3 16.0 3.6 4.6 2.4 %

2.5.3 Lead Scintillator Electromagnetic Calorimeter (PbSc)

The primary role of the Electromagnetic Calorimeter (EMCal) [37] in PHENIX is to
provide a measurement of the energies and spatial positions of photons and electrons.
The EMCal system consists of 2 differently designed subsystems. The first is a shshlik
type sampling calorimeter consisting of 15552 lead and scintillator (PbSc) towers. The
other is a homogeneous detector consists of 9216 elements of lead-glass (PbGl). They
both have good timing and energy resolutions, although the PbSc has better timing and
the PbGl has better spatial and energy resolution. In addition, the PbSc has 0.85 nuclear



CHAPTER 2. EXPERIMENTAL APPARATUS 30

interaction length in depth so that it has some sensitivity for hadron measurements even
though the PbSc was designed as an electromagnetic calorimeter. Having two detectors
with different systematics increases the confidence level of the physics results. We will
discuss design and operational parameters of the PbSc calorimeter which used in this
analysis. More details of PbGl can be found in [37].

Figure 2.11: Interior view of PbSc calorimeter module showing a stack of scintillator
and lead plates, wavelength fiber readout and leaky fiber inserted in the central hole.

The PbSc towers contains 66 sampling cells consisting of alternating tiles of Pb
and scintillator. These cells are optically connected by 36 longitudinally penetrating
wavelength shifting fibers for light collection. Fig. 2.11 shows a ”module” which is
mecanically grouped 4 towers together into a signle structural entity. 36 of these modules
are hold together to form a ”supermodule”. 18 supermodule make a ”sector”. All major
PbSc design parameters are listed in Table 2.5.

The nominal energy resolution of PbSc is

σ(E)/E = 8.1%/
√
E ⊕ 2.1% (2.3)

The resolution was determined by electron test beams at BNL and CERN under ideal
conditions as shown in Fig. 2.12.

Fig. 2.13 shows the timing resolution of PbSc. the PbSc timing resolution is nearly
constant at σ ∼ 120 ps for electrons and protons, and σ ∼ 270 ps for pions for energy
deposits in the PbSc larger than 0.5 GeV. For the real datas in Run-4 period, the timing
resolution is achieved about 400 ps for pions, which provides the particle separation up
to pT ∼ 1 GeV/c for π/K, and up to pT ∼ 2 GeV/c for K/p.
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Table 2.5: Individual Pb-Scintillator Calorimeter Tower Parameters

Parameter Value

Lateral Segmentation 5.535 × 5.535 cm2

Active Sampling Cells 66

Scintillator Polystyrene (1.5% PT / 0.01% POPOP), 0.4 cm

Absorber Pb, 0.15 cm

Cell Thickness 0.56 cm (0.277 X◦)

Active Depth 37.5 cm

Radiation Length 18

Nuclear Interaction Length 0.85

WLS Fiber BCF-99-29a, 0.1 cm

WLS Fibers per Tower 36

PMT Type FEU115M, MELS, Russia, 3.0 cm

Photocathode Sb-K-Na-Cs

Luminous Sensitivity ≥ 80 µa/lm

Rise Time (20%–80%) ≤ 5 ns
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Figure 2.12: PbSc energy resolution obtained by beam tests at CERN and BNL. The
dashed line shows a fit to the linear formula σ(E)/E = 1.2% + 6.2%/

√
E. The dashed-

dotted line shows the fit to the quadoratic formula σ(E)/E = 2.1% ⊕ 8.1%/
√
E.
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Figure 2.13: PbSc timing resolution for different particles. Top figure shows lineshape
for 1 GeV/celectrons, pions, and protons. Bottome shows timing resolution in the
momentum range 0.3 < p < 1.0 GeV/c.
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2.5.4 The Time-of-Flight Counter (TOF)
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Figure 2.14: Schematic diagram of the components of a single TOF panel, which consists
of 96 plastic scintillator with PMT, light guides, and supports at both ends.

The Time-Of-Flight (TOF) system [33] provides a primary device for charged hadron
identification in PHENIX and is designed to achieve a very clear particle separation out
to high momentum, i.e. π/K separation up to 2.4 GeV/c and K/p separation up to 4.0
GeV/c with 100 ps timing resolution.

The TOF is located at a radial distance of 5.1 m from the collision vertex in the east
arm. It convers 70o ≤ θ ≤ 110o, which corresponds to |η| < 0.35, and 30o in azimuth.
The TOF slat is a plastic scintillator (Bicron BC404) with PMT (Hamamatsu R3478S)
at both ends. Two different lengths of scintillator (637.7 and 439.9 mm) are used in
order to avoid geometrical conflicts between the PMT’s of neighboring slats. 96 of these
slats are grouped to a TOF wall called as ”panel” as shown in Fig. 2.14. 10 panels
make a TOF system, thus total 960 slats and 1920 channels of PMT’s are installed.
The segmentation of TOF system is determined to minimize the probability of double
hit. Assuming the rapidity density of the charged particle to be dNch/dy = 1500, the
charged particle multiplicity on the TOF is expected to be 9. In order to keep the
occupancy below 10 %, the segmentation should be about 1000 and the required area
of each segment at a radial distance of 5.1 m from the interaction points is 100 cm2.

Particle identification for charged particles is performed by combining the informa-
tion of the BBC, DC, PC, and TOF. Fig. 2.15 shows scatter plot of invserse momentum
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times charge with respect to the flight time of charged particles in minimum bias Au +
Au collisions. This figure clearly demonstrates the particle identification capability of
the TOF detector. During Run-4 period, the actual timing resolution of TOF system
is about 125 ps, which is enable us to separate π/K up to 2 GeV/c, and K/p up to 3.2
GeV/c.

Figure 2.15: Flight time of charged hadrons as a function of inverse momentum in
minimum bias Au + Au collisions at

√
sNN = 200 GeV.
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Data Reduction

In this chapter, we present the minimum bias trigger and centrality determination (Sec-
tion 3.1), event plane determination with BBC (Section 3.2), track reconstruction and
momentum determination by the DC (Section 3.3), particle identification by the TOF
(Section 3.4), how to extract the v2 for identified hadrons (Section 3.6), and systematic
uncertainties on v2 (Section 3.7).

3.1 Event selection

3.1.1 Minimum Bias Trigger

Minimum bias trigger is defined by selecting following events on the BBC and the
ZDC:

1. BBC

• At least two PMTs are fired in each BBC and the collision vertex zvertex
satisfy |zvertex| < 38 cm by the online BBC Level-1 trigger.

• |zvertex| < 30 cm is required by offline analysis.

2. ZDC

• At least one forward neutron is detected in each of the two ZDC.

The trigger efficiency for minimum bias Au + Au collisions is studied for both of the
BBC and the ZDC [38, 39]. The extracted trigger efficiencies are given by

εBBC = 92.3% ± 0.4%(stat.) ± 1.6%(sys.) (3.1)

εZDC|BBC = 99+1.0
−1.5% (3.2)

εminbias = εBBC × εZDC|BBC = 91.4+2.5
−3.0% (3.3)

where εBBC is the BBC trigger efficiency estimated by HIJING event generator [40].
εZDC|BBC is the ZDC trigger efficiency for BBC Level-1 triggers, and εminbias is the min-
imum bias trigger efficiency with the coincidence of BBC and ZDC. Therefore, PHENIX
minimum bias trigger selection can cover 91.4% of the Au + Au inelastic cross sections.

35
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3.1.2 Centrality Determination
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Figure 3.1: Centrality determination using the ZDC total energy and the BBC charge
sum. See text for details how to determine the centrality in ZDC-BBC space.

In order to study the collision geometry dependenence of the measured anisotropic
flow we should know the relationship between the impact parameter and centrality since
we cannot measure impact parameter directly. In PHENIX experiments, the centrality
is determined by the measured correlation between the charge deposited in the BBC
and the energy deposited in the ZDC.

In Fig. 3.1 the centrality angle φcent is determined in the ZDC energy - BBC charge
space, where φcent is the angular position of the event defined as

φcent = tan−1

(

(QBBC −QBBC
0 )/QBBC

max

EZDC/EZDC
max

)

(3.4)

where QBBC and EZDC are measured charge sum in the BBC and measured total energy
in the ZDC, respectively, QBBC

max is the maximum charge sum measured in the BBC and
is equal to 1700, QBBC

0 = 0.15 ·QBBC
max is the position along the BBC axis from which the

angle φcent is determined, and EZDC
maz is the maximum energy deposited in the ZDC and

is 8500 GeV. This event with φcent is groupud into the centrality class defined by lower
and upper bounds, φmin and φmax if φmin < φcent < φmax. Since the performance of
the BBC and ZDC is changed during the period of Run4, we apply the time dependent
correction for both BBC charge and ZDC energy [41].

After centrality is determined we estimate number of participating nucleons (Npart)
and number of binary collisions (Ncoll) by using Glauber model based on Monte Carlo
simulations. Further details of Glauber model can be found in Appendix A.



CHAPTER 3. DATA REDUCTION 37

3.2 Event Plane

In this section, we introduce the Fourier expansion of azimuthal particle distribution
and its properties with respect to the reaction plane. And we also introduce event
plane which is the estimate of the true reaction plane determined by using the signal
of flow itself.

3.2.1 Fourier Expansion of Azimuthal Distribution

Since the azimuthal distribution of emitted particles dN/dφ is the periodic function
with 2π fundamental period, it is natural to expand azimuthal distribution into Fourier
series with 2π period.

dN

dφ
=

x0

2π
+

1

π

∞
∑

n=1

(xn cos (nφ) + yn sin (nφ))

=
x0

2π

(

1 + 2

∞
∑

n=1

(

xn
x0

cos (nφ) +
yn
x0

sin (nφ)

)

)

(3.5)

The Fourier coefficients xn and yn can be obtained by integrating dN/dφ with weights
proportional to cos (nφ) and sin (nφ). Here, we introduce the following notation,

〈O〉 =

∫

dφ O × dN/dφ
∫

dφ dN/dφ
(3.6)

where O denotes some observables. Since there is only a finite number of particles in
each event, the integral become simply sums over particles found in the event

xn =

∫ 2π

0

dφ
dN

dφ
cos (nφ) =

M
∑

i=0

wi cos (nφi) ≡ Qx (3.7)

yn =

∫ 2π

0

dφ
dN

dφ
sin (nφ) =

M
∑

i=0

wi sin (nφi) ≡ Qy (3.8)

where i runs over all particles (M) used to determine the event plane, φi is the azimuthal
angle of the emitted i-th particle and wi is the weight (pT, multiplicity etc) to minimize
the dispersion of event plane (i.e. maximize event plane resolution). We define the
following two-dimentional vector Q = (Qx, Qy) called as a flow vector.

If we assume φ in Eq. (3.5) is defined relative to the reaction plane, then dN/dφ
becomes an even function and we can omit yn terms since the integration would be zero
in Eq. (3.8),

dN

dφ
=
x0

2π

(

1 + 2

∞
∑

n=1

xn
x0

cos (nφ)

)

=
x0

2π

(

1 + 2

∞
∑

n=1

vn cos (n[φlab − Ψ])

)

(3.9)
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where φlab is the azimuthal angle of fixed orientation in the experiment, Ψ is the az-
imuthal angle of true reaction plane and vn = xn/x0 is the magnitude of anisotropy. We
introduce the following two variables,

vobsn =

√

x2
n + y2

n

x0

, x0 = M 〈w〉 (3.10)

Ψn =
1

n
tan−1

(

yn
xn

)

, 0 ≤ Ψn ≤ 2π

n
(3.11)

From Eq. (3.10) and (3.11), measured azimuthal distribution rm(φ) can be given by

rm(φlab) =
x0

2π

(

1 + 2

∞
∑

n=1

(

xn
x0

cos (nφlab) +
yn
x0

sin (nφlab)

)

)

=
x0

2π

(

1 + 2

∞
∑

n=1

(

vobsn cos (nΨn) cos (nφlab) + vobsn sin (nΨn) sin (nφlab)
)

)

=
x0

2π

(

1 + 2

∞
∑

n=1

vobsn cos (n[φlab − Ψn])

)

(3.12)

Comparing to Eq. (3.9), and (3.12) one can see that Ψn gives event plane, which is
the estimate of an azimuthal angle of true reaction plane. It is reconstructed from the
reaction products event-by-event basis. The reconstructed plane (event plane) differs in
general from the true reaction plane by an error ∆Ψ. Thus, the measured azimuthal
angle of event plane Ψn is related to the true azimuthal angle of reaction plane Ψ by
Ψn = Ψ + ∆Ψ. Averaging over many events, one obtains the following relation between
the measured and true Fourier coefficients [42]:

vobsn = 〈cos (n[φlab − Ψn])〉
= 〈cos (n[φlab − Ψ] − n[Ψn − Ψ])〉
= 〈cos (n[φlab − Ψ]) · cos (n∆Ψ)〉 + 〈sin (n[φlab − Ψ]) · sin (n∆Ψ)〉
= 〈cos (n[φlab − Ψ])〉 〈cos (n∆Ψ)〉
= vn 〈cos (n∆Ψ)〉 (3.13)

from line 3 to 4 we assume that φlab−Ψ and ∆Ψ are statistically independent. And we
use the reflection symmetry of φlab−Ψ and ∆Ψ, i.e. average sine term vanish under that
condition. This assumption is valid for the system with large multiplicity. In section
3.2.4, we derive the analytical formula of event plane resolution, 〈cos (n∆Ψ)〉, when the
multiplicity is large (M � 1) in a selected window.

3.2.2 Event Plane Determination

Since an azimuthal angle of true reaction plane is unknown, we have to determine
estimated reaction plane (event plane) experimentally. In this analysis, the BBC is
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used to determine an event plane for each event. The BBC have several advantages to
determine the event plane:

• The BBC has full azimuthal coverage while central arm has only half of full az-
imuth.

• The BBC is located from 144 cm from the collision points and this corresponds
to a pseudo-rapidity |η| = 3.0 − 3.9. This rapidity gap helps to reduce non-flow
contributions, which is the correlations not originated from the reaction plane,
such as di-jet correlations, resonance decays, and Bose-Einstein correlations.

• The BBC has a very good stability during the entire RUN period.

Event plane is calculated at both south BBC (BBCS) and north BBC (BBCN) by
the Eq. (3.14) - (3.16)

2Ψobs = tan−1

(

Qy

Qx

)

(3.14)

Qx =
64
∑

i=0

wi cos (2φi) (3.15)

Qy =

64
∑

i=0

wi sin (2φi) (3.16)

where Ψobs is measured azimuthal angle of event plane, Qx and Qy is the projection
of event plane to x and y axes respectively, φi is the azimuthal angle of each PMT,
and wi is the weight. We choose charge value on each PMT as a weight. Fig. 3.2
shows the typical response in one event for both south and north BBC. The solid red
lines represent the azimuthal angle of measured (uncorrected) event plane. Normally,
measured event plane is not always flat because of imperfect detector acceptance, dead
channels in BBC’s, beam condition and so on. In order to correct those effects, we have
2 calibration steps for event plane. Details of these calibration will be discussed in the
next section.

3.2.3 Event Plane Calibration

As we already mentioned in previous section, measured event plane distribution is not
always flat because of several effects. In this section, we introduce the detail of calibra-
tion for event plane.
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Figure 3.2: Event display how to determine the azimuthal angle of event plane in south
BBC (left) and north BBC (right). Solid red lines show the azimuthal angle of measured
event plane in this particular event.

Re-centering Calibration

”Re-centering calibration” is defined as

2Ψcor = tan−1

(

Qcor
y

Qcor
x

)

(3.17)

Qcor
x =

Qx − 〈Qx〉
σx

(3.18)

Qcor
y =

Qy − 〈Qy〉
σy

(3.19)

where 〈Qx,y〉 are the mean of Qx and Qy distributions, and σx,y are the width of Qx

and Qy. As we can see in the Fig. 3.3 the width of flow vector become wider in more
peripheral bins, while mean is unchanged for all centrality bins. The mean and width
of flow vectors are extracted by fitting Qx and Qy distributions with gaussian, and
parameterized as a function of centrality.

Fig. 3.4 shows the mean and width of flow vectors as a function of centrality. Since
detector response of BBC’s have very good stability, mean and width does not change
during the entire period of run.

Flattening Calibration

Fig. 3.5 show the event plane distribution determined in BBC SOUTH + NORTH. One
can see that the event plane with re-centering calibration (blue histogram) is almost
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Figure 3.3: Qx (left) and Qy (right) distributions for several centrality bins in BBC
SOUTH + NORTH. Centrality bins are 0 − 10% (solid black), 10 − 30% (dashed red),
30 − 60% (dotted blue), and 60 − 92% (dashed-dotted magenda).
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Figure 3.4: Mean (left) and width (right) of flow vectors as a function of centrality.
Open black (solid red) symbols show the mean and width of Qx (Qy).
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Figure 3.5: Event plane distribution for BBC SOUTH + NORTH, without correction
(black), with re-centering calibration (blue), and with re-centering + flattening calibra-
tion (red). Top right figure is expanded the same event plane distribution to see the
flatteness of event plane.

flat but there is still small non-flat components as shown in top right part in the figure.
In order to remove the remaining non-flatness of event plane, we perform ”Flattening
calibration” which is defined by

n∆Ψ ≡
kmax
∑

k=1

[Ak cos (knΨcor) +Bk sin (knΨcor)] (3.20)

nΨ ≡ nΨcor + n∆Ψ (3.21)

The coefficients Ak and Bk can be obtained by requiring that k-th Fourier moment of
the Ψ distribution is vanished, i.e., requiring isotropic distribution for Ψ. Assuming that
the correction ∆Ψ is small,

〈cos (knΨ)〉 = 〈cos (knΨcor + kn∆Ψ〉
= 〈cos (knΨcor) · cos (kn∆Ψ)〉 − 〈sin (knΨcor) · sin (kn∆Ψ)〉
' 〈cos (knΨcor)〉 − 〈sin (knΨcor) · (kn∆Ψ)〉
= 〈cos (knΨcor)〉 − kBk

〈

sin2 (knΨcor)
〉

= 〈cos (knΨcor)〉 − kBk

2

(

∵

〈

sin2 (knΨcor)
〉

=
1

2

)

= 0

∴ Bk =
2

k
〈cos (knΨcor)〉 (3.22)
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Similarly,

〈sin (knΨ)〉 = 〈sin (knΨcor + kn∆Ψ〉
= 〈sin (knΨcor) · cos (kn∆Ψ)〉 + 〈cos (knΨcor) · sin (kn∆Ψ)〉
' 〈sin (knΨcor)〉 + 〈cos (knΨcor) · (kn∆Ψ)〉
= 〈sin (knΨcor)〉 + kAk

〈

cos2 (knΨcor)
〉

= 〈sin (knΨcor)〉 +
kAk
2

(

∵

〈

cos2 (knΨcor)
〉

=
1

2

)

= 0

∴ Ak = −2

k
〈sin (knΨcor)〉 (3.23)

Ψ = Ψcor + ∆Ψ (3.24)

∆Ψ =
∑

k

(Ak cos (2kΨcor) +Bk sin (2kΨcor)) (3.25)

Ak = −2

k
〈sin (2kΨcor)〉 (3.26)

Bk =
2

k
〈cos (2kΨcor)〉 (3.27)

where Ψcor is corrected event plane in Eq. (3.17), and ∆Ψ is the correction factor from
flattening calibration, k is degree of Fourier expansion, and brackets denote the average
over all particles in all events. One can see that the event plane distribution with the
flattening calibration (red histgoram in Fig. 3.5) becomes flat. We perform flattening
calibration run by run basis since the condition of BBC and beam could be changed for
different runs.

3.2.4 Event Plane Resolution

In the real experiment, only finite number of particles are emitted and detected in each
collision. This introduces some fluctuations in observing the anisotropy on an event-by-
event basis. Even if the distribution is azimuthally istoropic, statistical fluctuations can
lead to non-zero coefficients vn.

We first show the following three assumptions in order to simplfy the problem.

1. All particles in the same event and in the same rapidity window can be treated as
being independent.

2. The total number of particles in the selected window is relatively large (M � 1)

3. The magnitude of flow is not fluctuate in the same impact parameter or centrality

Under these assumptions, the event plane resolution can be expressed as [13]

〈cos (kθn)〉 =

√
π

2
χ̄ne

−χ̄2
n/2

[

I(k−1)/2

(

χ̄2
n

2

)

+ I(k+1)/2

(

χ̄2
n

2

)]

(3.28)
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Figure 3.6: Event plane resolution as a function of χ for different index k, k = 1, 2, 3, 4.
Asymptotic results are also plotted by blue lines (χ� 1) from Eq. (B.10), and red lines
(χ� 1) from Eq. (B.11).

Fig. 3.6 shows the event plane resolution as a function of χ for different k. Blue and
red lines in the figure are asymptotic results of the event plane resolution as we derive
in Eq. (B.10) and (B.11), respectively.

Since we have two independent event plane from SOUTH and NORTH BBC, we can
estimate the event plane resolution by measuring the relative azimuthal angle ∆ΨBBC

n ≡
n(ΨBBCS

n −ΨBBCN
n ). Because acceptance of each BBC is same, the multiplicity for each

BBC is equal to be half of total multiplicity in both BBC’s, NBBCS = NBBCN = N/2,
the corresponding statistical fluctuation σn and χ̄n should be:

σBBCSn = σBBCNn =
1√

NBBCS,N

〈w2〉
〈w〉2

=

√
2√
N

〈w2〉
〈w〉2

=
√

2σBBCn (3.29)

χBBCSn = χBBCNn =
vn

σBBCS,Nn

=
vn√

2σBBCn

=
χBBCn√

2
(3.30)

One can obtain χn by measuring
〈

cos (k∆ΨBBC
n )

〉

=
〈

cos (kn[ΨBBCS
n − ΨBBCN

n ])
〉

:
〈

cos (k∆ΨBBC
n )

〉

=
〈

cos (kn[ΨBBCS
n − ΨBBCN

n ])
〉

=
〈

cos (kn[ΨBBCS
n − Ψ])

〉 〈

cos (kn[ΨBBCN
n − Ψ])

〉

=
π

8
χ̄2
ne

−χ̄2
n/2

[

I(k−1)/2

(

χ̄2
n

4

)

+ I(k+1)/2

(

χ̄2
n

4

)]2

(3.31)

Fig. 3.7 shows the event plane resolution as a function of centrality. As one can see
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Figure 3.7: Event plane resolution as a function of centrality measured by the correlation
between SOUTH and NORTH BBC event plane.

〈

sin (2∆ΨBBC)
〉

= 0 for entire centrality bins as we expected from the reflection sym-
metry of ∆Ψ. Since the maximum value of

〈

cos (2∆ΨBBC)
〉

(open black) is less than
0.1, the approximation of small anisotropy limit (χ� 1) works very well (see the lines
for k = 1 in Fig. 3.6). Thus, if χ� 1 the event plane resolution is reduced to

〈

cos (k∆ΨBBC
n )

〉

≈ π

8
χ̄2
ne

−χ̄2
n/2

1

Γ
(

k+1
2

)2

(

χ̄2
n

8

)k−1 [

1 +
2

k + 3

(

χ̄2
n

8

)]2

≈ π

8kΓ
(

k+1
2

)2 χ̄
2k
n

=
1

2k
〈cos (kθn)〉2

∴ 〈cos (θn)〉 ≈
√

2 〈cos (∆ΨBBC
n )〉 (k = 1) (3.32)

3.2.5 Event Plane QA

After we perform full calibrations, the stability of event plane is checked for each run.
Since the direction of event plane should be random, average cosine and sine of event
plane azimuthal angle (〈cos (nΨ)〉, 〈sin (nΨ)〉) should be zero. Examples of event plane
QA are shown in Fig. 3.8. As one can see 〈cos (2Ψ)〉 and 〈sin (2Ψ)〉 are zero for entire
event for a given run if the event plane calibration is perfect (right figure). However, if
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Figure 3.8: Average cosine and sine of 2nd harmonic BBC event plane as a function of
number of event for RUN 120232 (left, bad run) and for RUN 122223 (right, good run)

you look at the left figure there is still time dependent non-flatness for some runs after
the full event plane calibration. These bad runs are less than 1 % fraction of total data
so it seems to not affect our final results, but we exclude these runs from analysis.

3.3 Global Track Selection

3.3.1 Track Reconstruction

A typical track in the DC main bend plane (r − φ) is illustrated in Fig. 3.9. The
coordinates in the DC are φ and α, where φ is the azimuthal angle at the intersection of
the track with a ”reference radius” at the mid-radius of the DC, and α is the inclination
of the track at that point. In principle, φ and α are equivalent to a slope and intercept;
the main difference is that φ and α are limited to a given range of possible value while
slope and intercept are not. Right hand side in Fig. 3.9 shows the track in the r − z
plane, perpendicular to the bend plane. Because of the magnetic field is along the beam
(z-) direction, tracks usually have a very small bend in this plane. The coordinates
used in this projection are zed, the z coordinate of the intersection point, and β, the
inclination of the track at the reference radius.

In order to find a track, hits produced in the detector by the same charged particle
have to be found and combined. The tracking is done separately in the r − φ and the
r − z plane. The track reconstruction in r − φ is realized using a combinatorial hough
transform technique [32], where any pair of hits can be mapped to a point in the space
defined by azimuthal angle φ and track bending angle α.

In this analysis, we require the following conditions for the tracks: (1) Found the
hits for X1 and X2 wire in DC, (2) Found the unique hit in UV wire in PC1, (3) Found
the (unique) hit in PC1. These requirements corresponds that the DC track quality bit
is equal to be 31 or 63.
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Figure 3.9: (Left) A schematic view of a track in the DC r − φ plane. φ and α are
the feature space variables in the combinatorial hough transform technique. (Right) A
schematic cutaway view of a track in the DC r − z plane. The associated PC1 hit is
indicated by the circle marker. Because the track bending angle δ is small, the track
can approximated by the straight line linking the PC1 hit and collision vertex measured
by the BBC.

3.3.2 Momentum Determination

The α measured in the DC is closely related to the field integral along the track trajec-
tory. For tracks emitted perpendicular to the beam axis, this relation can be approxi-
mated as

α ' K

pT

(3.33)

where K = 101 mrad GeV/c is the effective field integral [43]. From Eq. (3.33), one can
derive the following form between the momentum resolution and the angular resolution

δp

p
=

δα

α

=
1

K

√

(

σms
β

)2

+ (σαp)
2 (3.34)

where δα is the measured angular spread, σms and σα is the contribution from multiple
scattering and from angular resolution of the DC, respectively.

3.3.3 Matching Tracks to Outer Detectors

Tracks are reconstructed by DC-PC1 and projected to the outer tracking detectors by
the track model. These detectors are two dimensional walls extending in r − φ and z
directions. Each of them provides a 3-dimensional hit at the detector wall. A wide
window around the track intersection point with the detector plane is searched for a list
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of candidate hits. The one with closest distance to the intersection point is identified as
the hit associated with the track.

For primary tracks, the distance in both the r−φ and the z direction between track
projection point and the associated hit position is approximately Gaussian with a width
as

σmatch =

√

σ2
detector +

(

σms
pβ

)2

(3.35)

where σdetector is the finite detector resolution, which include the DC pointing resolution
and the detector spatial resolution, and σms is the multiple scattering contribution. The
mean of the residual distribution (meanmatch) is typically small compared to σmatch after
detector alignment. A non-zero value of meanmatch usually results from imperfect detec-
tor alignment or the magnetic field map used by the track model. These imperfections
can lead to a momentum and charge sing dependence of meanmatch.

The matching distribution needs to be parameterized separately in all tracking de-
tectors for both positive and negative charged particles in r − φ and z directions, and
for collision centrality. The mean and width of matching distribution are extracted by a
Gaussian fit, and parameterized as a function of pT. Fig. 3.10 shows meanr−φ, meanz,
σr−φ, σz as a function of pT and their parameterization for TOF.
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Figure 3.10: TOF matching variables for r − φ and z as a function of pT and charge.
Top figure show meanr−φ and meanz, and bottom show σr−φ and σz.
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3.4 Particle Identification

In the section 3.4.1 we describe particle identification for π, K, p and d with Time-Of-
Flight detector by using mass square distributions, and describe φ meson identification
with invariant mass technique in the section 3.4.3

3.4.1 Mass square distribution

Mass square is given by

m2 = p2

(

1

β2
− 1

)

= p2

(

(

c · t
L

)2

− 1

)

(3.36)

where p is the particle momentum (GeV/c), and velocity β is expressed with the mea-
sured time of flight (t), the measured flight path length (L), and the speed of light (c =
29.98 cm/ns),

The width of the mass squared peak depends on both the momentum and time-
of-flight resolutions. An analytic form for the width of mass square as a function of
momentum resolution δp and timing resolution σT is determined as follows;

σ2
m2 =

(

∂m2

∂p

)2

δ2
p +

(

∂m2

∂t

)2

σ2
t
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(

2p

(

1
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− 1

))2

δ2
p +

(

2t
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L

)2
)2

σ2
t

=

(

2
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p

)2

δ2
p +

(

2
cp

L

√

m2 + p2
)2

σ2
t

=

(

δp
p

)2

(4m4) +
(σtc

L

)2
[

4p2(m2 + p2)
]

. (3.37)

Using Eq. (3.34) the mass square width can be written as

σ2
m2 =

1

K2

[

(

σms
β

)2

+ (σαp)
2

]

(4m4) +
(σtc

L

)2
[

4p2(m2 + p2)
]

=
σ2
α

K2
(4m4p2) +

σ2
ms

K2

[

4m4

(

1 +
m2

p2

)]

+
(σtc

L

)2
[

4p2(m2 + p2)
]

(3.38)

A typical mass square distribution is shown in Fig. 3.11. The centroid and with of
the mass square for each particle species are extracted by a Gaussian fit. The width is
parameterized as a function of pT by Eq. (3.38) with σα, σms and σt as free parameters.
The fitting are done for 3 separated Run categories, where

1. ++ field configuration : RUN 105218 - 111593

2. ++ field configuration : RUN 111603 - 115780
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Figure 3.11: Mass square distribution for momentum of 1.5 - 2 GeV/c in TOF.
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Figure 3.12: Momentum dependence of the centroid (left) and the width (right) of mass
square distributions for π, K and p.
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3. −− field configuration : RUN 116061 - 122223

The momentum dependence of the centroid and width are shown in Fig. 3.12.
Dashed blue lines corresponds expected values of the centroid from Particle Data Book
value and the width from Eq. (3.38) with one of the parameterization as shown below.

The resulting parameters are extracted for each RUN category [44].

Table 3.1: Fitting results of mass square width for 3 different RUN categories
RUN categories σα (mrad) σms (mrad) σt (ps)
++ field (1) 1.213 1.276 120
++ field (2) 1.192 1.269 120
−− field (3) 1.313 1.242 120
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Figure 3.13: The contribution of the 1 σ mass square width for π (left) and p (right).
Each contribution is shown by different colors around the expected mass square value.
The parameterization of each width is taken from the category (1).

Fig. 3.13 shows the contributions to the mass square width for π and p. Since
the π mass is small, the width of mass square is dominated by σt in the measured
momentum range. For protons, the three terms have different contributions at different
momenta. The multiple scattering term dominates at low momentum, i.e. p < 1 GeV/c.
The momentum resolution term σα and σt are dominate for intermediate momentum
region (p = 1 - 1.5 GeV/c), and σt starts to become dominant contribution at the high
momentum (p > 1.5 GeV/c).

3.4.2 Momentum Calibration

Usually, the magnetic field map used by the track model does not reflect the real mag-
netic field properly. It leads to a systematic momentum shift which is reflected by a
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shift of the centroid of mass square distribution. This shift ∆m2 can be calculated from
the momentum shift ∆p as

m2
exp = p2

exp

(

1

β2
− 1

)

= (p+ ∆p)
2

(

1

β2
− 1

)

' p

(

1

β2
− 1

)

+ 2p∆p

(

1

β2
− 1

)

= m2 + 2
∆p

p
m2

∴ ∆m2 = m2
exp −m2 = 2m2 ·

(

∆p

p

)

(3.39)

where pexp and m2
exp is the expected momentum and mass square value, and these

are connected to measured momentum and mass square value with ∆p and ∆m2 as
pexp = p+∆p and ∆m2 = m2 +∆m2 . Since momentum shift ∆p is typically small, a few
%, we omit ∆2

p term from 2nd to 3rd line in Eq. (3.39). Because ∆m2 is proportional to
the particle m2, a heavy particles such as the protons are more senstive to the momentum
scale ∆p.

A shift of the beam position from the nominal origion of PHENIX detector will
produce an systematic offset in mean α value, which can be parameterized as a function
of DC azimuthal angle φ as:

∆α =
∆x · sinφ
RDC

+
∆y · cos φ

RDC

(3.40)

where RDC = 220 cm is the reference radius of the DC, ∆x and ∆y are the beam offset.
This small change in the beam position can introduce a systematic shift in track α angle,
thus affects the measured momentum as follows;

∆p

p
=

∆α

α
= −p∆α

K
(3.41)

Since this change affects the momentum of positive and negative particles in opposite
direction, we can determine ∆x and ∆y from the systematic shift of the measured mass
square.

In order to perform a quantitative analysis for momentum scale and beam position
offset, we define the modified mass square mean variables of protons and anti-protons
as

M+ =
m2
p +m2

p̄

2
−m2

p(PDG) (3.42)

M− =
m2
p −m2

p̄

2
(3.43)
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where m2
p and m2

p̄ is the measured mean value of mass square for proton and anti-proton,
and m2

p(PDG) = (0.9383)2 is the mass square of the proton PDG value. From Eq. (3.39)

and (3.43) momentum scale can be rewritten by using M+ as

∆p

p
=

∆m2

2m2
=
M+

2m2
(3.44)

Beam position offset can be directly estimated from the intersection point where M−

is equal to be 0. Since ∆x is not sensitive to the shift of mass square, we always set
to ∆x = 0 in this analysis. Fig. 3.14 show the extracted M+ and M− for 1 < p <
1.5 GeV/c. Momentum range of 1− 1.5 GeV/c is choosen to make M+ and M− stable
where α resolution is dominant. One can see that M+ is constant over all ∆y and M−

depends on ∆y linearly. From these results, we conclude that

• Momentum scale factor of 2.2 % is obtained, thus we have to scale down the
momentum by 1.022

• ∆y is about -0.01 and -0.07 for ++ and −− field configuration, respectively.
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Figure 3.14: Modified mass square, M+ and M−, as a function of ∆y in p = 1 −
1.5 GeV/c for (a) ++ field configuration and (b) −− field configuration. Momentum
scale and ∆y is determined for each magnetic configuration.

3.4.3 Invariant mass distribution of φ

Since a φ meson decays with τ ∼ 1/Γ = 1/4.26 (MeV−1) ∼ 46 (fm/c), we cannot directly
measure φ mesons. Thus, we identify φ mesons via K+ + K− decay channel by using
invariant mass technique. Charged kaons are identified with Time-Of-Flight detector
and EM Calorimeter. We use relatively looser track and PID cuts (3 σ) for φ analysis
compared to π, K and p due to the low statistics of φ mesons. Details of track and PID
cuts by TOF and EMC for φ mesons can be found in Section 3.5.
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Invariant mass minv is obtained by

minv = p1 · p2 = E1E2 − p1 · p2 (3.45)

E =
√

m2
K + p2, p =

√

p2
x + p2

y + p2
z (3.46)

φpair = tan−1

(

py,1 + py,2
px,1 + px,2

)

(3.47)

where E is the total energy, p is the momentum, mK = 0.4937 GeV/c2 is the mass of
kaons, and φpair is the azimuthal angle of pT for φ meson.

Fig. 3.15 show the invariant mass distributions in minimum bias event. Since we
calculate all possible combinations of K+ and K− for a given event, there are always
combinatorial background which do not originate from φ mesons. The combinatorial
background contributions are subtracted with event mixing technique, where K+ is
taken from event i, and K− from event j (i 6= j). Combinatorial background distri-
butions are normalized for minv = 1.2 - 1.3 GeV/c2 well separated from the φ meson
peak.

Fig. 3.16 show the invariant mass distributions after subtracted combinatorial back-
ground from foreground. Signal distributions are fitted by the Breit-Wigner + constant
functions;

dN

dminv

=
1

2π

p0 · Γ2

(minv −m0)2 + Γ2/4
+ p1 (3.48)

where p0, m0, Γ and p1 are the free parameters. Extracted m0 is consistent with the
expected value, mφ = 1.019 within the error bars. Γ values are about 6 MeV, which is
larger than expected width Γφ ∼ 4 MeV, due to the effect of mass resolution. We extract
the φ meson yield by integrating within ±12 MeV around φ meson peak as indicated
dashed red lines in the figure.
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Figure 3.15: Invariant mass distributions via φ → K+ + K− for pT = 2 - 3 GeV/c in
minimum bias events. Event plane bins are divided into −π < 2(φ − Ψ) < −2π/3,
−2π/3 < 2(φ − Ψ) < −π/3, −π/3 < 2(φ − Ψ) < 0, 0 < 2(φ − Ψ) < π/3, π/3 <
2(φ− Ψ) < 2π/3, and −2π/3 < 2(φ− Ψ) < π from top to bottom figures. Solid black
and dashed red lines show the foreground and combinatorial background invariant mass
distributions, respectively.
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Figure 3.16: Signal invariant mass distributions via φ → K+ + K− after subtracted
combinatorial background for pT = 2 - 3 GeV/c in minimum bias events. Solid blud
lines show the fitting results by Breit-Wigner + constant background functions.
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3.5 Cut Conditions

Table 3.2 summarize the cut criteria used in the analysis.

Table 3.2: Summary of cut criteria in this analysis
Cut Value

Global Event Selection
Trigger Minimum bias
Z-vertex BBC |zvertex| < 30 cm

Track Selection (Common)
DC Track quality 31 or 63
DC zed ±75 cm (see Fig. 3.17)
pT cut off pT > 0.2 GeV/c

Track Selection (TOF: π, K, p and d)
TOF energy loss Etof > 0.0002 + 0.0014 × β−2 (see Fig. 3.18)
TOF matching cut 2σ in r − φ and z directions
PID cut (π, K and p) 2σ cut and veto cut in mass square vs momentum

(see Fig. 3.19)
PID cut (d) 2σ cut, where σ(M 2) = 6.38 − 0.449p+ 0.11p2 and

p is the momentum (GeV/c).
pT cut off π: 0.2 - 4 GeV/c, K: 0.3 - 3 GeV/c, p: 0.5 - 4 GeV/c

d: 1 - 4 GeV/c

Track Selection (φ)
TOF

matching cut 3σ in r − φ and z directions
PID cut 3σ cut (K) and 2σ veto cut (π, p)
pT cut off pT = 0.3 - 4 GeV/c

PbSc
energy cut ecent > 0.1
PC3 + PbSc matching cut 3σ in r − φ and z directions
PID cut 3σ cut (K) and 2σ veto cut (π, p) (see Fig. 3.20)
pT cut off pT = 0.3 - 2 GeV/c
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Figure 3.17: zed distribution, the z coordinate of the intersection point at DC. Dashed
red lines show the z position where zed = ±75 cm.
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Figure 3.18: Energy loss in TOF scintillators as a function of β. Solid red line shows
the energy loss cut, 0.0002+0.0014×β−2, to remove the background contributions with
low energy loss.
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Figure 3.19: Mass square vs charge · momentum. Solid black lines represent the PID
cuts for π, K and p (2 σ PID + 2 σ veto cuts).
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Figure 3.20: Mass square distribution for K+ (red) and K− (blue) measured in EMC
for p = 0.6 − 0.9 GeV/c.
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3.6 Extraction of Elliptic flow, v2

The magnitude of v2’s are obtained with event plane method as introduced in Section
3.2. The azimuthal distributions are measured in central arm (|η| < 0.35) relative to
the event plane measured at BBC (|η| = 3.0 − 3.9). The finite multiplicity fluctuation
lead the dispersion of the event plane, so that the observed v2’s are always smaller than
the true v2 values. We, thererore, need to correct the measured v2 values with event
plane resolution;

v2 =
vobs2

σEP
'

〈

cos (2[φ− ΨBBC
2 ])

〉

√

2 〈cos (2[ΨBBCS
2 − ΨBBCN

2 ])〉
(3.49)

where v2 denote the true v2 value, vobs2 is the observed v2, and σEP is the event plane res-
olution measured by the correlation between SOUTH and NORTH BBC. As we already
discussed in Section 3.2.4, the event plane resolution of BBC can be well approximated
by
√

2 〈cos (2∆Ψ)〉.
In this section, we present the method to extract v2 for π, K and p (Section 3.6.1),

deuterons (Section 3.6.2) and φ meson (Section 3.6.3).

3.6.1 Extraction for v2(π), v2(K) and v2(p)
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Figure 3.21: Centrality dependence of dN/d(φ− Ψ) distributions for π+ + π− in pT =
0.8 - 1.2 GeV/c. Vertical axis is scaled to see the difference of each centrality bin.

Fig. 3.21 shows the centrality dependence of dN/d(φ−Ψ) distributions for π+ + π−

at pT = 0.8 - 1.2 GeV/c. The measured v2’s are extracted by fitting dN/d(φ − Ψ)
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distributions with Fourier expansion of azimuthal distributions;

dN

d(φ− Ψ)
= N(1 + 2vobs2 cos (2(φ− ΨBBC

2 ))) (3.50)

where N and vobs2 are free parameters. For pT > 2 GeV/c, π and K start to overlap
each other we should consider the contaminations for each particle species. And we also
need to take into account the background contribution for pT > 3 GeV/c, arising from
the DC tracking. These results and the estimated systematic error will be discussed in
the Section 3.7.

3.6.2 Extraction for v2(d)

The following two methods are used to extract deuteron v2;

• Subtraction method

• Mass square fit method

The signal extraction in mass square distribution, centrality and pT dependence of
S/B ratio for deuteron are shown below, then we discuss how to extract v2 from these
methods.
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Figure 3.22: Deuteron mass square distribution in minimum bias events. From top
to bottom, pT range is 1.0 − 1.5 GeV/c, 1.5 − 2.0 GeV/c, 2.0 − 2.5 GeV/c, 2.5 − 3.0
GeV/c, and 3.0 − 4.0 GeV/c. Solid blue line represent the Gaussian + Exponential
function for fitting deuteron peak and background. Dashed red line is the contribution
from background, and dashed black line is signal distribution after subtract background
contribution.
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Fig. 3.22 show mass square distribution of deuteron in minimum bias events with
2 σ TOF + PC3 matching cuts. Signal is extracted by fitting the distribution with
gaussian + exponential, then we integrate the yield in 3 < M 2 < 4 (GeV/c2)2.
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Figure 3.23: Signal to background ratio of deuterons as a function of pT in each cen-
trality.

Signal to background ratio is obtained in each centrality and pT bin, and is shown in
Fig. 3.23. The yield of deuterons and S/B ratio are summarized in table 3.3 and used
later for calculating signal v2.
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Table 3.3: Summary of centrality dependence of S/B for d+ d̄
pT Signal Background S/B

centrality 0 - 20 %
1 < pT< 2 GeV/c 27804 ± 166 8916 ± 94 3.12 ± 0.04
2 < pT< 3 GeV/c 22206 ± 149 3706 ± 60 5.99 ± 0.11
3 < pT< 4 GeV/c 4869 ± 69 1883 ± 43 2.59 ± 0.07

centrality 20 - 40 %
1 < pT< 2 GeV/c 16131 ± 127 2257 ± 47 7.14 ± 0.16
2 < pT< 3 GeV/c 10723 ± 103 1292 ± 35 8.30 ± 0.24
3 < pT< 4 GeV/c 1957 ± 44 840 ± 28 2.33 ± 0.10

centrality 40 - 60 %
1 < pT< 2 GeV/c 6203 ± 78 506 ± 22 12.24 ± 0.57
2 < pT< 3 GeV/c 2800 ± 52 322 ± 17 8.69 ± 0.51
3 < pT< 4 GeV/c 432 ± 20 203 ± 14 2.12 ± 0.18

centrality 60 - 92 %
1 < pT< 2 GeV/c 1237 ± 35 76 ± 8 16.25 ± 1.92
2 < pT< 3 GeV/c 398 ± 19 51 ± 7 7.73 ± 1.15
3 < pT< 4 GeV/c -

centrality 20 - 60 %
1 < pT< 2 GeV/c 22324 ± 149 2787 ± 52 8.01 ± 0.16
2 < pT< 3 GeV/c 13522 ± 116 1628 ± 40 8.31 ± 0.22
3 < pT< 4 GeV/c 2389 ± 48 1062 ± 32 2.25 ± 0.08

Minimum bias
1 < pT< 2 GeV/c 51462 ± 226 11739 ± 108 4.38 ± 0.04
2 < pT< 3 GeV/c 36149 ± 190 5389 ± 73 6.71 ± 0.10
3 < pT< 4 GeV/c 7282 ± 85 3033 ± 55 2.40 ± 0.05
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Subtraction Method

In subtraction method, deuteron v2 is extracted by the following equations;

vmeasured2 =
Svd2 +BvB2
S +B

= Rvd2 + (1 − R)vB2 , R =
S

S +B
(3.51)

vd2 =

(

1 +
B

S

)

vmeasured2 − B

S
vB2 (3.52)

where S(B) is the number of deuterons (background) in M 2 = 3−4 (GeV/c2)2, vmeasured2

is measured v2, v
B
2 is background v2 estimated in 1.5−3 (GeV/c2)2 and 4−6 (GeV/c2)2

mass square windows as shown by the shaded yellow area in Fig. 3.24, and vd2 is deuteron
v2. Measured v2 is calculated by 〈cos 2(φlab − Ψ)〉, where φlab is the azimuthal angle of
deuterons, Ψ is combined BBC event plane, and bracket denote average over all events
and tracks.
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Figure 3.24: Measured deuteron v2 is calculated in M 2 = 3 − 4 (GeV/c2)2 (solid blue
line), and background v2 are estimated in M 2 = 1.5−3 (GeV/c2)2, and 4−6 (GeV/c2)2

(yellow histograms).

Fig. 3.25 show the centrality dependence of v2(d). For comparison, v2(π), v2(K), and
v2(p) are plotted together with v2(d). In 40 − 60 % centrality bin, we cannot estimate
the background v2 values for M2 = 4 − 6 (GeV/c2)2 due to the limited statistics.

Fig. 3.26 shows the deuteron v2 after subtracting background contributions. Solid
black circles and red triangles are extracted by using background v2 estimated in M2 =
1.5 − 3 (GeV/c2)2 and 4 − 6 (GeV/c2)2, respectively.
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Figure 3.25: Comparison of v2(pT) for deuterons by sutraction method in different
centrality classes. Solid blue circles represent the measured v2, open black squares
and red triangles are background v2 estimated in M2 = 1.5 − 3 (GeV/c2)2 and 4 − 6
(GeV/c2)2, respectively.
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Figure 3.26: Comparison of vd2(pT) by subtraction method in different centrality classes.
Solid black circles and red triangles represent the v2(d) after subtracting the background
v2 which is estimated in M 2 = 1.5 − 3 and 4 − 6 (GeV/c2)2, respectively.
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Mass Square Fit Method
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Figure 3.27: (Left) R (black) and 1−R (red) as a function of mass square in 2 < pT <
3 GeV/c in minimum bias event. (Right) vobs2 =

〈

cos (2[φlab − ΨBBC
2 ])

〉

as a function
of mass square. Blue line shows the fitting result, and black and red dashed line show
signal (S/(S +B) × vd2) and background (B/(S +B) × vB2 ) contribution.

v2(d) are also measured by simultaneous fitting with both deuteron yield and v2 as
a function of mass square (Mass square fit method). In Fig. 3.27, signal (R) and
background ratio (1 − R) are plotted as a function of mass square (left). Right figure
shows measured uncorrected v2 as a function of mass square. We perform fitting by
using Eq. (3.51) with fixed deuteron and background yield, which are determined in
Fig. 3.27. In this plot, background v2 (vB2 ) is assumed to be constant over all mass
square. We have performed fitting by assuming linear function for background v2 but
the results are unchanged.

Fig. 3.28 shows comparison of deuteron v2 between subtration method and mass
square fit method in different centrality selection. One can see the results of v2 from
two different method is consistent within statistical error bars.

Fig. 3.29 shows comparison of deuteron v2 from mass square fit method between
”TOF + PC3 matching cuts” and ”TOF matching cuts only” in different centrality
selection. The results are consistent with each other, except for lowerst pT bin.

We choose the results from mass square fit method as final deuteron v2 since this
method takes into account mass square dependent S/B. The systematic error on v2(d)
are estimated from the comparison between different cuts and methods. The evaluated
errors are summarized in Section 3.7.3.
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Figure 3.28: Comparison of vd2(pT) between subtraction (black circles) and mass square
fit method (red triangles).
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3.6.3 Extraction for v2(φ)

Two different techniques are used to extract φmeson v2, which is Subtraction method,
and Invariant mass fit method. We introduce details of these method in following
sections, and present the results from both methods.

Event mixing and pair cuts

Event mixing technique is used in order to evaluate the yield of φ meson. The fol-
lowing list is the standard event categories to make mixed events with similar global
characteristics as real events;

• 20 bins for centrality (5 % step)

• 12 bins for z-vertex (5 cm step)

• 20 bins for event plane (π/20 step)

Event mixing are not performed across the different runs. Pair cuts are applied to
remove ghost tracks in Drift Chamber. Intruder cuts are also used for TOF and PbSc
to remove track merging effects. Here is the list of pair cuts.

• |∆zedDCH | > 5.0 cm, |∆φDCH | > 0.03 rad

• |∆RPC1| > 7 cm

Pair flow coefficients, vpair
n

Recently, N. Borghini et. al introduce model independent observables that describe
the dependence in azimuth of two particle correlations [45]. According to [45] the
probability distribution of a sample of pairs of particles in some range of pT1

, pT2
, y1,

y2, ∆φpair ≡ φ2 − φ1 can be written

p(φpair − Ψ) =
1

2π

+∞
∑

n=−∞

vpair
n ein(φpair−Ψ) (3.53)

where Ψ is the true (unknown) azimuth of reaction plane in the lab frame, φpair is the
azimuthal angle of the total transverse momentum pT1

+ pT2
, and vpair

n is ”pair-flow”
coefficients defined as vpair

n =
〈

e−in(φpair−Ψ)
〉

, with the normalization vpair
0 = 1. Eq. (3.53)

can be replaced as

p(φpair − Ψ) =
1

2π

(

+∞
∑

n=−∞

[vpair
c,n cos (n[φpair − Ψ]) + vpair

s,n sin (n[φpair − Ψ])]

)

(3.54)

where the real coefficients vpair
c,n = 〈cos (n[φpair − Ψ])〉 and vpair

s,n = 〈sin (n[φpair − Ψ])〉 are
related to the complex vpair

n by the relation vpair
n = vpair

c,n − ivpair
s,n . In the particular case

of φ meson, symmetry with respect to reaction plane for φpair implies vpairs,n = 0, except
for experimental baises and fluctuations.
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Subtraction Method

In φ→ K+ +K− analysis, (K+, K−) pairs are sorted into bins of invariant mass minv,
and pair azimuth φpair with respect to the event plane Ψ. Then, v2(φ) can be extracted
from the following steps;

1. Count total number of φ yield
Counts number of φ yield in each invariant mass bin (Nφ(minv)) after separates it
into an uncorrelated part (Nb(minv)) centered around the expected mass;

Npair(minv) = Nφ(minv) +Nb(minv) (3.55)

where Npair(minv) is the number of pairs in each invariant mass bin. Background
part is estimated by the event mixing technique. Yield is given by the integral of
the correlated part Nφ(minv) over minv.

2. Repeat step 1 for each φpair − Ψ bin

3. Analyze pair flow coefficients
Pair flow coefficients vφc,n can be extracted by fitting the azimuthal distribution of
φ by the Eq. (3.50)

Invariant mass distributions are shown in Fig. 3.15 and 3.16 (see Section 3.4.3).
Extracted yield of φmeson are plotted for each φpair−Ψ bins, then we fit the distribution
by the Fourier expansion of azimuthal distributions in Eq. (3.50). The extracted ∆φpair
distribution is plotted in Fig. 3.30 Dashed black lines are fitting results by Eq. (3.50).
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Figure 3.31: Extracted v2(φ) as a function of pT in different centrality classes by sub-
traction method.

Invariant Mass Fit Method

In subtraction method, the decomposition between the background and the peak is
performed independently for several bins (typically, 10 − 20) in φpair − ΨBBC . But
in invariant mass fit method, the decomposition is only performed twice. First step is
exactly same as step 1 in subtraction method except for not need to separate φpair−ΨBBC

bins. Next step is analyzing pair flow coefficients from the Eq. (3.56);

Npair(minv)vc,n(minv) = Nb(minv)v
(b)
c,n(minv) +Nφ(minv)v

φ
c,n

Npair(minv)vs,n(minv) = Nb(minv)v
(b)
s,n(minv) +Nφ(minv)v

φ
s,n (3.56)

As we mentioned in 3.6.3, vpairs,n = 0 if there are no experimental biases and flucutuations.

If the background consists of uncorrelated particles, one also has v
(b)
s,n = 0. These can

be used for checking the validity of the procedure.
Fig. 3.32 show invariant mass distribution, ratio of signal (S) and background yield

(B) to total yield (S + B), and measured v2. vs,2 =
〈

sin (2[φpair − ΨBBC
2 ])

〉

(pink
traiangles) is also plotted in bottom figure. One can see that vs,2 is zero for the mass
window we are interested in. We perform the fitting by using Eq. (3.56), which is
shown by black line in the figure. Background v2 is assumed to be second polynominal
function, i.e. vb2 = p0 + p1minv + p2m

2
inv. The shape of S/(S + B) and B/(S + B) are

fixed, thus, number of free parameters for the fitting is 4, one is for measured v2, and
others (p0, p1, p2) are for background v2.

The results are shown in Fig. 3.33 after repeated the fitting for each (pT, centrality)
bins. Results from subtraction method are also plotted for comparison, and both results
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are in good agreement within the statistical error bars.
For the stability check of invariant mass fit method, we perform fitting the following

conditions;

• Fit background v2 by linear function (default is quadratic function)

• Fit v2 in minv = 0.99 − 1.2 GeV/c2 (default is minv = 0.99 − 1.1 GeV/c2)

• Fit v2 by using histogram of S/(S + B) and B/(S + B) (default is Breit-Wigner
+ constant function)

The results are shown in Fig. 3.34. Largest difference of default invariant mass fit
method is coming from subtraction method. The deviation from default fitting method
is included in the final systematic error (see Section 3.7).
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Figure 3.33: Centrality dependence of φ meson v2(pT) by invariant mass fit method.
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3.7 Systematic Uncertainties

3.7.1 Systematic error of BBC event plane

Table 3.4: Summary of systematic error of BBC event plane

Centrality σEP σF lat.procedure σF lat.coefficient σRun Total
0 − 5 % 10 % 17 % 1.9 % 20.4 %

5 − 10 % 2.1 % 11 % 1.9 % 12.4 %
10 − 15 % 3.3 % 4 % 0.8 % 7.2 %
15 − 20 % 3.5 % 2 % 0.8 % 6.5 %
20 − 30 % 3.2 % 1 % 5 % 0.5 % 6.0 %
30 − 40 % 2.5 % 1 % 0.6 % 5.7 %
40 − 50 % 1.2 % 1 % 1.3 % 5.4 %
50 − 60 % 1 % 2 % 2.1 % 5.9 %
60 − 92 % 2 % 13 % 7.6 % 16.0 %
0 − 10 % 3.9 % 17 % 1.9 % 18.2 %

10 − 20 % 3.2 % 4 % 1.9 % 7.4 %
0 − 20 % 2.1 % 4 % 1.0 % 6.8 %

20 − 40 % 3.0 % 1 % 5 % 0.3 % 5.9 %
40 − 60 % 1 % 2 % 1.3 % 5.6 %
20 − 60 % 2.9 % 2 % 0.5 % 6.1 %
0 − 50 % 2.2 % 2 % 0.5 % 5.8 %

Minimum bias 2.3 % 3 % 0.8 % 6.3 %

Systematic error of BBC event plane are summarized in Table 3.4. We evaluate
the systematic error from (1) comparison of v2 with respect to the different BBC event
plane, such as BBC SOUTH, NORTH, and combined SOUTH + NORTH plane (σEP ),
(2) comparison of v2 for different flattening procedure (σF lat.procedure), (3) comparison of
v2 for different number of flattening coefficients (σF lat.coefficient), and (4) comparison of
v2 for several Run group (σRun).

Fig. 3.35 show the 〈v2〉 as a function of centrality for different choice of BBC event
plane. We estimate the systematic error from the difference between SOUTH, NORTH
and combined plane for each centrality bin.

Fig. 3.36 shows the 〈v2〉 as a function of centrality for different flattening procedure
in Run2 [46]. In Run2, we have performed the BBC event plane calibration by (1)
Ring by ring gain correction, (2) Re-centering of flow vector by using measured average
cosine and sine, and (3) Higher order fourier flattening. This procedure is denoted as
standard in Fig. 3.36. In modified flattening procedure, instead of performing step 2
we remove the special 4 PMT’s from each BBC in order to make event plane resolution
uniform in azimuthal direction. More details can be found in [46], section 1.

The error σF lat.coefficient comes from the fact that current calibration constants for
event plane are not good enough to make event plane flat. This is because the calibration
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was done for relatively smaller data sets (∼ 300 k events for each run). We compare
the result between current calibration constants in data base and improved flattening
calibration by David Winter, which is done by using entire data sets. We find that 5 %
difference of v2 for non-identified charged hadrons almost independent on centrality.

Fig. 3.37 shows the comparison of v2 for different run group with improved flattening
corrections as we mention in previous paragraph. We divide Run-4 data sets into 8 group
to see any difference between them. Each group has approximately 100 M event except
for group 7 (∼ 50 M event). Run range is listed below for each group;

• Group 0 : 109189 < RUN < 112124

• Group 1 : 112128 < RUN < 114927

• Group 2 : 114929 < RUN < 116425

• Group 3 : 116427 < RUN < 117297

• Group 4 : 117303 < RUN < 118024

• Group 5 : 118028 < RUN < 119440

• Group 6 : 119448 < RUN < 120416

• Group 7 : 120419 < RUN < 122223

The systematic error is about 1 − 2 % for 0 − 60 %, and 8 % for 60 − 92 % centrality
bin.
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run groups.
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3.7.2 Systematic error on v2(π), v2(K), and v2(p)

The source of systematic error on v2 for π, K, and p are evaluated from: (1) Cut criteria,
(2) Feed down effect on proton v2 (upper systematic error, see the section below) (3)
Background (upper systematic error), and (4) Mis-identification of particles.

Systematic error of cut criteria

We have studied v2 by changing several cuts, such as matching cut, PID cut, and energy
loss cut, in reasonable range to see the effect of each cut. We finally found that the
difference of v2 from each cut is about 1 %, thus total systematic errors from the cut
criteria is

√
0.012 × 3 ∼ 1.7 %.

Systematic error of feed down effect on proton v2

We have done very detailed study of feed down effect on proton v2. The effect of
feed down from Λ decay has been studied by assuming that the observed proton v2 is
composed of v2 for direct protons with that for protons from Λ feed down. We further
assume that the v2 for direct proton is equal to that for protons. The v2 for protons
from Λ feed down has been estimated by decay kinematics with measured Λ transverse
momentum spectra and v2. Since the decay protons has smaller pT compared to the
original Λ and the magnitude of v2 is approximately proportioanl to pT

2 for baryons, v2

for decay protons is always larger than that of measured protons. Thus, we only add
the upper systematic error from Λ feed down. We found that the effect of feed down on
proton v2 is about 11 % independent on pT, up to 1.5 GeV/c. For pT > 1.5 GeV/c, the
contribution of v2 from Λ feed down is negligible.

Systematic error of background contribution

From the analysis for charged hadron transverse momentum spectra [48], background
contribution was found to be dominant in high pT (pT ≥ 4 − 5 GeV/c). Below pT = 3
GeV/c, the background contribution is very small (∼ 1 %) in charged hadron v2 analysis.
However, for 4 < pT < 5 GeV/c (pT > 5 GeV/c), we found that 8 % (17 %) correction
is needed from background contributions [47]. We study background contribution for
π,K, p separately since the background contribution and those v2 might be different for
different particle species. The procedure how to extract the signal v2 is similar to that
in [47], i.e.

1. Fitting ∆R distribution by Gaussian + 2nd polynominal, and then fix the shape
of signal and background ( ∆R ≡

√

(∆φ)2 + (∆z)2 ).

2. Fit v2 vs ∆R by Eq. (3.57), and extract vS2

vmeasured2 =
NSv

S
2 +NBv

B
2

NS +NB

(3.57)

vS2 =
NS +NB

NS

vmeasured2 − NB

NS

vB2 (3.58)
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Figure 3.38: (Left) TOF ∆R distribution for π (top), K (middle), and p (bottom) at
pT = 2.5− 3 GeV/c in minimum bias event. Solid blue lines represent the fitting result,
and dashed black (red) lines are signal (background) contribution. (Right) Measured v2

vs ∆R for π, K, and p. Solid blue lines are the result of fitting by Eq. (3.57). Dashed
black (red) lines are vS2 ×NS/(NS +NB) (vB2 ×NB/(NS +NB)).



CHAPTER 3. DATA REDUCTION 80

Fig. 3.38 demonstrates v2 extraction from ∆R distribution. We confirm that the
result are unchanged by using the different background shape, such as 3rd or 4th poly-
nominal, for the fitting of ∆R and v2.
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Figure 3.39: v2 as a function of pT in minimum bias event for π, K, and p. Open triangle
is background v2 (vB2 ), open cross is measured v2 (vmeasured2 ), and solid circle is corrected
v2 (vS2 ).

Fig. 3.39 show the result of v2 with background correction for π, K, and p. Since
the background v2 is usually smaller than observed v2 due to the smearing of track or
random association, corrected v2 become larger than measured v2. One can see such a
trend for all particles species in the measured pT range. Thus, we take upper systematic
error from background contributions.

Fig. 3.40 shows the systematic error of background contribution as a function of pT in
different centrality bins. Systematic error is larger in higher pT bin as we expected, but
the magnitude of error is relatively smaller than that of non-identified hadrons. This is
mainly because S/B ratio is enhanced by requiring the particle identification in TOF.

Table 3.5 shows the summary of systeamtic error of background contribution for π,
K, and p.

Systematic error of mis-identification

It is important to understand the contribution of mis-identified particles, especially for
higher pT. Because of the finite timing resolution particles become overlapping each
other for high pT in mass square. For example, π and K cannot be well separated for
pT > 2 GeV/c.

Fig. 3.41 demonstrates how to evaluate the yield of contamination for each particle
species in minimum bias events. We perform fitting the mass square distribution by
(3+1) gaussian, where the extra gaussian is used for background. Then we compare
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Figure 3.40: Systematic error from background contribution for π+ + π− (left), K+ +
K−, p+ p̄ in 0 − 60 % centrality bin, and minimum bias.

Table 3.5: Summary of background systematic error for π, K and p. In pT = 2 − 2.5
GeV/c, 1 % systematic error is added for π, K and p.

π K p
pT(GeV/c)

centrality (%) 2.5 - 3 3 - 4 3 - 4 2.5 - 3 3 - 4
0 - 5 % 3 % 7 % 3 % 1 % 4 %
5 - 10 % 1 % 6 % 2 % 1 % 2 %
10 - 15 % 1 % 4 % 1 % 1 % 2 %
15 - 20 % 1 % 3 % 1 % 1 % 4 %
20 - 30 % 1 % 2 % 1 % 1 % 2 %
30 - 40 % 1 % 3 % 1 % 1 % 1 %
40 - 50 % 1 % 2 % 1 % 1 % 1 %
50 - 60 % 1 % 1 % 1 % 1 % 3 %
60 - 92 % 1 % 21 % 1 % 2 % 3 %
0 - 10 % 2 % 7 % 3 % 1 % 3 %
10 - 20 % 1 % 4 % 1 % 1 % 3 %
0 - 20 % 2 % 5 % 2 % 1 % 4 %
20 - 40 % 1 % 2 % 1 % 1 % 1 %
40 - 60 % 1 % 2 % 1 % 1 % 1 %
20 - 60 % 1 % 2 % 1 % 1 % 1 %
0 - 50 % 1 % 4 % 2 % 1 % 3 %
Minimum bias 1 % 4 % 1 % 1 % 3 %
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Figure 3.41: Mass square distribution for pT = 2.5 − 3 GeV/c (left), and pT = 3 − 4
GeV/c (right) in minimum bias event. Solid black line shows fitting result by 4 gaussian
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Figure 3.42: Systematic error from mis-identification for π± (left), K± (middle) and
p(p̄) (right) in each centrality bin.
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extracted gaussian of each particle species (dashed line in the figure) with measured
particles with 2 σ PID cuts (grey histograms), and evaluate the contamination (yellow
histograms). The contribution from contamination are negligible below 2.5 GeV/c, so we
do not take into account the systematic error below that pT range. The contamination
for each particle species are evaluated for each centrality bin.

The systematic error on v2 from the contribution of contaminations are mostly cen-
trality independent and the magnitude of errors are 1 % for 0 − 60 % centrality bins,
and 2 % for 60 − 92 % (see Fig. 3.42).

3.7.3 Systematic error on v2 for d+ d̄, and φ

Systematic error on v2 for d+ d̄

Fig. 3.43 shows the ratio of v2 for deuterons as a function of pT from different method
and cuts. The sysytematic error values are calculated for each (pT, centrality) bin by
taking the quadratic sum of deviation of v2 value.
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Figure 3.43: The ratio of v2 for deuterons as a function of pT for different centrality bins.
The denominator is v2 values from mass square fit method with TOF + PC3 matching
cuts.

Systematic error on v2 for φ

The systematic error on φ meson v2 are estimated from Fig. 3.34 and summalized in
Table 3.7.
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Table 3.6: Summary of the relative systematic error on d+ d̄ v2 for each (pT, centrality)
centrality (%) pT (GeV/c)

1 - 1.5 1.5 - 2 2 - 2.5 2.5 - 3 3 - 4
0 - 20 % 37.7 (%) 3.0 (%) 13.7 (%)
20 - 40 % 82.9 (%) 41.4 (%) 20.0 (%) 18.4 (%) 12.9 (%)
40 - 60 % 7.4 (%) 2.4 (%) 26.8 (%)
20 - 60 % 72.4 (%) 20.3 (%) 11.9 (%) 19.1 (%) 8.3 (%)
Minimum bias 53.4 (%) 24.4 (%) 13.7 (%) 8.8 (%) 14.5 (%)

Table 3.7: Summary of the relative systematic error on φ v2 for each (pT, centrality)
centrality (%) pT (GeV/c)

1 - 2 2 - 3
0 - 20 % 34.9 (%) 44.7 (%)
20 - 40 % 12.6 (%) 6.8 (%)
40 - 60 % 10.6 (%) 12.3 (%)

1 - 1.5 1.5 - 1.9 1.9 - 2.4 2.4 - 3.5
20 - 60 % 74.5 (%) 6.9 (%) 3.2 (%) 23.4 (%)
Minimum bias 137.5 (%) 2.3 (%) 8.2 (%) 21.1 (%)



Chapter 4

Experimental Results

In this chapter, we present the experimental results of v2 for identified hadrons in Au
+ Au collisions at

√
sNN = 200 GeV. In Section 4.1, transverse momentum dependence

of v2 for π, K and p in minimum bias trigger are shown and the validity of our results
are examined. Centrality dependence of v2(pT) for π, K and p are shown in Section
4.2. The results of average v2 and their evaluation are presented in Section 4.3. And in
Section 4.4, the results of v2 for deuterons and φ mesons are shown and compared to
that for other hadrons.

4.1 Transverse momentum dependence of v2 for π,

K and p in Minimum bias events

In Run4, the total number of events is about 600 M events, by a factor 20 larger
compared to Run2 (30 M events). This significant increase of statistics enable us to
study the detail centrality dependence of v2 for identified hadrons as we will show in
the next section.

Fig. 4.1 shows v2 for π, K and p as a function of transverse momentum pT in
minimum bias events. Comparing the Run2 results as already shown in Fig. 1.9, we
can extend the pT reach for π and p up to 4 GeV/c by estimating the contamination for
each particle carefully. And we can also significantly reduce the statistical error with
the high statistics Run-4 data set. For pT < 2 GeV/c, measured v2 values are smaller
for heavier particle species, i.e., v2(π) > v2(K) > v2(p). For pT > 2 GeV/c, however,
v2(π) and v2(K) are saturated while v2(p) is still increasing (and saturating) with pT,
i.e., v2(p) > v2(π) ∼ v2(K).

As we discussed in 3.2.1, azimuthal distributions related to the event plane are
symmetric with 2(φlab − ΨBBC

2 ) → −2(φlab − ΨBBC
2 ), so that the

〈

sin (2[φlab − ΨBBC
2 ])

〉

values are expected to be zero. If there are experimental bias and fluctuations, it could
be deviated from zero. Thus, one could use

〈

sin (2[φlab − ΨBBC
2 ])

〉

values for checking
the validity of the analysis. As one can see that the

〈

sin (2[φ− ΨBBC
2 ])

〉

for all particle
species are zero in Fig. 4.1, we confirm that our procedure to extract v2 with respect to
the BBC event plane are correct.

85
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The consistency are also checked by comparing the previous Run2 results. Fig. 4.2
shows comparison of the v2(pT) between Run4 and Run2 [14] (same as Fig. 1.9) in
minimum bias events. One can see that the both results agrees well within the error
bars.

4.2 Centrality dependence of v2(π, K, p)

Centrality dependence of v2(pT) and
〈

sin (2[φlab − ΨBBC
2 ])

〉

values for π, K and p are
shown in Fig. 4.3 - 4.5. Average sine values are consistent with zero for all particle
species and all centrality bins as we expected. Clear increase of v2(pT) can be observed
for all particle species, that is, the magnitude of v2 increase with increasing centrality.

Fig. 4.6 - 4.8 show the ratio of v2 for negative to positive particles as a function of
pT. One can see that the ratio of v2 for π and K is consistent with unity for all centrality
bins. On the other hand, v2(p̄)/v2(p) is smaller than unity for mid-central collisions.
In order to see the difference of v2 between positive and negative particles, the average
values of the ratio of v2 in pT = 0.5 − 3 GeV/c is plotted as a function of centrality as
shown in Fig. 4.9. The average values of the ratio’s are 0.992 ± 0.002, 1.001 ± 0.006,
and 0.966 ± 0.005 for π, K and p respectively. The average value for p is 3.4 ± 0.5 %
smaller than 1 in the measured pT range. There are several sources which induce the
difference of v2 between anti-proton and proton;

• Feed-down decays from resonances (Λ, Ξ etc)

• Baryon transport or baryon stopping in the very beginning of collisions.

The effect of Λ feed down decays on proton v2 has been studied by a fast MC
simulation. In this simulation, we have assumed that total yield of protons is the sum
of direct protons and protons from feed down decays of Λ, and that v2 for direct protons
are equal to that of anti-protons. We have also assumed the v2 for Λ and Λ̄ is equal.
Resulting v2 for p and p̄ can be expressed as

v2(p) = (1 −Rf )v2(p)
dir +Rfv2(p)

feed (4.1)

where Rf is the fraction of protons from Λ feed down in all measured protons, v2(p)
dir

is the v2 for direct protons, and v2(p)
feed is the v2 for protons from Λ feed down decays.

The value of Rf is taken from [10]. We have added 10 % uncertainties in the v2 for
direct protons, and also taken into account the systematic error from Rf (∼ 12 %).

Top panel in Fig. 4.10 shows the v2 for p and p̄ from the fast MC simulation. We
found that the difference of v2 between p and p̄ can be explained by the feed down
decays from Λ due to the large systematic errors from direct protons and Rf . In our
current assumptions, Rf is the only source to cause the difference between p and p̄.
However, v2 for Λ and Λ̄ could be different from eath other. It is difficult to study
more quantitatively how the v2 for p and p̄ are different due to the large systematic
uncertainties for v2 of direct proton and for Rf .
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Figure 4.3: v2 vs pT for different centrality bins for π+ (solid circles) and π−

(open circles). Yellow band around v2 = 0 shows the absolute systematic errors.
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are also plotted by grey symbols.
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Figure 4.6: Ratio of v2 (v2(π
−)/v2(π

+)) vs pT for different centrality bins. Solid lines
show the average values of the ratios in pT = 0.5− 3 GeV/c, and yellow bands show the
statistical error from the fittng. Only statistical errors are shown.
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Figure 4.7: Ratio of v2 (v2(K
−)/v2(K

+)) vs pT for different centrality bins. Solid lines
show the average values of the ratios in pT = 0.5− 3 GeV/c, and yellow bands show the
statistical error from the fittng. Only statistical errors are shown.
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Figure 4.8: Ratio of v2 (v2(p̄)/v2(p)) vs pT for different centrality bins. Solid lines show
the average values of the ratios in pT = 0.5 − 3 GeV/c, and yellow bands show the
statistical error from the fittng. Only statistical errors are shown.
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One can estimate the v2 for net proton by assuming that the v2 is same for the pair
producing proton and anti-proton. The v2 for the net protons is given by

vnet2 (p) =
1

Np −Np̄
(Npv2(p) −Np̄v2(p̄)) . (4.2)

Fig. 4.11 shows the extracted v2 for the net proton. We found that v2 for the net proton
is 9 ± 5 % larger than that of p̄ in 5 − 40 % centrality. Baryon transport is one of the
scenario which lead to the difference of v2 between p and p̄. Larger v2 for baryons may
evolve with the multiple scattering through they are transported to mid-rapidity. While
v2 is typically smaller in forward rapidity, it is unknown what the mechanism produce
large v2 in that very short time scale.
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4.3 Average v2, 〈v2〉, for π, K and p

Average v2 over measured pT range, which we denote 〈v2〉, of π, K and p are calculated
as

〈v2〉 =

∫∞

0
dpT dN/dpT × v2(pT )
∫∞

0
dpT dN/dpT

=

∑

i dN
i/dpT × vi2(pT )

∑

i dN
i/dpT

(4.3)

where dN/dpT is the transverse momentum distributions, and v2(pT ) is the differential
v2 as a function of pT. Since we measure both pT spectra and v2 in the limited pT range
( 0.2 < pT < 4 GeV/c for π, 0.3 < pT < 3 GeV/c for K, 0.5 < pT < 4 GeV/c for p ), the
integral in Eq. (4.3) are replaced to the sum of data points as one see in the 3rd term.
We estimate v2 and dN/dpT for lower pT region by extrapolating the fitting results (see
below) to pT → 0. Higher pT range are also extrapolated for both v2 and dN/dpT but
they do not contribute the 〈v2〉 for all particle species, thus we just integrate the results
up to the maximum of measured pT.

Fig. 4.12 − 4.14 show transverse momentum spectra for π, K and p as a function
of centrality [10]. We parameterize the pT spectra by the following functions;

fπ(pT ) = A ·
(

p0

pT + p0

)n

(for π) (4.4)

fK(pT ) = A · e−mT /T (for K) (4.5)

where A, p0, n, and T are the free parameters. For protons, blast-wave model (Eq.
(1.13)) is used to parameterize their pT spectra. Different parameterizations of pT spec-
tra are also used to evaluate the systematic error on 〈v2〉, i.e. the pT spectra for π
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collision. Solid black lines represent power-law fitting results by Eq. (4.4). (Right) The
ratio of data to fitting results as a function of pT.
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Figure 4.14: (Left) pT spectra for p+p̄ from central (top) to peripheral (bottom) collision.
Solid black lines represent blast-wave fitting results by Eq. (1.13). (Right) The ratio of
data to fitting results as a function of pT.

and p are fitted by mT exponential function, and that for K is fitted by pT exponential
function.

Fig. 4.15 shows the fitting results of v2(π), v2(K) and v2(p) as a function of pT for
difference centrality classes. To extrapolate the data to low and high pT, we use the
following functions

f(pT ) = a · nq
(

1

1 + e−(pT /nq−b)/c
− 1

1 + eb/c

)

(4.6)

f(pT ) = a · pnT (4.7)

where a, b, c and n are the free parameters, and nq is the number of quarks for each
hadrons (2 for mesons, 3 for baryons). The empirical formula from Eq. (4.6) well
describe the pT dependence of v2 from low to intermediate pT [18]. As we already
mentioned, the contributions from high pT does not change the final results of 〈v2〉, Eq.
(4.7) gives reasonable estimate of v2 at low pT.

Fig. 4.16 shows the results of 〈v2〉 as a function of Npart. In the measured pT range,
measured v2 values are used to calculate 〈v2〉, and in the lower pT range where we don’t
have the data points of v2 extorapolated values from Eq. (4.6) is used. One can see 〈v2〉
values are increasing in smaller Npart region (peripheral events) and are saturating in
Npart < 100.

Fig. 4.17 shows the ratio of 〈v2〉 as a function of Npart for π, K and p. Systematic
errors are evaluated from the maximum difference of 〈v2〉 for each centrality. Systematic
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errors are summalized in table 4.1. We assume the flat distribution of 〈v2〉 for each
centrality bin and then evaluate the systematic error as

σsys(〈v2〉) =
2 × |Dmax|√

12
(4.8)

where |Dmax| is the maximum difference of between the measured 〈v2〉 and the reference
〈v2〉.

partN
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0 200 400 0 200 400 0 200 400

-π + +π -
 + K+K pp + 

Figure 4.18: 〈v2〉 as a function of Npart for π (left), K (middle) and p (right) with
absolute systematic error (yellow bands around v2 = 0). Systematic error is calculated
by quadratic sum of systematic error from the different procedures to extract 〈v2〉 and
errors from Section 3.7.
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Table 4.1: Summary of systematic error on 〈v2〉. |Dmax| is given by the maximum
difference of 〈v2〉.

Centrality π+ + π− K+ +K− p+ p̄
|Dmax| Sys. error |Dmax| Sys. error |Dmax| Sys. error

0 - 5 % 0.0016 0.1 % 0.0791 4.6 % 0.0323 1.9 %
5 - 10 % 0.0048 0.3 % 0.1052 6.1 % 0.0274 1.6 %

10 - 15 % 0.0106 0.6 % 0.0953 5.5 % 0.0207 1.2 %
15 - 20 % 0.0137 0.8 % 0.1053 6.1 % 0.0275 1.6 %
20 - 30 % 0.0202 1.2 % 0.1033 6.0 % 0.0202 1.2 %
30 - 40 % 0.0319 1.8 % 0.1010 5.8 % 0.0176 1.0 %
40 - 50 % 0.0370 2.1 % 0.1000 5.8 % 0.0104 0.6 %
50 - 60 % 0.0397 2.3 % 0.1008 5.8 % 0.0154 0.9 %
60 - 92 % 0.0477 2.8 % 0.1011 5.8 % 0.0177 1.0 %

4.4 Centrality and pT dependence of v2 for d+ d̄ and

φ

Fig. 4.19 shows v2 as a function of pT for d + d̄ in minimum bias events. For pT < 2
GeV/c, the magnitude of v2 for deuterons is smaller than that of other hadrons. This
trend of v2 is consistent with the picture of hydrodynamic calculation with common
velocity field, that is v2 of heavier particles become smaller for a given pT. For pT > 2
GeV/c, on the other hand, one can see that v2(d) is consistent with v2 for other hadrons.

Fig. 4.20 shows v2 as a function of pT for φ mesons in minimum bias events. The
magnitude of v2 for φ mesons is smaller than that of other hadrons in pT < 1.5 GeV/c,
while v2 is consisteht with that for other hadrons in pT > 1.5 GeV/c.

Fig. 4.21 shows centrality dependence of v2(d) and v2(φ) as a function of pT. Similar
trend of v2 are observed for the data in 20 % centrality steps as in minimum bias events,
while the statistical errors are large especially for higher pT bins.
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Figure 4.19: v2 as a function of pT for d+ d̄ in minimum bias events. v2 of π, K and p
are also plotted for comparison. Yellow bands show the systematic error on v2(d).
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Chapter 5

Discussions

In the presious chapter, we have found that;

• Mass ordering of v2, i.e. v2 for heavier particles is larger for a given pT at pT < 2
GeV/c, which is consistent with the hydrodynamical model calculations.

• For pT > 2 GeV/c, v2 for heavier particle species, such as protons, deuterons are
larger compared to those for mesons.

• v2 increases from central to peripheral collisions. Centrality dependence of v2 is
qualitatively consistent with that of the eccentricity.

In Section 5.1, we discuss degree of thermalization and its relation between spatial
eccentricity and elliptic flow more quantitatively with the eccentricity estimated by the
Monte Carlo simulation with Glauber model. In Section 5.2, the sensitivity of initial
density profile to measured v2 is discussed by using extended Blast-wave parameteriza-
tion. Finally, in Section 5.3, we discuss the partonic collectivity with the quark number
scaling of v2.

5.1 Eccentricity Scaling of v2

As we discussed in Section 1.3.3, final momentum anisotropy is sensitive to the degree
of thermalization. In peripheral collisions, where the emitted particles can escape from
the overlap zone without interacting with other particles, the system is close to free
streaming. In the case of free streaming (collisionless limit: λ→ ∞), the magnitude of
elliptic flow is [49]

〈v2〉 ∝
〈ε〉
〈S〉

dN

dy
(5.1)

where 〈ε〉 is the spatial eccentricity (several definitions of eccentricity can be used, see
Appendix A.2), 〈S〉 is the transverse area of collision zone, and dN/dy is the rapidity
density of total (charged + neutral) produced particles. Bracket 〈〉 for v2, ε and S
denote the average over all events for all particles. In this free streaming limit, the ratio
of 〈v2〉/〈ε〉 linearly increase with the transverse number density (1/ 〈S〉 dN/dy). Since

105
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dN/dy increases in more central collisions, the ratio of 〈v2〉/〈ε〉 increases with more
central events for a fixed collision system.

The transverse number density can be related to the degree of thermalization, i.e.
the Knudsen number K [50]

1

K
=
R

λ
= Rσn(τ) ∼ csσ

c 〈S〉
dN

dy
(5.2)

where λ is the mean free path of produced particles, R is the transverse size of the
system, σ is the cross section among the produced particles, n(τ) is the number density
of produced particles at ”time” τ , and c, cs are the speed of light and speed of sound,
respectively. The above equation is valid for τ ≤ R/cs, where the transverse size of the
system does not change significantly [50]. In the hydrodynamical limit: λ → 0, that is
1/K � 1, the ratio 〈v2〉/〈ε〉 becomes constant [51]. The relation between the measured
v2 and Knudsen number can be given by [50]

〈v2〉
〈ε〉 =

〈

vh2
〉

〈ε〉
1

1 +K/K0

(5.3)

where
〈

vh2
〉

is the limitting values of v2 when K → 0, which corresponds to the v2 from
hydrodynamics, and K0 is the parameter of order unity, whose precise value can only
be determined through a transport calculation.

Therefore, the possible thermalization achieved in the early stage of heavy ion col-
lisions could be investigated with detailed comparison between spatial eccentricity in
initial coordinate space and elliptic flow in final momentum space.

First, we discuss the eccentricity scaling of 〈v2〉 (average v2) by using standard ec-
centricity among the Au + Au and Cu + Cu collisions. Second, we introduce the more
accurate definitions of eccentricity (participant eccentricity), which is taking into ac-
count the fluctuation of positions for participating nucleons, and discuss the scaling
relation between 〈v2〉 and participant eccentricity in Au + Au and Cu + Cu collisions.
Last, we discuss the difference of eccentricity between different averaging and compare
the results of scaled 〈v2〉 for different definitions of eccentricity.

5.1.1 〈v2〉 in Au + Au and Cu + Cu Collisions and Standard
Eccentricity

Fig. 5.1 shows the 〈v2〉 for charged hadrons as a function of Npart in Au + Au and Cu +
Cu collisions at

√
sNN = 200 GeV. The behavior of 〈v2〉 is qualitatively similar to that

of eccentricity, that is the magnitude of 〈v2〉 is smaller for larger Npart and 〈v2〉 in Au
+ Au is larger than that of Cu + Cu for a given Npart (see Fig. A.3).

In order to study the relation between the 〈v2〉 and the eccentricity more quantita-
tively, the eccentricity scaling of v2 is examined for both Au + Au and Cu + Cu col-
lisions. We first use standard eccentricity 〈εstd〉, which is defined by the fixed axes
in the coordinate space, as defined in Eq. (A.7) and (A.8). Fig. 5.2 show the Npart

dependence of the ratio 〈v2〉/〈εstd〉. One can clearly see that the scaled 〈v2〉 rapidly
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sNN = 200 GeV. Average

v2 values are obtained by integrating v2(pT) over pT = 0.2−5.0 GeV/c. Yellow and light
blue bands represent the systematic errors on v2 in Au + Au and Cu + Cu, respectively.
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Figure 5.2: 〈v2〉/〈εstd〉 as a function of Npart in Au + Au and Cu + Cu collisions. Solid
(open) data points show the results of 〈v2〉 divided by 〈εstd〉 weighting with Npart (Ncoll)
density profile.
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increase around Npart ∼ 100 especially for Cu + Cu and 〈v2〉/〈εstd〉 is not scaled among
the different colliding systems. Since 〈εstd〉 is defined with the fixed axes in coordinate
space, it does not take into account the event-by-event position fluctuations of partici-
pating nucleons in principle. Such fluctuations lead to the difference between fixed axes
in the reference frame and the principal axes determined by the participant nucleons.
Therefore, 〈εstd〉 could underestimate the magnitude of eccentricity. The scaling breaks
between Au + Au and Cu + Cu with 〈εstd〉 suggest that such fluctuations are dominant
especially for Cu + Cu collisions.

Such a behavior is also found for
〈

εcollstd

〉

as shown by the open data points in Fig.

5.2. One also see relatively smaller 〈v2〉/
〈

εcollstd

〉

compared to 〈v2〉/
〈

εpartstd

〉

. This is simply
because the steeper Ncoll density distribution gives larger eccentricity (about 1.5 − 2
times larger in most central, close to unity in most peripheral, see Fig. A.7 and A.8).

5.1.2 Eccentricity Scaling of 〈v2〉 with Participant Eccentricity
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Figure 5.3: Comparison of 〈ε〉 as a function of impact parameter in Au + Au. Red circles,
black triangles and blue crosses are 〈εstd〉, 〈εvar〉, and 〈ε2〉, respectively. Eccentricity is
calculated with Npart weight.

To take into account the position fluctuations of participant nucleons, we calculate
〈εvar〉 (participant eccentricity) which is defined by the axes determined with the
distributions of participant nucleons. We also consider 〈ε2〉 (event plane eccentricity)
which is basically same as 〈εvar〉 but is defined by subtracting auto-correlation between
participating nucleons and the event plane. Details definitions of these 〈ε〉 can be found
in Appendix A.2.



CHAPTER 5. DISCUSSIONS 109

Fig. 5.3 compare the eccentricity as a function of impact parameter in Au + Au col-
lisions. 〈εstd〉 becomes zero at most central since the radius of x and y is equal. 〈εstd〉 in-
crease with increasing impact parameter, and become decreasing from b ≥ 2RAu due to
the effect of surface diffuseness. On the other hand, 〈εvar〉 and 〈ε2〉 have finite value
even at most central since they include the event-by-event position fluctuations. Be-
cause 〈εvar〉 is defined by the event plane determined with the participating nucleons,
it becomes unity in the limit of Npart → 1 due to the auto-correlation. For 〈ε2〉, the
effect of auto-correlation is strongly suppressed at most peripheral, and the magnitude
is approaching to the 〈εstd〉.
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Figure 5.4: Eccentricity scaling of 〈v2〉 as a function of Npart. (a) with 〈εvar〉, (b) with
〈ε2〉. Note that the scale of vertical axis is different from Fig. 5.2.

Fig. 5.4 show the 〈v2〉/〈εvar〉 (left) and 〈v2〉〈ε2〉 (right) as a function of Npart. As
one can see that eccentricity scaling works for Au + Au and Cu + Cu with 〈εvar〉 as
shown in left figure. However, if one takes 〈ε2〉, eccentricity scaling seems to break at
most central Cu + Cu bin. There might be several reasons why the eccentricity scaling
of 〈v2〉 with 〈ε2〉 breaks; first there may be remaining auto-correlations in the measured
〈v2〉, and second we may oversubtract auto-correlations from 〈εvar〉.

5.1.3 〈ε〉 vs ε{2}
We measured the magnitude of v2 by the event plane method, v2{EP2} = 〈cos 2[φ− Ψ]〉,
which is equivalent to that by two-particle azimuthal correlations between emitted par-
ticles v2{2} =

√

cos 2[φ1 − φ2] [52]. Both methods yield v2{EP2} ' v2{2} =
√

〈v2
2〉

when v2 fluctuate event-by-event. If we assume v2 in each event is proportional to ε,
one expects v2{EP2} ' v2{2} =

√

〈ε2〉 [53]. Therefore, ε{2} ≡
√

〈ε2〉 is thought to be
more natural choice of eccentricity compared to the 〈ε〉, as long as v2 is determined by
the event plane determined with the emitted parricles from the participant nucleons.

Fig. 5.5 show eccentricity scaling of 〈v2〉 with ε{2} as a function of Npart. Since the
magnitude of ε{2} is almost independent of the definitions of eccentricity (see Fig. A.5
and A.6), scaled 〈v2〉 is almost same with different definitions of eccentricity for a given



CHAPTER 5. DISCUSSIONS 110

partN
0 500 1000

{2
}

ε/〉 2v〈

0

0.2

0.4

0.6

0 100 200 300 0 100 200 300 0 100 200 300

 weight
part

Au + Au, N

 weight
coll

Au + Au, N

 weight
part

Cu + Cu, N

 weight
coll

Cu + Cu, N

)stdεStandard eccentricity ( )varεParticipant eccentricity ( )2εEventplane eccentricity (

Figure 5.5: Comparison of 〈v2〉/ε{2} as a function of Npart. From left to right figures,
〈εstd〉, 〈εvar〉, and 〈ε2〉 are used for scaling, respectively. Grey data points show the
〈v2〉/〈ε〉 (standard averaging).

centrality. One can also see that the 〈v2〉/ε{2} < 〈v2〉/〈ε〉 (grey data points), which is
due to ε{2} > 〈ε〉 (see Fig. A.5 and A.6). In our current systematic error on 〈v2〉 and
ε, it is difficult to conclude which is the best quantity to explain the scaling of 〈v2〉.

For all defenitions of eccentricity, scaled v2 is relatively smaller and flatter by 〈ε〉 weight-
ing with Ncoll density profile. Since the hydrodynamics is scale invariant, 〈v2〉/〈ε〉 be-
comes independent of the system size if the complete local thermal equilibrium is es-
tablished. Therefore, flatter 〈v2〉/〈ε〉 with Ncoll density might suggest that the local
thermal equilibrium is attained, although there is a possibility that this flatter behavior
of 〈v2〉/〈ε〉 is just a coincidence.



CHAPTER 5. DISCUSSIONS 111

5.2 Interpretation with Blast-wave Picture

The elliptic flow could be one of the most sensitive signatures in the early stage of heavy
ion collisions. Therefore, detaild comparison between measured v2 and hydrodynamical
model can shed light on the thermodynamic bulk properties of the system and the
collision dynamics.

Blast-wave model parameterization is similar to the freeze-out configuration obtained
from hydrodynamical model but the physical parameters of the configuration are treated
as free parameters. It is widely used to describe the temperature and common velocity
field at the kinetic freeze-out by comparing with the measured single particle spectra
and v2. However, one could expect v2 is more sensitive to the early stage before the
kinetic freeze-out takes place so that the transverse momentum spectra and v2 may have
different sensitivities to the dynamics in the heavy ion collisions.

In this section, we show the independent fitting results of single particle spectra and
v2 by extended Blast-wave model, and discuss the extracted parameters and its relation
of collision dynamics.

5.2.1 Extended Blast-wave Model

In order to study the sensitivity of initial density profile to measured v2, we perform
the fitting with Blast-wave parameterization. In the standard Blast-wave framework,
density distribution is assumed to be constant and velocity profile is linear as a function
of radius in the transverse directions. In our extended Blast-wave model, we use more
realistic density and veloicty distributions inspired from the Hydrodynamical model.
That is, the density distribution is detemined by the initial overlap density (Npart orNcoll

density profile), and the velocity distribution is calculated by its gradient distributions.
As we already discussed in Section 5.1, Ncoll density profile is more closely related to the
degrees of thermalization, one could expect that v2 may be described in Ncoll density
distributions than in Npart density profile.

The basic assumptions of our Blast-wave model are listed below;

• Longitudinal boost invariance

• An instant freeze-out takes place just after the collision on a hyper-surface Σ at a
proper time τ

• An instant freeze-out is independent of r at τ = const.

– Use Npart or Ncoll overlap density distributions from Glauber model

– Initial spatial eccentricity ε is fixed by inital overlap geometry, and ε is cal-
culated by

ε =

∑

iNi(y
2
i − x2

i )
∑

iN
i(x2

i + y2
i )

(5.4)

where Ni is the number density (Npart or Ncoll) at (x, y), and xi, yi are the x
and y positions for ith participant.
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• Radial boost velocity is assumed to be proportional to the density gradient distri-
butions

– The magnitude of radial boost velocity is fixed by the magnitude of density
gradient

– The boost direction (azimuthal angle of boost) is fixed by the direction of
density gradient, thus the azimuthal dependence of boost βn (nth fourier
harmonics, n = 2, 4, ...) is automatically determined by the gradient of density
distributions. βn is obtained by

βn =

∑

iNiGi cos (nφi)
∑

iNiGi
(5.5)

where Gi is the gradient of the density profile at (x, y) and φi is the azimuthal
angle with respect to the reaction plane for ith participant. We only consider
β2 since the higher harmonics (n ≥ 4) is negligible.

• No chemical freeze-out

• Freeze-out temperature is independent of the position for particles (x, y), T (x, y) =
T , that is kinetic freeze-out takes place for all hadrons at the same time

There are 2 free parameters in our model: 1) freeze-out temperature (T ), and 2) surface
radial boost velocity (βT ).
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Figure 5.6: (Left) Npart density distribution in 20 - 30 % centrality. (Right) Npart

gradient distribution in 20 - 30 % centrality.

Fig. 5.6 and 5.7 show Npart and Ncoll density distributions (left), gradient of density
(right) in 20 - 30 % centrality, respectively used in our model. One can see that the
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Figure 5.7: (Left) Ncoll density distribution in 20 - 30 % centrality. (Right) Ncoll gradient
distribution in 20 - 30 % centrality.

width of x direction in Ncoll distribution is smaller than that of Npart distribution. Since
the density is larger in the smaller r, number of collisions for each participant nucleon
become larger in small r. That is why Ncoll distribution become steeper compared to
the Npart distribution.

Fig. 5.8 show the Npart and Ncoll density distributions and gradient arrows in 20 - 30
% centrality bin. As one already sees in Fig. 5.6 and 5.7, the steeper Ncoll distribution
lead to larger gradient, i.e. larger velocity, for a given (x, y) position compared to
Npart distributions. The direction of arrows are used as the azimuthal angles of boost
direction.

Fig. 5.9 show the projections of Npart density and its gradient as a function of r
for several centrality classes. One can see that the density distributions in in-plane are
steeper than out-of-plane and that trend is more visible for peripheral collisions.

The more details of our Blast-wave parameterization are described in Appendix C.
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Figure 5.8: (a) Npart density distributions, and (b) Ncoll density distributions in 20 - 30
% centrality. The direction of arrows indicates the direction of gradient, and the length
of arrows is the magnitude of gradient. The maximum value of gradient is normalized
to 1 in these figures.
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5.2.2 Fitting Results
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Figure 5.10: Fitting results for π, K and p by Blast-wave model in 20− 30 % centrality.
Single particle spectra and v2 are fitted independently. Fitting is performed by mini-
mizing χ2 for π, K and p simultaneously. Left and right panel show the results with
Npart and Ncoll density, respectively. Yellow bands represents the systematic error on
v2(p), and green dashed lines are the systematic error on v2(K). Solid lines on the data
points represent the fitting results in the pT range denoted in Table 5.1, and doted lines
extrapolate fitting results in lower and higher pT range.

Fig. 5.10 show the fitting results for both spectra and v2 in 20 − 30 % centrality
bin by Blast-wave model. The data points of pT spectra is taken from [10], and results
of v2 are obtained in this thesis. Fitting is performed for π, K and p simultaneously.
Fitting range for each particle species are summarized in Table 5.1. Higher pT values
are determined by requiring mT −m0 < 1 GeV/c. We exclude the low pT pions from
spectra because there are significant contributions from resonance decays. Minimization
of χ2 is performed including the systematic error. The systematic error on v2(π) are not
plotted in the figure but the magnitude of the error is comparable to that of K. One can
see that the fitting for π is not so good especially by using Npart density distribution,
so we also fit the spectra and v2 for K and p excluding π as shown in Fig. 5.11.

Table 5.2 summarize the extracted parameters. Average radial flow velocity, 〈βT 〉, is
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Figure 5.11: Fitting results for K and p by Blast-wave model in 20 − 30 % centrality.

Table 5.1: Fitting range used in the Blast-wave fit.
Fitting range

Particle species spectra v2

π 0.5 - 1.13 GeV/c 0.2 - 1.13 GeV/c
K 0.4 - 1.40 GeV/c 0.3 - 1.40 GeV/c
p 0.6 - 1.70 GeV/c 0.5 - 1.70 GeV/c
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Table 5.2: Summary of extracted T , 〈βT 〉 and χ2/NDF in 20 − 30 % centrality.
Parameters π + K + p K + p
Density profile Npart Ncoll Npart Ncoll

Statistical error only : spectra fit
T (MeV) 114.5 ± 1.9 103.2 ± 1.5 150.6 ± 3.7 108.5 ± 4.2
〈βT 〉 0.432 ± 0.002 0.506 ± 0.003 0.405 ± 0.005 0.500 ± 0.005
χ2/NDF 491.8/52 = 9.5 83.2/52 = 1.6 268.2/40 = 6.7 69.7/40 = 1.7

Statistical error only : v2 fit
T (MeV) 213.2 ± 2.4 311.8 ± 0.7 231.9 ± 2.4 341.4 ± 2.5
〈βT 〉 0.450 ± 0.005 0.582 ± 0.001 0.404 ± 0.005 0.547 ± 0.004
χ2/NDF 4761.1/25 =

190.4
1836.2/25 =
73.5

270.5/16 =
16.9

82.7/16 = 5.2

Include systematic error on v2 for χ2 minimization
T (MeV) 209.4 ± 2.4 305.5 ± 4.4 222.2 ± 3.8 329.9 ± 8.3
〈βT 〉 0.442 ± 0.005 0.578 ± 0.004 0.406 ± 0.011 0.559 ± 0.008
χ2/NDF 179.5/25 = 7.2 64.5/25 = 2.6 47.8/16 = 3.0 15.3/16 = 1.0

calculated by integrating the gradient distribution weighted with density profile. Several
features are listed below.

• Temperature

– For spectra, consistent values are obtained from both Npart and Ncoll density

– For v2, temperature in Ncoll density is about 100 MeV larger than Npart

density.

– Temperatures obtained from v2 fitting are about 100 - 200 MeV higher than
that from spectra.

• 〈βT 〉

– Larger 〈βT 〉 in Ncoll density for both spectra and v2.

• χ2/NDF

– Better χ2/NDF in Ncoll density profile for both spectra and v2.

– Better χ2/NDF if one exclude π from fitting.

As one can see that the results obtained from K and p fit give always better χ2/NDF
compared to that from π, K and p fit. Larger temperature from the fitting of v2 could
suggest that the magnitude of v2 saturate in early time compared to the time scale
of kinetic freeze-out which can be obtained by the spectra fit only. In order to see
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Figure 5.12: 3 σ χ2 contour for temperature vs average radial flow velcoity with Npart

density profile. Dashed and solid black line show the 1 and 2 σ contour, and solid red
(blue) line represent 3 σ contour line for v2 (spectra).
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density profile.
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the difference of temperature and radial flow velocity between spectra and v2 visually,
contour lines of χ2 are plotted in temperature with respect to the radial flow velocity.

Fig. 5.12 and 5.13 show the 3 σ contour lines for temperature with respect to the
average radial flow velocity for both spectra (blue) and v2 (red) with Npart and Ncoll

density profile. The contours of χ2 are obtained from π, K and p fitting. Slightly
different minimum χ2 positions are due to the finite bin size of temperature and 〈βT 〉.
One clearly sees that the minimum position of χ2 is quite different between spectra and
v2 for both results.

From the next section, we only consider the results from K and p fitting since the
shape of v2(pT) for π from Blast-wave model does not well reproduce the data, and it
gives better χ2/NDF for both spectra and v2 compared to that from π, K and p fitting.

5.2.3 Sensitivity to the Eccentricity

In order to study the effective dynamical evolution of the system, the eccentricity value
is varied by expanding the initial density distribution given from Glauber model. For
the sake of simplicity, we only consider the expansion of x-direction, i.e. the direction
of reaction plane. Since the pressure gradient is largest in that direction, this simple
expansion gives naively correct picture of the system evolution.
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Figure 5.14: Transverse length dependence of eccentricity and β2 in 20−30 % centrality
(left). Right figure shows the ratio of ε to β2 as a function of (〈R〉 − 〈R0〉)/〈R0〉.

Fig. 5.14 shows the eccentricity weighted by Npart (solid red circles) and Ncoll (solid
red triangles) as a function of normalized transverse length. 〈R〉 variable is defined as

1

〈R〉2
=

1

〈x2〉 +
1

〈y2〉 (5.6)
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〈R〉 is more natural choice than the rms radius of the system since v2 is driven by the
pressure gradient [50]. 〈R0〉 value is the average transverse length in the initial density
profile given by the Glauber model.
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Figure 5.15: Temperature T as a function (〈R〉 − 〈R0〉)/〈R0〉 obtained from Ncoll den-
sity profile. Solid red and open black symbols show the results from spectra and v2,
respectively. Open triangles show the result from v2 fitting with statistical error only.
Yellow band represent the lower and upper values of chemical freeze-out temperature
Tch = 143 − 184 (MeV) [56, 57]. Black dashed line show the 〈ε〉 value taken from az-
imuthal HBT analysis at STAR experiment [58]. Top x-axis denote the corresponding
values of 〈ε〉.

Fig. 5.15 shows the temperature T as a function of (〈R〉 − 〈R0〉)/〈R0〉 in 20 − 30
% centrality with Ncoll deisnty profile. The temperature from spectra fit are unchanged
with 〈R〉 as it should since transverse momentum spectra does not depend on the ec-
centricity. And the temperature values are smaller than that at chemical freeze-out
temperature which is given in [56, 57]. This result support that the temperature ob-
tained from spectra fit could reflect the conditions where the kinetic freeze-out takes
place. If one look at the Fig. 5.16 and 5.17, average radial flow velocity 〈βT 〉 and
χ2/NDF are also unchanged so much for spectra fit.

However, the result of temperature from v2 fit significantly decrease with (〈R〉 −
〈R0〉)/〈R0〉 and become same temperature value from spectra fit around 〈ε〉 ∼ 0.06.
For 〈βT 〉 values, it initially 0.1 larger than that from spectra fit, and coincide in large
(〈R〉−〈R0〉)/〈R0〉. The χ2/NDF values are slowly decreasing with (〈R〉−〈R0〉)/〈R0〉 and
take the minimum value around (〈R〉−〈R0〉)/〈R0〉 ∼ 0.22 (〈ε〉 ∼ 0.06). One also see that
the results about temperature and average radial flow velocity from χ2 minimization with
statistical error unchanged compared to that obtained with statistical and systematic
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error.
Dashed lines in Fig. 5.15 − 5.17 represent the 〈ε〉 value obtained from azimuthal

HBT analysis at STAR [58]. We define its value as the time when the kinetic freeze-
out takes place. Corresponding (〈R〉 − 〈R0〉)/〈R0〉 value at kinetic freeze-out is about
0.13. If one compare the temperature of v2 and spectra at the kinetic freeze-out, the
temeperature from v2 is as large as Tch, and larger than that of spectra. This result
suggest that the ”freeze-out” of v2 could occur at the chemical freeze-out and its freeze-
out is earlier than that of spectra. The result obtained by changing the eccentricity
is consistent with the picuture of the collective in-plane expansion, where the initial
eccentricity is quenched and the v2 is developed through the expansion of the system
with time.
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Figure 5.16: Average radial flow velocity 〈βT 〉 as a function (〈R〉− 〈R0〉)/〈R0〉 obtained
from Ncoll density profile.
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Figure 5.17: χ2/NDF as a function (〈R〉−〈R0〉)/〈R0〉 obtained from Ncoll density profile.

5.2.4 Robustness of Fitting Results

In order to check the robustness of the fitting, we have checked several systematics of
the fitting resutls as follows;

• Vary the size of system

• Vary velocity profile for a given density distribution.

• Use different parameterization for Woods-saxon density profile

– σNN = 42 mb, a = 0.53 fm (default)

– σNN = 37 mb, a = 0.53 fm

– σNN = 47 mb, a = 0.53 fm

– σNN = 42 mb, a = 0.43 fm

– σNN = 42 mb, a = 0.63 fm

• Different centrality window, 10 − 20 % and 30 − 40 %.

System Size

Since v2 does not depend on the absolute scale of Rx and Ry, where Rx(y) denote the
radius of x (y) direction, only depends on the ratio of size for x and y (Ry/Rx), fitting
results should not be changed with the system size. We confirmed that the results are
unchanged for both spectra and v2 with reasonable range of the system size.
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Parameterization of Woods-saxon density profile

Table 5.3: Summary of temperatures and average velocity for different parameterizations
from v2 fit
Type Npart weight

〈ε〉 β2 T (MeV) 〈βT 〉 χ2/NDF
default 0.262 0.212 222.2 ± 3.8 0.436 ± 0.012 47.8/16 = 3.0
(1) 0.270 0.220 232.5 ± 3.9 0.444 ± 0.011 42.4/16 = 2.7
(2) 0.254 0.204 213.2 ± 3.7 0.427 ± 0.012 53.3/16 = 3.3
(3) 0.311 0.245 234.8 ± 3.9 0.441 ± 0.012 63.0/16 = 4.0
(4) 0.216 0.180 202.9 ± 3.6 0.423 ± 0.011 38.5/16 = 2.4

Ncoll weight
〈ε〉 β2 T (MeV) 〈βT 〉 χ2/NDF

default 0.311 0.272 329.9 ± 8.3 0.582 ± 0.008 15.3/16 = 1.0
(1) 0.311 0.272 329.9 ± 8.3 0.582 ± 0.008 15.3/16 = 1.0
(2) 0.311 0.272 329.9 ± 8.3 0.582 ± 0.008 15.3/16 = 1.0
(3) 0.354 0.300 330.6 ± 8.0 0.587 ± 0.009 19.8/16 = 1.2
(4) 0.269 0.248 320.2 ± 8.2 0.575 ± 0.008 12.9/16 = 0.8

Different parameterizations of Woods-saxon density distribution are used to check
the stability of the extracted parameters. Table 5.3 summarize the results of extracted
parameters from v2 fit from different parameterizations for the Glauber model, where
(1) σNN = 37 mb, (2) σNN = 47 mb, (3) a = 0.43 fm, and (4) a = 0.63 fm. σNN and a
denote the inelastic p+p cross sections and surface diffuseness parameters, respectively.
Comparing the results from default parameterization given in Table 5.2, the temperature
(average velocity) is about 10 (6) % changed for Npart weight, while for Ncoll weight the
difference is relatively smaller, about 4 % for both T and 〈βT 〉. The difference obtained
from this study are included in the systematic errors on extracted parameters.

Velocity Profile

The sensitivity of the extracted parameters are studied by varying the velocity pro-
file distribution for the density distribution where the χ2/NDF is miniumum, (〈R〉 −
〈R0〉)/〈R0〉 ∼ 0.22. The velocity distribution is modified by adding 1 ± 2β2 cos (2φ) to
the original velocity profile in Glauber model, where β2 is 2nd harmonics of radial flow
velocity introduced in Eq. (5.5) for n = 2. We found that χ2/NDF become larger if the
velocity profile varied by the β2 parameter for both Npart and Ncoll density, i.e. the min-
imum χ2/NDF is obtained at the initial velocity profile given by Glauber model. This
result could suggest that the v2 is sensitive to the velocity profile which is determined
by the initial density overlap.
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Different centrality

Other centrality bins, namely 10 − 20 % and 30 − 40 % centrality bins, are also fitted
to see the centrality dependence of extracted parameters, and the results are shown in
Table 5.4. 〈ε〉 and β2 is calculated by Eq. (5.4) and Eq. (5.5), respectively.

Table 5.4: Summary of temperatures and average velocity for different centrality classes.
Results of 20 − 30 % centrality are taken from Table 5.2.
Centrality (%) Npart weight

〈ε〉 β2 T (MeV) 〈βT 〉 χ2/NDF
0 - 10 % 0.061 0.049 126.2 ± 7.9 0.410 ± 0.016 15.0/16 = 0.9
10 - 20 % 0.178 0.141 201.0 ± 3.9 0.397 ± 0.009 48.0/16 = 3.0
20 - 30 % 0.262 0.212 222.2 ± 3.8 0.436 ± 0.012 47.8/16 = 3.0
30 - 40 % 0.331 0.276 261.5 ± 4.6 0.444 ± 0.012 31.2/16 = 2.0

Ncoll weight
〈ε〉 β2 T (MeV) 〈βT 〉 χ2/NDF

0 - 10 % 0.082 0.069 185.7 ± 11.3 0.517 ± 0.012 11.9/16 = 0.8
10 - 20 % 0.221 0.186 285.7 ± 9.1 0.549 ± 0.006 19.4/16 = 1.2
20 - 30 % 0.311 0.272 329.9 ± 8.3 0.582 ± 0.008 15.3/16 = 1.0
30 - 40 % 0.379 0.347 386.7 ± 9.5 0.581 ± 0.010 15.6/16 = 1.0



CHAPTER 5. DISCUSSIONS 125

5.3 Partonic Collectivity

Hadron production via quark coalescence mechanism predicts the universal scaling of
v2 from thermalized partons

vh2 (pT ) ' nq × vq2 (pT/nq) (5.7)

where nq is the number of constituent quarks in hadrons, vh2 and vq2 are hadron v2 at
pT and quark v2 at pT/nq, respectively. This quark number scaling indicates that the
elliptic flow is developed in the early partonic stage of heavy ion collisions.

In Section 5.3.1, we first discuss the quark number scaling of v2 for several different
particle species in minimum bias events. Second, the validity of quark number scaling
of v2 is also discussed for different centrality classes in Section 5.3.2.

5.3.1 Quark Number Scaling in Minimum Bias Events

 (GeV/c)q/n
T

p
0 0.5 1 1.5 2

q
/n 2v

0

0.05

0.1

0.15

0.2

Minimum bias
-π + +π
-

 + K+K
pp + 

πSystematic error on 
polynominal fit

/NDF = 26.77/48 = 0.562χ

 (GeV/c)q/n
T

p
0 0.5 1 1.5 2

(F
it)

2
(D

at
a)

/v
2v 0.6

0.8

1

1.2

1.4

 (GeV)
q

)/n0-m
T

(m
0 0.5 1 1.5 2

q
/n 2v

0

0.05

0.1

0.15

0.2

Minimum bias
-π + +π
-

 + K+K
pp + 

πSystematic error on 
polynominal fit

/NDF = 2.00/48 = 0.042χ

 (GeV)
q

)/n0-m
T

(m
0 0.5 1 1.5 2

(F
it)

2
(D

at
a)

/v
2v 0.6

0.8

1

1.2

1.4

Figure 5.18: v2 as a function of pT (left) and mT − m0 (right) divided by number of
quarks for each hadrons (nq = 2 for mesons and nq = 3 for protons) in minimum bias
events. Yelllow bands show the absolute systematic error on π+ + π− Dashed lines
represent the simultaneous fitting results for π, K and p by 4th polynominal functions.
Bottom figures show the ratios of data to fitting results of v2.

Fig. 5.18 shows the v2/nq as a function of pT/nq (left) and KET/nq (right) for iden-
tified hadrons in minimum bias events. The scaled v2 values are fitted by polynominal
function in order to test the validity of the quark number scaling. The ratio of data
to fitting result is plotted in the bottom panels. One immediately find that the scaling
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breaks at pT/nq < 1 GeV/c, and the ratio is larger for lighter hadrons (i.e., π > K > p).
As we already discussed in Section 1.3.3, the resonance decay contributions could be
one of the possible explanations about the deviation of π from the quark number scaling
[18].

Recently, the PHENIX collaboration found that the quark number scaling of v2 with
transverse kinetic energy KET = mT −m0 (GeV) holds full measured KET range [54].
If the elliptic flow is driven by the hydrodynamical pressure gradient, the magnitude of
v2 is expected to scale with KET since the pressure gradient is directly linked to the
collective kinetic energy of the emitted particles.

The scaling of v2 with KET is plotted in the right panel. The fitting is also performed
by polynominal function and take the ratio as shown in right bottom panel. The ratio
shows excellent scaling in the measured KET range compared to the pT scaling in left
panel, except for very low KET. This result support the picture that the elliptic flow is
driven by the hydrodynamical collective pressure gradient.
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Figure 5.19: Quark number scaling of v2 for d (nq = 6) and φ (nq = 2) as a function of
pT (left) and mT −m0 (right) in minimum bias events. Yellow and blue bands around
v2 = 0 represent the absolute systematic error on v2 for d and φ, respectively. Dashed
lines are the fitting results by 4th polynominal functions. Bottom figures show the ratio
of data to fitting of v2.

Elliptic flow for φ mesons could provide the evidence of partonic collectivity in the
early pre-hadronic stage of heavy ion collisions. Because of their small hadronic cross
sections with non-strange hadrons and their relatively longer lived life time, φ meson is
expected to reach the detector with almost no interactions with the other hadrons in the
later hadronic stage. Thus, if quark number scaling holds to v2 for φ meson, it should
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reflect the elliptic flow of thermal s-quark which is developed in the partonic stage of
the system.

One could test the validity of this hypothesis that v2 of each constituent quark is
additive in the coalescence mechanism by measuring deuteron v2. At RHIC energies,
the dominant production mechanism of deuterons is considered as hadron coalescence
with p and n, and in fact the measurement of the yield for d and d̄ support the hadron
coalescence of p and n [55]. Thus, the measurement of v2 for deuterons could be a
good probe to test the additive scaling relations among the constituents, i.e. first with
respect to the v2 of its constituent of hadrons, and second with respect to the v2 of the
constituent quarks of those hadrons (nq = 2 × 3).

Fig. 5.19 show the comparison between quark number scaling of v2 for φ mesons
and deuterons and those for π, K and p as a function of pT and mT −m0 in minimum
bias events. Scaled v2 of deuterons are in good agreement with the protons as shown in
left panel. This result support that v2(d) is additive with respect to their constituent
hadrons. And scaled v2 for φ mesons are also consistent with the other hadrons within
the errors. Right panel shows universal scaling of v2 with KET and d and φ lie on the
same line together with the other hadrons, although the statistical and systematic errors
on φ mesons are large. This results are the strong indication that the elliptic flow is
established under the conditions where the partonic degrees of freedom is relevant.

5.3.2 Centrality Dependence of Quark Number Scaling of v2

The validity of quark number scaling has also studied in measured centrality classes. Fig.
5.20 show the quark number scaling of v2(KET) from central to peripheral events. And
Fig. 5.21 show the ratio of v2(Data) to v2(Fit) as a function ofKET/nq. One can see that
the quark number scaling of v2 holds for all centrality bin within the systematic errors,
except for below KET/nq ' 0.3 GeV, which is corresponds to KET ' 0.6 (0.9) GeV for
mesons (protons). Large deviations at low KET/nq from central to mid-central show
the similar mass dependence as we see in v2(pT) at low pT, i.e. v2(π) ≥ v2(K) > v2(p).
This deviations could be due to the radial flow in the hadronic stage after the chemical
freeze-out.

Fig. 5.22 show the quark number scaling of v2 for d and φ compared to π, K and
p in 3 different centrality bins. Although the statistical error bars on d and φ mesons
are large, the quark number scaling of v2 with KET also holds for d and φ in 0 − 60 %
centrality.
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Figure 5.20: v2/nq vs (KET)/nq for π, K and p in different centrality classes. Yellow
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symbols in each panel show the v2 in minimum bias event.
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CHAPTER 5. DISCUSSIONS 129

 (GeV)
q

)/n0 - m
T

(m
0 2 4 6

q
/n 2v

0

0.05

0.1

0 1 2 0 1 2 0 1 2

0 - 20 % centrality 20 - 40 % centrality 40 - 60 % centrality
-π + +π
-

 + K+K
pp + 

dd + 
φ
polynominal fit

 (GeV)
q

)/n0 - m
T

(m
0 2 4 6

(F
it)

2
(D

at
a)

/v
2v

0.5

1

1.5

0 1 2 0 1 2 0 1 2

Figure 5.22: v2/nq vs (mT −m0)/nq (top), and v2(Data)/v2(Fit) vs (mT −m0)/nq (bot-
tom) for d and φ in different centrality classes. Dashed lines represent the simultaneous
fitting results by the 4th polynominal functions.

5.4 Summary

From the discussions, we conclude that

• Eccentricity Scaling

– 〈εvar〉, which is taking into account the position fluctuations of participant
nucleons, is the relevant quantity to explain the relation between initial ge-
ometry overlap and v2.

– Eccentricity scaling works in both Au + Au and Cu + Cu collisions with
〈εvar〉. This result suggest that the ratio 〈v2〉/〈ε〉 is determined by the number
density even in the different systems.

• Blast-wave fit

– For the initial density profile, T from v2 fit is 100−200 MeV larger than that
from spectra fit, whereas 〈βT 〉 is almost unchanged between v2 and spectra
fit.

– Better fitting resutls, i.e. smaller χ2, are obtained from Ncoll density profile
than Npart density profile for both v2 and spectra.

– By considering in-plane 1D expansion, T from v2 fit strongly decreases with
the expansion while that from spectra fit remains constant. 〈βT 〉 does not
changed so much with the expansion for both spectra and v2.
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– If the kinetic freeze-out is defined at the 〈ε〉 estimated by azimuthal HBT, T
from v2 fit is as large as the chemical freeze-out temperature (∼ 150 MeV).

– The results from the simple expansion are consistent with the picture of the
collective in-plane expansion, where the initial eccentricity is decreasing with
time and the magnitude of v2 is developed through the expansion of the
system.

• Quark number scaling of v2

– Scaling of v2 with pT holds above pT = 1 GeV/c, but it breaks for pT < 1
GeV/c.

– Scaling of v2 with KET holds for all centrality bins within systematic errors,
except for KET/nq < 0.3 GeV.

– φ mesons are also follow the quark number scaling of v2. This result support
the picutre that the v2 for φ meson is established at the pre-hadronic stage
where the partonic degrees of freedom is relevant.



Chapter 6

Conclusions

We have measured the elliptic flow v2 for identified π+ +π−, K+ +K−, p+ p̄, d+ d̄ and φ
in a broad range of pT (up to 4 GeV/c) and in detailed centrality in Au + Au collisions
at

√
sNN = 200 GeV.

The main goal of ultra-relativistic heavy ion collisions is to find the quark-gluon
plasma (QGP) and to study its properties under extreme conditions. Elliptic flow is
one of the observables to probe the properties of QGP possibly created in the early
stage of heavy ion collisions. If the local thermal equilibrium is reached, elliptic flow
is determined through the initial geometry overlap (eccentricity) and the initial density
profile. Therefore, elliptic flow could shed light on the possible local thermal equilibrium
in the produced matter.

Using the data set taken in Run-4 period by the PHENIX experiment, the statistics
increase by a factor 20 compared to the previous Run-2 data set. This allow us to extend
the pT reach for π and p with the carefull estimate of contamination, and to study the
detailed centrality dependence of v2. With the excellent capability of particle identifica-
tion by Time-Of-Flight Counter (σt ∼ 120 ps) and Electro-Magnetic Calorimeter (σt ∼
400 ps), and also with the good resolution of event plane at Beam-Beam Counter, we
found the following important features;

• For pT < 2 GeV/c, v2 shows the mass ordering, i.e. (v2(π) > v2(K) > v2(p) ≥
v2(φ) > v2(d)). This characteristic pT dependence of v2 is consistent with hydro-
dynamical model calculations.

• For pT > 2 GeV/c, v2 for mesons saturate earlier than that for baryons, i.e.
(v2(π) ≈ v2(K) ≈ v2(φ) < v2(p) ≈ v2(d)).

• v2 increase from central to peripheral collisions. This behavior of v2 is qualitatively
consistent with the centrality dependence of the eccentricity.

The relation between 〈ε〉 (initial eccentricity) and final elliptic flow has been studied
by eccentricity scaling of v2. We have used 〈εvar〉 (participant eccentricity) which is
taking into account the position fluctuations for the participant nucleons, instead of the
standard eccentricity. The average v2, 〈v2〉, among Au + Au and Cu + Cu collisions
are scaled together with 〈εvar〉. This result suggest that the 〈v2〉/〈ε〉 is determined by
the number density of participant nucleons even in the different colliding system.

131
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We have developed an extended Blast-wave model in which the effect of initial density
profile has been investigated for both number of participant (Npart) and number of
collision (Ncoll) density distributions. Thermodynamic quantities, such as the freeze-
out temperature T and the radial flow velocity βT , have been extracted for both single
particle spectra and v2 independently. Extracted T ’s from v2 fit are 100−200 MeV larger
than that from spectra fit, and the results obtained from Ncoll density profile have always
smaller χ2/NDF for both spectra and v2. This result could be attributed that the v2 is
developed by the number of collisions among the constituents not the number density
of participant nucleons since the number of collisions are closely related to the degrees
of thermalization. By studying the 1D in-plane expansion of the system, i.e. changing
the eccentricity of the system, we have found that T from v2 fit significantly decreases
with the eccentricity, while those from spectra fit are unchanged. 〈βT 〉 for both spectra
and v2 remain constant with respect to the eccentricity. T from v2 fit is as large as the
chemical freeze-out temperature if we assume that the kinetic freeze-out takes place at
the 〈ε〉 obtained by the azimuthal HBT analysis. Larger T from v2 fit than that from
spectra fit at the kinetic freeze-out may suggest that the freeze-out of v2 could be earlier
than that of spectra. These results are consistent with the picture of the collective
in-plane expansion, where the initial eccentricity is quenched and the magnitude of v2

is developed through the expansion with time.
The quark number scaling of v2 has been examined for measured centrality range.

The scaling works well for all particle species at pT/nq > 1 GeV/c, however, it breaks
at lower pT. By assuming the v2 is determined by the transverse kinetic energy KET =
mT −m0, the quark number scaling of v2 with KET lie on the universal curve for π, K
and p in all centrality bins within the systematic errors, whereas the scaling of v2 breaks
for KET/nq < 0.3 GeV. Since the pressure gradient is directly linked to the transverse
kinetic energy, this results could suggest that the collective pressure gradient is the
driving force of elliptic flow. We have also observed that the quark number scaling of v2

with KET holds for φ and d in different centrality selections. The cross section (mean
free parth) of φ meson with the system is small (large) compared to the non-strange
hadrons, so that φ mesons do not suffer from the hadronic interactions. Therefore, the
observation of the quark number scaling of v2 for φ mesons could indicate the partonic
collectivity in the pre-hadronic phase of heavy ion collisions.



Appendix A

Glauber Model

A.1 Parameterization

The Glauber model, which is a semi-classical model treating the nucleus-nucleus col-
lisions as the superposition of the nucleon-nucleon collisions, has been successufully
applied in the description of high-energy nuclear reactions. Nucleons are assumed to
travel in straight lines, and are not deflected after the collisions, which holds as a good
approximation at very high energies. Also, the nucleon-nucleon inelastic cross-section
σinNN , is assumed to be the same as that in the vacuum. In other words, secondary
particle production and possible excitation of nucleons are not considered in this model.

The density distribution of the two nuclei with mass number A (here we consider
Au nucleus A = 197), is described by a Woods-Saxon parameterization

ρAu(r) =
ρAu0

1 + e(r−RAu)/aAu (A.1)

where RAu = 6.38 fm is the radius of Au nucleus and aAu = 0.54 fm is the sur-
face diffuseness parameter. The normalization factor ρAu0 = 0.17 fm−3 is set to give
∫

d3rρAu(r) = A = 197.
The relavant quantity for the following considerations is the nuclear thickness func-

tion, which integrates the nuclear density function over the longitudinal coordinate z;

TA(x, y) =

∫ ∞

−∞

dzρAu(x, y, z) (A.2)

The opacity of the nucleus is obtained simply by multiplying the thickness function with
the total inelastic cross section σ0 of a nucleon-nucleon collsions. We use σ0 = 42 mb at√
sNN = 200 GeV [60].
Number of participant nucleons (Npart), which is defined by the number of nucleons

participate in inelastic collisions at least once, for two colliding nucei with mass number

133
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A and B is given by

npart(x, y; b) = TA(x+ b/2, y)

(

1 −
(

1 − σ0TB(x− b/2, y)

B

)B
)

+ TB(x− b/2, y)

(

1 −
(

1 − σ0TA(x+ b/2, y)

A

)A
)

(A.3)

Npart(b) =

∫

dxdy npart(x, y; b) (A.4)

where A and B is the mass number, b is the impact parameter. The thickness function of
each nucleus is simply shifted by ±b/2 to the left or to the right along the x-axis to meet
the thickness function of the other nucleus shifted in the other direction. Integrating
the Eq. (A.3) over the transverse plane yields the total number of participant nucleons
as a function of the impact parameter as shown in Eq. (A.4).

Number of nucleon-nucleon collisions (Ncoll) in non-central A + B collisions is ex-
pressed by the product of the thickness function of one nucleus with the encountered
opacity ot the other nucleus

ncoll(x, y; b) = σ0TA(x + b/2, y)TB(x− b/2, y) (A.5)

Ncoll(b) =

∫

dxdy ncoll(x, y; b) (A.6)
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Figure A.1: Contours of constant densities of Npart in Au + Au collisions with b = 7.4
fm at

√
sNN = 200 GeV. The contours are given by 5 % step of the maximum value of

the density. The dashed line indicate the radius of the colliding nuclei.
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Fig. A.1 show the contours of overlap density distribution weighted by number
of nucleon-nucleon collisions at b = 7.4 fm obtained from Monte Carlo simulation by
Glauber model.

Npart and Ncoll value from Glauber Monte Calro simulation are plotted as a function
of centrality in Fig. A.2.
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Figure A.2: Number of participant nucleons (Npart) and number of nucleon-nucleon
collisions (Ncoll) as a function of centrality from Glauber Monte Calro simulation.

A.2 Participant Eccentricity (εvar)

Initial spatial anisotropy (eccentricity) for a given impact parameter is also calculated.
In the Glauber Monte Carlo simulations, the standard eccentricity is calculated in a
reference frame that is defined by the center of the two colliding nuclei, and is given by

εpartstd ≡ {npart × (y2 − x2)}
{npart × (y2 + x2)} =

∑

i n
i
part × (y2

i − x2
i )

∑

i n
i
part × (y2

i + x2
i )

(A.7)

εcollstd ≡ {ncoll × (y2 − x2)}
{ncoll × (y2 + x2)} =

∑

i n
i
coll × (y2

i − x2
i )

∑

i n
i
coll × (y2

i + x2
i )

(A.8)

where (x, y) is the position of a participant nucleon in the coordinate system (x and
y axes are defined as shown in Fig. A.1), and superscript of part and coll represent
that average is taken by weighting with npart and ncoll density, respectively. Brackets
{...} denotes an sample average, it means an average over all participant nucleons in
one collision event.
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Because of the event-by-event fluctuations in the participant nucleon positions [61],
the eccentricity in a given event is shifted and tilted with respect to the (x, y) frame.
The center-of-gravity of the participant nucleons is given by

{x} ≡ xc =
1

Npart

∑

i

xi (A.9)

{y} ≡ yc =
1

Npart

∑

i

yi (A.10)

We denote the position of participant i in the shifted reference frame S, in which the
center-of-gravity is at the origin, as (xsi , y

s
i ) = (xi− xc, yi− yc). We can now determine

as reference frame Sr which is rotated relative to S by an angle Ψ and in which the
eccentricity is maximal. The coordinate in the rotated system is given by

(

xri
yri

)

=

(

cos Ψ − sin Ψ
sin Ψ cos Ψ

)(

xsi
ysi

)

(A.11)

The eccentricity in the rotated frame (participant eccentricity) is given by

εpartvar ≡ {npart × (y2
r − x2

r)}
{npart × (y2

r + x2
r)}

(A.12)

εcollvar ≡ {ncoll × (y2
r − x2

r)}
{ncoll × (y2

r + x2
r)}

(A.13)

with

x2
r = (xs cos Ψ − ys sin Ψ)2

= x2
s cos2 Ψ − 2xsys cos Ψ sinΨ + y2

s sin2 Ψ (A.14)

y2
r = (xs sin Ψ + ys cos Ψ)2

= x2
s sin2 Ψ + 2xsys cos Ψ sin Ψ + y2

s cos2 Ψ (A.15)

Participant eccentricity for a given event can be rewritten by using Eq. (A.14), (A.15),

εvar =
{(y2

s − x2
s) cos2 Ψ + (x2

s − y2
s) sin2 Ψ + 4xsys cos Ψ sin Ψ}

{x2
s + y2

s}

=
{y2

s − x2
s} cos (2Ψ) + 2{xsys} sin (2Ψ)

{x2
s + y2

s}

≡
(σ2

y − σ2
x) cos (2Ψ) + 2σxy sin (2Ψ)

σ2
y + σ2

x

(A.16)

where σx, σy and σxy are defined as follows

σ2
x ≡ {x2} − {x}2 (A.17)

σ2
y ≡ {y2} − {y}2 (A.18)

σxy ≡ {xy} − {x}{y} (A.19)
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{y2
s − x2

s}, {xsys} and {y2
s + x2

s} in Eq. (A.16) can be expressed by making use of Eq.
(A.17) - (A.19)

{y2
s − x2

s} = {(yi − {y})2 − (xi − {x})2}
= {y2

i − 2yi{y} + {y}2 − (x2
i − 2xi{x} + {x}2)}

= {y2} − {y}2 − ({x2} − {x}2) = σ2
y − σ2

x (A.20)

{xsys} = {(xi − {x})(yi − {y})}
= {xiyi − {x}yi − xi{y} + {x}{y}}
= {xy} − {x}{y} = σxy (A.21)

{y2
s + x2

s} = σ2
y + σ2

x (A.22)

The rotation angle Ψ which maximize the eccentricity is given by the following
condition

dεvar
dΨ

= 0 (A.23)

Ψ can be determined by

dεvar
dΨ

= −2(σ2
y − σ2

x) sin (2Ψ) + 4σxy cos (2Ψ) = 0

∴ tan (2Ψ) =
2σxy

σ2
y − σ2

x

cos (2Ψ) =
1

√

1 + tan2 (2Ψ)
=

σ2
y − σ2

x
√

(σ2
y − σ2

x)
2 + 4σ2

xy

(A.24)

sin (2Ψ) = 1 − cos2 (2Ψ) =
2σxy

√

(σ2
y − σ2

x)
2 + 4σ2

xy

(A.25)

Therefore

εvar =
1

σ2
y + σ2

x



(σ2
y − σ2

x)
σ2
y − σ2

x
√

(σ2
y − σ2

x)
2 + 4σ2

xy

+ 2σxy
2σxy

√

(σ2
y − σ2

x)
2 + 4σ2

xy





=

√

(σ2
y − σ2

x)
2 + 4σ2

xy

σ2
y + σ2

x

(A.26)

If the event-by-event fluctuations in the position of participant nucleons are small, par-
ticipant eccentricity become standard eccentricity. Since σx ∼

√

{x2}, σy ∼
√

{y2}
({x} ∼ 0, {y} ∼ 0) and σxy ∼ 0

εvar ≈
σ2
y − σ2

x

σ2
y + σ2

x

≈ {y2} − {x2}
{y2} + {x2} = εstd (A.27)
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Figure A.3: Standard and participant eccentricity as a function of Npart. Lines and
symbolds represent the results with Npart and Ncoll weighted eccentricity, respectively.
Yellow bands and solid lines around denote the absolute systematic error on 〈ε〉 for
standard and participant eccentricity.
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Figure A.4: Standard and participant eccentricity as a function of Npart. Different

definition of eccentricity (ε{2} ≡
√

〈ε2〉) is used.
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Fig. A.3 and A.4 show Npart dependence of the standard and participant eccentricity
calculated in Glauber MC model.

The participant eccentricity is defined by the principal axes (or event plane) which
is determined by the position of all participating nucleons. It always includes auto-
correlations between participants and the event plane, so that the 〈εvar〉 goes 1 in pe-
ripheral events due to such correlations. In order to take into account the effect of
auto-correlations, we subtract the auto-correlation from participant eccentricity event-
by-event basis. We define event plane eccentricity, 〈ε2〉, and calculate it by using
following redefined event plane angle Ψi for i-th event

xis = ris cos (2φis) (A.28)

yis = ris sin (2φis) (A.29)

φis = tan−1

(

yis
xis

)

(A.30)

tan (2Ψi) = −
∑

j(r
j
s)

2 sin (2φjs) − (ris)
2 sin (2φis)

∑

j(r
j
s)2 cos (2φjs) − (ris)

2 cos (2φis)
(A.31)
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Figure A.5: Comparison of eccentricity as a function of impact parameter in Au +
Au collisions. Left (right) figure shows the eccentricity calculated with Npart (Ncoll)
density profile.

Fig. A.5 and A.6 show the comparison of eccentricity in Au + Au and Cu + Cu col-
lisions (dashed lines). The event plane eccentricity takes almost intermidiate value
between standard and participant eccentricity. We also compare that the different aver-
aging, ε{2} ≡

√

〈ε2〉, to the standard calculation as shown in the data symbols in Fig.
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Figure A.6: Comparison of eccentricity as a function of impact parameter in Cu +
Cu collisions. Left (right) figure shows the eccentricity calculated with Npart (Ncoll)
density profile.

A.5 and A.6. In the ε{2}, the difference of ε between different definitions of eccentricity
is relatively smaller than the ε.

Fig. A.7 and A.8 show the ratio of εcoll to εpart as a function of impact parameter
in Au + Au and Cu + Cu collisions. εcoll is about 1.5 − 2 times larger in most central
collision and close to unity in most peripheral collisions than εpart.
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A.3 Results and Systematic Errors

Results of Glauber Monte Carlo simulation are summarized in Table A.1 and A.2. The
variables are calculated under the default condition (see below). Centrality classes are
defined as: (0) :0 − 5 %, (1) :5 − 10 %, (2) :10 − 15 %, (3) :15 − 20 %, (4) :20 − 30 %,
(5) :30 − 40 %, (6) :40 − 50 %, (7) :50 − 60 %, and (8) :60 − 92 %.

Systematic errors for calculated quantities are evaluated by varying the input pa-
rameters

1. σNN = 42 mb, RAu = 6.38 fm, a = 0.53 fm (RCu = 4.27 fm) : default

2. σNN = 37 mb, RAu = 6.38 fm, a = 0.53 fm

3. σNN = 47 mb, RAu = 6.38 fm, a = 0.53 fm

4. σNN = 42 mb, RAu = 6.08 fm, a = 0.53 fm (RCu = 4.07 fm)

5. σNN = 42 mb, RAu = 6.68 fm, a = 0.53 fm (RCu = 4.47 fm)

6. σNN = 42 mb, RAu = 6.38 fm, a = 0.43 fm

7. σNN = 42 mb, RAu = 6.38 fm, a = 0.63 fm

where the radius inside () represent the values in Cu + Cu. Relative systematic errors
on each quantity are summarized in Table A.3 and A.4.

Table A.1: Summary of results in Au + Au at
√
sNN = 200 GeV

Centrality (0) (1) (2) (3) (4) (5) (6) (7) (8)
Npart 351.3 298.2 252.9 212.5 163.2 112.2 73.3 44.9 15.1
Ncoll 1071.4 847.0 671.0 528.7 366.4 215.6 119.1 59.9 15.4

〈

εpartstd

〉

0.031 0.093 0.147 0.198 0.257 0.316 0.368 0.398 0.391
〈εpartvar 〉 0.084 0.132 0.183 0.233 0.297 0.370 0.442 0.511 0.664
〈

εpart2

〉

0.043 0.102 0.159 0.212 0.276 0.345 0.409 0.462 0.527
εpartstd {2} 0.072 0.123 0.174 0.224 0.285 0.351 0.414 0.463 0.556
εpartvar {2} 0.095 0.148 0.200 0.251 0.318 0.394 0.470 0.544 0.703

εpart2 {2} 0.095 0.140 0.187 0.238 0.304 0.378 0.450 0.517 0.651

〈

εcollstd

〉

0.052 0.132 0.195 0.250 0.312 0.368 0.410 0.426 0.410
〈

εcollvar

〉

0.119 0.172 0.228 0.280 0.345 0.412 0.475 0.536 0.675
〈

εcoll2

〉

0.091 0.149 0.207 0.262 0.325 0.386 0.436 0.478 0.537
εcollstd {2} 0.104 0.164 0.221 0.275 0.338 0.400 0.454 0.492 0.575
εcollvar{2} 0.134 0.190 0.246 0.299 0.365 0.436 0.503 0.569 0.712
εcoll2 {2} 0.127 0.180 0.236 0.287 0.352 0.418 0.481 0.539 0.663
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Table A.2: Summary of results in Cu + Cu at
√
sNN = 200 GeV

Centrality (0) (1) (2) (3) (4) (5) (6) (7) (8)
Npart 109.3 93.2 79.0 66.7 50.9 34.8 23.0 14.5 5.8
Ncoll 220.2 174.1 137.6 108.7 74.7 44.3 25.5 14.1 4.8

〈

εpartstd

〉

0.021 0.062 0.102 0.138 0.188 0.232 0.259 0.275 0.240
〈εpartvar 〉 0.151 0.191 0.236 0.280 0.348 0.434 0.523 0.611 0.737
〈

εpart2

〉

0.075 0.120 0.169 0.213 0.276 0.353 0.421 0.471 0.520
εpartstd {2} 0.121 0.156 0.195 0.236 0.294 0.361 0.422 0.484 0.560
εpartvar {2} 0.171 0.216 0.264 0.312 0.384 0.475 0.564 0.652 0.774
εpart2 {2} 0.167 0.203 0.243 0.287 0.356 0.439 0.519 0.593 0.711

〈

εcollstd

〉

0.033 0.087 0.130 0.169 0.215 0.254 0.276 0.293 0.255
〈

εcollvar

〉

0.189 0.223 0.265 0.306 0.371 0.456 0.542 0.623 0.735
〈

εcoll2

〉

0.132 0.161 0.200 0.237 0.294 0.368 0.439 0.487 0.517
εcollstd {2} 0.153 0.187 0.224 0.265 0.322 0.384 0.443 0.504 0.572
εcollvar{2} 0.213 0.251 0.295 0.340 0.409 0.497 0.582 0.662 0.773
εcoll2 {2} 0.198 0.233 0.272 0.315 0.379 0.459 0.538 0.608 0.715

Table A.3: Summary of relative systematic errors (%) in Au + Au at
√
sNN = 200 GeV

Centrality classes (0) (1) (2) (3) (4) (5) (6) (7) (8)
Npart 1.6 3.3 5.0 6.9 10.1 16.2 23.9 34.2 59.4
Ncoll 20.2 18.6 17.7 16.7 17.0 20.8 29.5 42.1 69.1

〈

εpartstd

〉

38.7 31.0 25.9 21.8 19.7 18.3 16.8 17.4 12.4
〈εpartvar 〉 6.4 12.6 14.3 13.9 13.7 12.8 11.8 11.6 9.1
〈

εpart2

〉

14.3 20.6 18.8 16.6 16.1 14.5 12.7 11.2 3.9

εpartstd {2} 9.3 17.4 18.2 16.3 15.1 14.1 13.3 12.3 7.2
εpartvar {2} 6.7 11.6 12.8 12.4 12.0 11.6 10.9 10.8 8.4
εpart2 {2} 12.7 12.3 14.2 13.8 12.7 12.2 11.1 10.5 8.1

〈

εcollstd

〉

23.5 20.9 17.4 17.4 16.4 16.0 16.5 18.1 12.7
〈

εcollvar

〉

5.3 10.1 12.2 13.1 13.2 12.4 12.1 12.0 7.9
〈

εcoll2

〉

9.4 13.0 15.0 15.2 15.1 14.3 13.8 13.2 3.5
εcollstd {2} 7.2 12.8 13.6 14.4 13.6 13.1 13.4 12.9 7.3
εcollvar{2} 5.3 9.2 11.0 12.0 11.8 11.3 11.1 11.0 7.4
εcoll2 {2} 5.9 10.8 11.8 13.1 12.6 12.1 11.7 11.2 7.2
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Table A.4: Summary of relative systematic errors (%) in Cu + Cu at
√
sNN = 200 GeV

Centrality classes (0) (1) (2) (3) (4) (5) (6) (7) (8)
Npart 3.3 3.9 5.2 7.7 11.2 18.2 25.6 35.3 58.3
Ncoll 21.4 19.2 18.2 16.7 17.4 21.0 29.1 40.2 62.7

〈

εpartstd

〉

53.0 46.1 46.9 39.1 31.0 30.7 28.8 25.8 20.4
〈εpartvar 〉 4.3 4.0 8.5 10.1 8.7 9.8 10.2 8.9 6.5
〈

εpart2

〉

11.2 7.1 14.9 16.5 11.8 11.3 9.2 6.3 7.0
εpartstd {2} 4.5 7.7 12.4 13.0 12.3 12.1 12.0 10.1 5.4
εpartvar {2} 4.2 3.8 8.0 9.3 8.0 9.0 9.4 8.1 5.8

εpart2 {2} 3.7 4.4 8.2 8.5 8.0 9.0 8.8 7.3 6.5

〈

εcollstd

〉

37.7 34.3 39.8 38.4 30.4 32.0 31.2 28.3 20.7
〈

εcollvar

〉

2.4 4.6 9.7 10.8 10.0 10.4 9.9 7.8 5.8
〈

εcoll2

〉

5.3 9.7 15.3 16.3 14.7 13.5 10.6 6.5 7.5
εcollstd {2} 2.6 9.3 14.2 15.4 13.5 13.4 13.2 10.4 5.1
εcollvar{2} 1.9 4.0 9.3 9.9 9.0 9.4 8.9 7.1 5.3
εcoll2 {2} 2.3 3.0 10.4 10.7 9.5 9.7 8.9 6.5 5.9
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Event Plane Resolution

In this chapter, we derive the formula of the event plane resolution under the assump-
tions introduced in the Section 3.2.4.

Starting from the assumptions in Section 3.2.4, the probability distribution can be
given by the gaussian as

dP

dvndθn
=

vn
2πσ2

n

exp

(

−|vn − v̄n|2
2σ2

n

)

=
vn

2πσ2
n

exp

(

−v
2
n + v̄2

n − 2vnv̄n cos (θn)

2σ2
n

)

=
χn√
2πσn

exp
(

−χ2
n − χ̄2

n + 2χnχ̄n cos (θn))
)

(B.1)

where θn = n∆Ψ = n(Ψn − Ψ), and χn = vn/(
√

2σn), χ̄n = v̄n/(
√

2σn). For isotropic
probability distribution (v̄n = 0), the variance σn is same for any n-th moment,

σ2 ≡ σ2
n =

〈

(vn − v̄n)
2
〉

=
〈

v2
n

〉

(∵ v̄n = 0)

=

〈

x2
n

x2
0

〉

=
M 〈w2〉 〈cos2 (nφ)〉

M2 〈w〉2

=
〈w2〉

2M 〈w〉2
(B.2)

where 〈cos (nφ)〉 = 1/2 for isotropic probability distribution.
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Eq. (B.1) can be integrated over dimensionless parameter χn.

dP

dθn
=

1

π

∫ ∞

0

χndχn exp (−χ2
n − χ̄2

n + 2χnχ̄n cos (θn))

=
e−χ̄

2
n

π

∫ ∞

0

χndχn exp (−χ2
n + 2χnχ̄n cos (θn))

=
e−χ̄

2
n

π

∫ ∞

0

χndχn exp (−(χn − an)
2) × exp (a2

n) (an ≡ χ̄n cos (θn))

=
e−χ̄

2
nea

2
n

π

∫ ∞

−an

(yn + an)dyn exp (−y2
n) (yn = χn − an)

=
e−χ̄

2
nea

2
n

π

[
∫ ∞

−an

yndyn exp (−y2
n) + an

∫ ∞

−an

dyn exp (−y2
n)

]

(B.3)

1st term of Eq. (B.3) can be calculated by using integration by parts:

∫ ∞

−an

yndyn exp (−y2
n) =

[

−1

2
e−y

2
n

]∞

−an

=
1

2
e−a

2
n (B.4)

2nd term of Eq. (B.3) can be expressed by using standard error function erf(x):

∫ ∞

−an

dyn exp (−y2
n) =

∫ 0

−an

dyn exp (−y2
n) +

∫ ∞

0

dyn exp (−y2
n)

=

√
π

2
erf(an) +

√
π

2
(B.5)

Therefore, Eq. (B.3) reduces to:

dP

dθn
=

e−χ̄
2
nea

2
n

π

[

1

2
e−a

2
n +

an
√
π

2
(1 + erf(an))

]

=
e−χ̄

2
n

2π

[

1 +
√
πχ̄n cos θne

χ̄2
n cos2 (θn) [1 + erf(χ̄n cos (θn))]

]

(B.6)

Fig. B.1 shows the distribution of θn for different value of χ (χ = 0.5, 1, 1.5, 2). As
one can see in Eq. (B.6), the distribution of θn is symmetric under the transformation
θn → −θn. If χn � 1, statistical fluctuations are large compared to the dynamical
anisotropy, Eq. (B.6) becomes:

dP

dθn
≈ 1

2π
[1 +

√
πχ̄n cos (θn)] (B.7)

On the other hand, if χn � 1, one can expand the cosine and sine as cos θn ≈ 1 and
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Figure B.1: The distribution of θn for χ = 0.5, 1, 1.5 and 2.

sin θn ≈ θn. Eq. (B.6) becomes:

dP

dθn
=

e−χ̄
2
n

2π
+

1

2
√
π
χ̄n cos θne

−χ̄2
n sin2 (θn) [1 + erf(χ̄n cos (θn))]

≈ e−χ̄
2
n

2π
+

1

2
√
π
χ̄ne

−χ̄2
nθ

2
n [1 + erf(χ̄n)]

≈ χ̄n√
π
e−χ̄

2
nθ

2
n (∵ e−χ̄

2
n → 0, erf(χ̄n) → 1) (B.8)

We can measure n-th Fourier coefficient vn by using the event planes determined
from any harmonic k, with n ≥ k. Thus, it is convenient to introduce the event plane
resolution by 〈cos kθn〉 [13]:

〈cos (kθn)〉 =

∫ ∞

0

dχn

∫ 2π

0

dθn cos (kθn)
dP

dχndθn

=
e−χ̄

2
n

π

∫ ∞

0

dχn χne
−χ2

n

∫ 2π

0

dθn cos (kθn)e
2χnχ̄n cos (θn)

= 2e−χ̄
2
n

∫ ∞

0

dχn χne
−χ2

nIk(2χnχ̄n)

= 2e−χ̄
2
n

([

−1

2
e−χ

2
nIk(2χnχ̄n)

]∞

0

+
1

2

∫ ∞

0

dχn e
−χ2

n
dIk
dχn

(2χnχ̄n)

)

= e−χ̄
2
n

∫ ∞

0

dχn e
−χ2

n
dIk
dχn

(2χnχ̄n)
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where 1st term becomes 0, and dIk/dχn is given by the following recurrence relation:

dIk
dχn

(2χnχ̄n) =
1

2π

d

dχn

(
∫ 2π

0

dθn cos (kθn)e
2χnχ̄n cos (θn)

)

=
χ̄n
π

∫ 2π

0

dθn cos (kθn) cos (θn)e
2χnχ̄n cos (θn)

=
χ̄n
2π

∫ 2π

0

dθn [cos ((k + 1)θn) + cos ((k − 1)θn)] × e2χnχ̄n cos (θn)

= χ̄n [Ik+1(2χnχ̄n) + Ik−1(2χnχ̄n)]

Therefore

〈cos (kθn)〉 = χ̄ne
−χ̄2

n

∫ ∞

0

dχn e
−χ2

n [Ik+1(2χnχ̄n) + Ik−1(2χnχ̄n)]

=

√
π

2
χ̄ne

−χ̄2
n/2

[

I(k−1)/2

(

χ̄2
n

2

)

+ I(k+1)/2

(

χ̄2
n

2

)]

(
∫ ∞

0

e−χ̄
2
nIk(2χnχ̄n)dχn =

√
π

2
eχ̄

2
n/2Ik/2

(

χ̄2
n

2

))

(B.9)

If χ� 1, Eq. (B.9) reduces to

〈cos (kθn)〉 ≈
√
π

2
χ̄n

[

1

Γ
(

k+1
2

)

(

χ̄2
n

4

)(k−1)/2

+
1

Γ
(

k+3
2

)

(

χ̄2
n

4

)(k+1)/2
]

=

√
π

2
χ̄n

1

Γ
(

k+1
2

)

(

χ̄2
n

4

)(k−1)/2
[

1 +
2

k + 1

(

χ̄2
n

4

)2
]

≈
√
π

2k
χ̄kn

Γ
(

k+1
2

) (B.10)

If χ� 1, Eq. (B.9) reduces to

〈cos (kθn)〉 =

∫ π

−π

dθn cos kθn
dP

dθn

≈ χ̄n√
π

∫ π

−π

dθn cos kθne
−χ̄2

nθ
2
n

=
1√
π

∫ χ̄nπ

−χ̄nπ

dan cos

(

kan
χ̄n

)

e−a
2
n (an = χ̄nθn)

=
1√
π

∫ ∞

−∞

dan cos

(

kan
χ̄n

)

e−a
2
n (χ̄n � 1)

= exp

(

− k2

4χ̄2
n

)

(B.11)

in the last line we use the following integral formula
∫ ∞

−∞

e−ax
2

cos (kx)dx =

√

π

a
e−k

2/(4a) (B.12)



Appendix C

Blast-wave Parameterization

C.1 Transverse Expansion

The invariant momentum spectrum of hadrons emitted at freeze-out is given by a local
thermal distribution f(x, p), with the freeze-out temperature T , boosted by a local
velocity field uµ, at the freeze-out hyper-surface Σ [59].

E
dN

d3p
=

dN

mTdmTdydφp
=

∫

Σ

f(x, p)Ω(r, φ)pµdΣµ (C.1)

pµ = (E, px, py, pz)

= (mT cosh y, pT cos φp, pT sin φp, mT sinh y) (C.2)

where pµ is a four-momentum of the emitted hadrons, dΣµ is a normal vector to the
hyper-surface Σ, and where transverse momentum (pT ), transverse mass (mT ), rapidity
(y), azimiuthal angle (φp) refer to the momentum of the emitted hadrons. and Ω(r, φ)
is density distributions from Glauber model. The local thermal distribution f(x, p) is
given by

f(x, p) =
1

(2π)3

1

e(pµuµ(x)−µ(x))/T (x) ± 1
(C.3)

where µ(x) is a local chemical potential, T (x) is a local temperature, uµ(x) is a local
flow velocity with uµu

µ = 1, and upper (lower) sign is for fermions (bosons). We can
omit ±1 in the denominator in Eq. (C.3) if we assume a Boltzmann distribution for all
particles. Freeze-out hyper surface is parameterized as follows:

Σµ = (t, x, y, z) = (τ cosh η, r cosφ, r sinφ, τ sinh η) (C.4)

η =
1

2
log

(

t+ z

t− z

)

(C.5)

where r and φ are the usual cilindrical coordinates, and η is space-time rapidity. A
normal vector dΣµ in Eq. (C.1) to the surface is then given by

dΣµ = εµνλρ
∂Σν

∂r

∂Σλ

∂φ

∂Σρ

∂η
drdφdη = dσµdrdφdη (C.6)
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We explicitly calculate the components of dσµ:

dσ0 = ε0νλ3
∂Σν

∂r

∂Σλ

∂φ
τ cosh η

= (cosφ r cosφ− sin φ(−r sinφ))τ cosh η = rτ cosh η (C.7)

dσ1 = ε1νλρ
∂Σν

∂r

∂Σλ

∂φ

∂Σρ

∂η
= 0 (C.8)

dσ2 = ε2νλρ
∂Σν

∂r

∂Σλ

∂φ

∂Σρ

∂η
= 0 (C.9)

dσ3 = ε3νλρ
∂Σν

∂r

∂Σλ

∂φ

∂Σρ

∂η

= (− cosφ r cosφ+ sinφ(−r sinφ))τ sinh η = −rτ sinh η (C.10)

From Eq. (C.6) - (C.10) dΣµ becomes

dΣµ = (cosh η, 0, 0,− sinh η) rτdrdφdη (C.11)

Thus, we obtain

pµdΣµ = (mT cosh y cosh η −mT sinh y sinh η) rτdrdφdη

= mT cosh (y − η) rτdrdφdη (C.12)

Local velocity field uµ can be parameterized as

uµ = (cosh ηL cosh ρ, sinh ρ cosφb, sinh ρ sin φb, sinh ηL cosh ρ) (C.13)

in cylindrical coordinates, where φb is azimuthal angle of radial boost velocity, ηL is
longitudinal flow rapidity, and ρ = ρ(r, φs) is transvers flow rapidity defined as

ρ(r, φs) = tanh (βT · g(r, φs)) (C.14)

where βT is the surface radial flow velocity, and g(r, φs) is the density gradient distribu-
tions given by Glauber model. In Bjorken scenario [9] ηL is identical to the space-time
rapidity η. From Eq. (C.2) and (C.13)

pµu
µ = mT cosh y cosh η cosh ρ− pT cosφp sinh ρ cos φb

− pT sinφp sinh ρ sinφb −mT sinh y sinh η cosh ρ

= mT cosh ρ cosh (y − η) − pT sinh ρ cos (φb − φp) (C.15)

We can write the invariant momentum distribution by assuming a Boltzman distribution
for all particles and Bjorken scenario as

E
dN

d3p
=

1

(2π)3

∫

Σ

e−(pµuµ−µ)/T Ω(r, φs) p
µdΣµ

=
mT τe

µ/T

(2π)3

∫ ∞

0

rdr

∫ 2π

0

dφs

∫ ∞

−∞

dη cosh (y − η)

× e−β(r,φs) cosh (y−η) eα(r,φs) cos (φb−φp) Ω(r, φs)

(C.16)
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where α(r, φs) and β(r, φs) are defined as

α(r, φs) =
pT
T

sinh ρ(r, φs) (C.17)

β(r, φs) =
mT

T
cosh ρ(r, φs) (C.18)

C.2 Transverse Momentum Spectra and v2

Azimuthally integrated transverse momentum spectra is obtained by integrating over
φp. We can integrate over η with the help of modified Bessel functions of the second
kind by assuming y = 0 because we only interested in mid-rapidity particles in the
center-of-mass frame.

dN

pTdpT
=

∫ 2π

0

dφp E
dN

d3p

=
mT τe

µ/T

(2π)3

∫ ∞

0

rdr

∫ 2π

0

dφp

∫ 2π

0

dφs

×
(
∫ ∞

−∞

dη cosh (η) e−β(r,φs) cosh (η)

)

eα(r,φs) cos (φb−φp) Ω(r, φs)

=
2mT τe

µ/T

(2π)3

∫ ∞

0

rdr

∫ 2π

0

dφp

∫ 2π

0

dφs K1(β(r, φs))

× eα(r,φs) cos (φb−φp) Ω(r, φs) (C.19)

Kn(z) =
1

2

∫ ∞

−∞

dη cos (nη)e−z cosh η (C.20)

We can exchange the order of integration in φp and φs, and perform a transformation
ψ ≡ φs − φp. Then the integral in ψ can be performed analytically and lead to the
modified Bessel functions of 1st kind

dN

pTdpT
=

2mT τe
µ/T

(2π)3

∫ ∞

0

rdr

∫ 2π

0

dφs

(
∫ 2π

0

dψ eα(r,φs) cos (ψ)

)

× K1(β(r, φs)) Ω(r, φs)

=
2mT τe

µ/T

(2π)2

∫ ∞

0

rdr

∫ 2π

0

dφs

× I0(α(r, φs)) K1(β(r, φs)) Ω(r, φs) (C.21)

where I0 is the modified Bessel functions of the first kind

In(z) =
1

2π

∫ 2π

0

dφ cos (nφ)ez cosφ (C.22)

Elliptic flow can be calculated as

v2(pT) =

∫ 2π

0
dφp cos (2φp) dN/(pTdpTdφp)
∫ 2π

0
dφp dN/(pTdpTdφp)

(C.23)
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The denominator is already calculated as shown in Eq. (C.21). The numerator is
obtained in similar way to integrate transverse momentum spectra. Thus,

∫ 2π

0

dφp cos (2φp) dN/(pTdpTdφp)

=
2mT τe

µ/T

(2π)3

∫ ∞

0

rdr

∫ 2π

0

dφs K1(β(r, φs)) Ω(r, φs)

×
∫ 2π

0

dφp cos (2φp) e
α(r,φs) cos (φs−φp) (C.24)

Again, we write ψ = φs − φp and decompose

cos (2φp) = cos (2φs − 2ψ)

= cos (2φs) cos (2ψ) + sin (2φs) sin (2ψ) (C.25)

The ψ integration with the term proportional to sin (2ψ) vanishes because of the sym-
metry in azimuthal direction of ψ. Thus, the numerator becomes

∫ 2π

0

dφp cos (2φp) dN/(pTdpTdφp)

=
2mT τe

µ/T

(2π)3

∫ ∞

0

rdr

∫ 2π

0

dφs K1(β(r, φs)) Ω(r, φs)

× cos (2φs)

(∫ 2π

0

dψ cos (2ψ) eα(r,φs) cos (ψ)

)

=
2mT τe

µ/T

(2π)3

∫ ∞

0

rdr

∫ 2π

0

dφs K1(β(r, φs)) Ω(r, φs)

× cos (2φs) I2(α(r, φs)) (C.26)

The integral of ψ leads to a modified Bessel functions of 1st kind I2 (see, Eq. (C.22)).
We finally obtain the expression of v2(pT) as

v2(pT) =

∫∞

0
rdr

∫ 2π

0
dφs K1(β(r, φs)) Ω(r, φs) cos (2φs) I2(α(r, φs))

∫∞

0
rdr

∫ 2π

0
dφs K1(β(r, φs)) Ω(r, φs)I0(α(r, φs))

(C.27)
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