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Latest Results on the Hot-Dense Partonic Matter at RHIC
Mike Leitch – LANL - leitch@lanl.gov
QNP06 - Madrid – 5-10 June 2006

Deconfined Matter
RHIC facility & detectors
Thermalization
Jets & Correlations
Direct Photons
Heavy Quarks
Cold nuclear matter effects
Quarkonia
Future
Summary

For my talk - thanks to many colleagues, especially:
Akiba, Constatin, d’Enterria, Granier de Cassagnac, Jacak, Nagle, Seto, Zajc …

Some other RHIC talks at this conference:
Frantz, Kozlov (Tue); Mitchell, Fleuret (Wed) …

also d’Enteria (Mon), L. McLerran on CGC (Sat) – small-x/CGC

mailto:leitch@lanl.gov
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Deconfined Matter
The "Little Bang" in the lab.

Ti
m

e

Penetrating
probes

t~0.1 fm/c 

t ~ 10 fm/c 

t ~ 107 fm/c 

Penetrating probes

Final state probes

High-energy nucleus-nucleus collisions: fixed-target reactions 
(√s~17 GeV, SPS) or colliders (√s~200 GeV, RHIC, √s~5.5 TeV, LHC)

QGP expected to be formed in a tiny region (~10-14 m) and to last very 
short times (~10-23 s).
Collision dynamics: Diff. observables sensitive to diff. react. stages
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Deconfined Matter
Energy density (Au+Au @ 200 GeV, y=0)

εBjorken ~5.0 GeV/fm3

πR2

τ0 ~ 1 fm/c

Au+Au @ 200 GeV

Bjorken estimate: 

(longitudinally expanding plasma)

dET/dη at mid-rapidity measured by calorimetry (e.g. using PHENIX EMCal as 

hadronic calorimeter:  ET
had = (1.17±0.05) ET

EMCal)

<dET/dη> ~ 600 GeV (top 5% central)
(~70% larger than at SPS)   

> QCD critical density (~1 GeV/fm3) 
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RHIC & its Detectors

STAR

PHOBOS

PHENIX

3.83 km circumference
2 independent rings:

– 120 bunches/ring
– 106 ns crossing time

A+A collisions @ √sNN = 200 GeV 
Luminosity: 2·1026 cm-2 s-1 (~1.4 kHz)
p+p collisions @ √smax= 500 GeV
p+A collisions @ √smax= 200 GeV

4 experiments: 
BRAHMS, PHENIX, PHOBOS, STAR

Runs 1 - 6 (2000 – 2006):
Au+Au @ 200, 130, 62, 22 GeV
Cu+Cu @ 200, 62 GeV
d+Au @ 200 GeV (no p+A so far)
p+p @ 200, 62, 22 GeV, … (polarized)

BRAHMS
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Si-strip tracking, PMT-based TOF

Two magnetic 
dipole 
spectrometers 
in “classic”
fixed-target 
configuration

TPC’s, silicon, calorimeters
Large acceptance

Hadrons, electrons, muons, photons
Rare & penetrating probes

2 SMALL
2 SMALL

2 LARGE
2 LARGE

RHIC & its Detectors
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RHIC & its Detectors
Au+Au collisions @ 200 GeV@ 200 GeV

~ 700 charged particles per unit rapidity at midrapidity (top 10% central)
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Thermalization
Flow: A collective effect 

Initial spatial anisotropy converted into momentum 
anisotropy

Efficiency of conversion depends on the properties of 
the medium

Elliptic flow = v2 = 2nd fourier coefficient of momentum 
anisotropy

x

y
z

dn/dφ ~ 1 + 2 v2(pT) cos (2 φ) + ...

φ

Gases of 
strongly 
interacting 
atoms (M. 
Gehm, et al
Science 298
2179 (2002))
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√s-dependence of v2:  ~50% increase from SPS
Apparent saturation within 62-200 GeV

PRL 94, 232302 (2005)

hydro calculations with zero viscosity & 
early thermalization agree with RHIC 
data
τtherm ~ 0.6 -1.0 fm/c
ε~15-25 GeV/fm3

(ref: cold matter 0.16 GeV/fm3)

Huovinen et al.
PLB 503 (2001)

PHENIX

Thermalization
Early and with zero viscosity - A perfect fluid

Large v2  signal at RHIC:
Exhausts hydro limit for pT<1.5 GeV/c

If not thermalized early, spatial 
anisotropy would be lost

Caution – hydro models 
still developing

Hydro lim
it
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PHENIX Preliminary

KET scaling alone

nquark scaling alone KET + nquark scaling

Thermalization - KET & nquark scaling of v2

KET = mT – mass (hadron)

from SQM talk
D. Morrison

3 quarks

2 quarks

Effective 
degree of 
freedom 
looks like 
#quarks
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Thermalization
Flow of Φ also exhibits quark number scaling

The φ has:
• mass ~ proton
• # quarks of meson

from Sarah Blythe (STAR) - SQM

V2 behaves like recombination

ALL hadrons seem to obey 
quark number scaling!
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Thermalization – hadronic abundances

Global fit to relative 
particle abundances 
with 4 parameters:
• chemical freezeout
temperature (Tchem ~ 
Tcrit
• baryon chemical 
potential for light & 
strange quarks (μq, μs)
• strangeness 
saturation factor, γS
(γS =1 is strangeness 
fully equilibriated)

Ratios of hadron yields consistent with system at chemical equilibrium

Kaneta, Xu nucl-th/0405068
Braun-Munzinger, Redlich, Stachel
nucl-th/0304013
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neutral
pions

• d+Au @ RHIC shows “Cronin”
pT broadening as seen in lower 
√s p+A
• Suppression in central Au+Au 
due to final-state effects ->  
15x normal nuclear density

Pedestal&flow subtracted

• back-to-back di-hadron 
correlations are very similar in 
p+p and d+Au
• but strongly suppressed in 
central Au+Au collisions at 200 
GeV

Jets - Quenching & Correlations

PRL
Aug ‘03
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Jets - AuAu vs. dAu (PHENIX)

Au + Au Experiment d + Au Control Experiment

Preliminary DataFinal Data

PPG028
Phys. Rev. Lett. 91, 072303 (2003).
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Trigger on one leading hadron, and look for 
associated particles, “near” and “away”

Is jet production modified in medium?
“away” side jet broadened and split in 

central and mid-central AuAu
(effect vanishes for higher pT)

AuAu  0-10% centrality
AuAu 30-40% centrality
AuAu 60-92% centrality

p-p
d-Au

Δφ [rad]

PHENIX Preliminary

D D

Dijet event in a hot QCD medium

pTrigger = 2-3 GeV
pAssociated = 1-2 GeV

Interaction of Hadronic Dijets with the QGP
Splitting of away-side jets
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8 < pT(trig) < 15 GeV/c
pT(assoc) > 2 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 2 GeV/c

Emergence of Dijets w/ increasing pT(assoc)

Δφ correlations (not background subtracted)

Narrow peak emerges cleanly above vanishing background

8 < pT(trig) < 15 GeV/c
pT(assoc) > 3 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 3 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 4 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 4 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 5 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 5 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 6 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 6 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 7 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 7 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 8 GeV/c

8 < pT(trig) < 15 GeV/c
pT(assoc) > 8 GeV/c
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Direct Photons vs hadrons
This one figure encodes 
rigorous control of systematics

in four different measurements
over many orders of magnitude

central
Ncoll = 975 ± 94

π0

pp

AuAu

direct γ

pp

AuAu
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Direct Photons
Comparison with theory

dNgluon/dy ~ 1000 ± 200 & ε ~ 15 GeV/fm3

– & consistent with dNch/dη

Vitev & Gyulassy, PRL 89 (2002) 252301
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Heavy Quark Energy Loss
Heavy-quark energy loss at central rapidity via 
decay to single leptons (electrons or muons)

y=0

cc−
0D

+K
−l

lν
+l
lν

−K
0D

c
c

The data suggest large c-quark-medium cross 
section; evidence for strongly coupled QGP?

Theory curves at right:
(1-3) from N. Armesto, et al., PRD 71, 054027
(4) from M. Djordjevic, M. Gyullasy, S.Wicks, PRL 94, 112301

Meanwhile -
total cross-section
consistent with
Ncoll -scaled p+p
charm production

Forward 
(small-x)
& backward 
muons also

dAu

(dAu)

AuAu
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Drop of the flow strength at high pT. 
Is this due to b-quark contribution?

M. Djordjevic, et. al. nucl-th/0507019

any beauty?
Beauty should become 
important for larger pT where 
it would have a smaller energy 
loss and less flow

Heavy Quark Flow – but what about Beauty?

Hendrik, Greco, Rapp
nucl-th/0508055 c  only

c & b

no flow
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Cold Nuclear Matter Effects
Gluon Shadowing and Saturation

Q = 2 GeV5 GeV

10 GeV

Leading twist gluon shadowing:
• e.g. “FGS”, Eur. Phys. J A5, 293 (1999)
Phenomenological fit to DIS & Drell-Yan 
data
• e.g. “EKS”, Nucl. Phys. A696, 729 (2001).
Coherence approach, and many others
Amount of gluon shadowing differs by up 
to a factor of three between diff models!

Saturation or Color Glass Condensate (CGC)
• At low-x there are so many gluons that  
2→ 1 diagrams become important and 
deplete low-x region
• Nuclear amplification: xAG(xA) = 
A1/3xpG(xp),  i.e. gluon density is ~6x higher 
in Gold than the nucleon

high xlow x

(see talk by Larry McLerran)
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Cold Nuclear Matter Effects
The J/ψ - a Puzzle

J/ψ suppression is a puzzle with possible contributions from shadowing & from:

Energy loss of incident gluon 
shifts effective xF and 
produces nuclear suppression 
which increases with xF

D

Dcc moversco-

Absorption (or dissociation) of       into 
two D mesons by nucleus or co-movers 
(the latter most important in AA 
collisions where co-movers more copious)

cc

Intrinsic charm components of incident 
proton produce J/ψ at large xF. A2/3

dependence from surface stripping of 
proton’s light quarks (Brodsky)

ψ/Jccproton

800 GeV p-A (FNAL)
PRL 84, 3256 (2000); PRL 72, 2542 (1994)

Hadronized
J/ψ?

cc

open charm: no A-dep
at mid-rapidity

ασσ ANA=

Absorption

shadowing,
dE/dx, 
and/or 
intrinsic 
charm
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High x2
~ 0.09

Low x2
~ 0.003

Cold Nuclear Matter Effects
Transverse Momentum  Broadening for J/ψ’s & ϒ’s

Upsilons

Drell-Yan

J/Ψ & Ψ’

PRL 96, 012304 (2006)

ασσ ANA =

cc
ψ/J

gluon

Initial-state gluon multiple scattering 
causes pT broadening (or Cronin 
effect)

PHENIX 200 GeV 
results show pT
broadening 
comparable to that 
at lower energy 
(√s=39 GeV in 
E866/NuSea)
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Debye screening predicted  to destroy J/ψ’s in a 
QGP with different states “melting” at different 
temperatures due to different binding energies.

Color Screening

cc

Quarkonia - AuAu J/ψ’s - Quark Gluon Plasma (QGP) signature?

NA50 
anomalous 
suppression

Survival probability 
corrected for normal 
absorption

on the other hand, recent 
lattice calculations suggest 
J/ψ not screened after all.
Suppression only via feed-down 
from screened χC & ψ’

but recent regeneration
models might give 
enhancement that 
compensates for 
screening?

Karsch, Kharzeev, Satz

energy density

screening
regeneration

sum
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0 mb

3 mb

Low x2 ~ 0.003
(shadowing region)

0 mb

3 mb

R. Vogt CNM calcs.

• AA suppression is somewhat stronger 
than CNM calculations predict
• but really need more precise dAu
constraint!

• CNM calculations with shadowing & 
absorption
• present dAu data probably only 
constrains absorption to: σABS ~ 0-3 mb

(CNM = Cold Nuclear Matter)

centralperiph.

Quarkonia - J/ψ suppression in AA collisions & CNM baseline
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Capella, Sousa
EPJ C30, 117 (2003)

Capella, Ferreiro
hep-ph/0505032

Digal, Fortunato, Satz
hep-ph/0310354

Grandchamp, Rapp, Brown
hep-ph/0306077

regeneration

Models that reproduce NA50 
results at lower energies predict 
too much suppression at RHIC!
• Satz - color screening in QGP 
(percolation model) with CNM 
added (EKS shadowing + 1 mb)
• Capella – comovers with normal 
absorption and shadowing
• Rapp – direct production with 
CNM effects needs very little 
regeneration to match NA50 data

direct

QGP sequential screening

comovers

Quarkonia - Models without regeneration

total

Satz
Rapp

Capella

J/ψ,ψ’,χc

J/ψψ’,χ
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Quarkonia - Models with screening & regeneration

Grandchamp, Rapp, Brown
PRL 92, 212301 (2004)

Thews
Eur.Phys.J C43, 97 (2005)

Models with regeneration, 
i.e. single charm quarks 
combining in the later stages 
to form J/ψ’s – match the 
observed RHIC suppression 
much better!
• but the regeneration goes 
as      - which is still 
poorly known at RHIC
(& that’s another story..)

2
ccσ

28=ccN

19=ccN

12=ccN

hep-ph/0311048
(CERN yellow rpt)

statistical hadronization model
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Kostyuk

Andronic

Rapp

Zhu

Bratkovskaya

Quarkonia
Many More Models for RHIC J/ψ suppression in CuCu & AuAu Collisions

Rapp - PRL 92, 212301 (2004)
• screening & in-medium production
Thews – see previous slide
Andronic - PL B57, 136 (2003)
• statistical hadronization model
• screening of primary J/ψ’s
• + statistical recombination of 
thermalized c-cbar’s
Kostyuk – PRC 68, 041902 (2003)
• statistical coalescence
• + comovers or QGP screening
Bratkovskaya – PRC 69, 054903 (2004)
• hadron-string dynamics transport

Zhu - PL B607, 107 (2005)
• J/ψ transport in QGP
• co-movers, gluon breakup, hydro for 
QGP evolution
• no cold nuclear matter, no regeneration

All have suppression + various 
regeneration mechanisms
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Quarkonia - Regeneration or Sequential Screening?

RHIC suppression looks same as that at NA50
• but ~10x collision energy & ~2-3x gluon energy 
density at RHIC
• regeneration compensates for stronger QGP 
suppression?

• if so, regeneration would be huge at the LHC!

-------------- OR --------------------
(Karsch, Kharzeev, Satz, hep-ph/0512239)
• Sequential screening of the higher-mass resonances 
that feed-down to the J/ψ; with the J/ψ itself still 
not dissolved?
• supported by recent Lattice calculations that 
give TJ/ψ > 2 TC

Quarkonium dissociation temperatures – Digal, Karsch, Satz
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Quarkonia
Regeneration should cause narrowing of pT and y – does it?

pT broadening lies in between 
Thews direct & in-medium 
formation suggesting some 
regeneration (but our fit to 
pp+dAu data vs L also reasonable)

But rapidity dependence of central AA 
collisions (top panels) shows no narrowing –
i.e. peaked ratios as in the Thews
(maximal) regeneration, shown below
But careful – is σccbar flatter with y than 
we originally thought?

<pT
2> = 2.51+0.32*L

from fit to dAu data vs L

CNMCNM
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Quarkonia - Flow of J/ψ’s?
Need to look for J/ψ flow – if regeneration dominates, the J/ψ’s 
should inherit flow from charm quarks
• open charm has recently been seen to flow (at least at some pT
values)
• but what about geometrical absorption effects, which could also
give asymmetry wrt reaction plane?

Zhu et al.
PL B607, 107 (2005)

geometry 
only

coalescence of
thermalized charm
X 0.1
(Rapp)
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1st Upsilons at RHIC from ~3pb-1

collected during the 2005 run. 

QM05

Ultra-peripheral Collisions (UPC’s)

UPC’s : well calibrated EM probe of 
small-x gluon saturation

Future
Much More to Come!
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Future
RHIC-II Luminosty Upgrade

Signal RHIC Exp.
(Au+Au)

RHIC I
(>2008)

RHIC II LHC
ALICE+

J/ψ →e+e−

J/ψ →μ+μ−
PHENIX

STAR
PHENIX

3,300
29,000

45,000
395,000

9,500
740,000

ϒ→ e+e-

ϒ→ μ+μ−
830
80

11,200
1,040

2,600
8,400 

• Luminosity increased by x10 (AuAu), x2-3 (pp) & zvertex size decreased using 
electron cooling
• Also more reliable source with EBIS

LinacRf Gun

Buncher Cavity

Cooling Solenoid (26 m, 2-5 T)

Debuncher Cavity

e-Beam Dump

Gold beam

• enabling rare probes: ϒ, ψ‘, χc → J/ψ + γ, B → J/ψ, J/ψ v2
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Future - PHENIX Upgrades

• Silicon vertex – mid-rapidty
& forward heavy-q’s, incl. B → J/ψ X
• Nose cone calorimeter – forward γ, π0, χc
• Forward muon trigger – high-pT trigger & W’s

• Hadron blind detector - low-mass e-pairs
• Aerogel & RPC TOF – PID to higher pT

signal electron
Cherenkov 

blobs 
partner positron
needed for rejectione+

e-

θpair
opening 

angle

HBD
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Future
STAR Upgrades

Forward Meson 
Spectrometer
(2.5 < η < 4)

RPC TOF
Flavor tagging 
at large pT

DAQ upgrade
100 → 1000 hz

D → Kπ

e vs γ in front
of FMS
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c  only

c & b

no flow

q_hat = 14 GeV2/fm

q_hat = 4 eV2/fm

q_hat = 0 GeV2/fm

dNg / dy = 1000

thermalized – maximal 
flow with quark d.o.f.

dE/dx and flow for 
heavy quarks too

opague – modifies jets

dense - gives large
dE/dx for hadrons

screening
regeneration

sum

deconfined - screens 
heavy quark bound states

Summary
the matter is
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Extra Slides
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Concerns about Perfect Fluid at RHIC
• “Limits” on this plot are not strict limits

– literature scan looking for largest calculation at each energy

• Ollitraut et al (PLB 627, 49 (2005)) argues that hyrdo “limit”, 
– is when v2/ε independent of  1/S dN/dy
– not reached experimentally => not fully thermalized?

PRC 68, 034903 (2003)
Private comm. S. Voloshin

Slide from Craig Ogilvie
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Partial-chemical freezeout overpredicts v2

• Hydro models are sensitive to scattering in hadronic final state
– Spectra change shape, magnitude
– Redistribution of asymmetry, change v2(pt)

• Given the failure of these hydro models
– Not possible (yet) to extract cs, EoS, low-viscosity,…

Partial chemical 
calculations reproduce 
spectra
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The Spectrum

Compare to thermal + pQCD
• data consistent with 

thermal + pQCD

Compare to thermal model

• data above thermal at high pT

• D. d’Enterria, D. Perresounko
• nucl-th/0503054

Compare to NLO pQCD

• excess above pQCD

• L.E.Gordon and W. Vogelsang
• Phys. Rev. D48, 3136 (1993) 

2+1 hydro
T0

ave=360 MeV(T0
max=570 MeV)

τ0=0.15 fm/c

Stefan Bathe, QM05
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e.g. Andronic, Braun-Munzinger, 
Stachel nucl-th/0511071

Thermalization - Hadronic Abundances
Ratios of hadron yields consistent with system at chemical equilibrium

Global fit to relative particle abundances with 
two parameters:
• chemical freezeout temperature (Tchem ~ Tcrit)
• baryon chemical potential (μb)
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