W+Si Forward Tracking Calorimeter for the ALICE upgrade

1

<u>Taku Gunji (CNS, Univ. of Tokyo)</u>, Hideki Hamagaki (CNS, Univ. of Tokyo) David Silvermyr (ORNL), Terry Awes (ORNL), Chuck Britton (ORNL) For the ALICE FoCAL team

December Decadal R&D Workshop Calorimetry, 12/14/2010, T. Gunji, gunji@cns.s.u-tokyo.ac.jp

<u>Outline</u>

- Introduction of the ALICE upgrade plans
- Physics Motivation of ALICE-FOCAL
- Location of FOCAL in the ALICE
- Key parameters
- Conceptual Detector Design
- Brief results of simulations
- Hardware readiness and beamtest in 2011
- Summary and Development ideas for the PHENIX cEMC

ALICE upgrade plans

- Detector upgrades for 10 years are being discussed.
- *Current upgrade activities in the ALICE:*
 - Completion of EMCal(2010), TRD(2011-2012), (and PHOS)
 - Di-jet Calorimeter (DCAL) (2011-2012)
 - TPC fast readout upgrade using new gas/electronics
 - Very high momentum particle identification (VHMPID)
 - Cherenkov radiator + photon detector using CsI+(RETTH)GEM/MWPC
 - 2nd generation of vertex detectors (ITS)
 - Monolithic active pixel sensor (MAPS/MIMOSA/LePIX)
 - Forward Calorimeter (FOCAL)
 - W+Si tracking calorimeter covering forward rapidities
 - Backward Tracking vertex detectors in front of muon absorber
 - DAQ/HLT Upgrade (DDL-SIU interface, new IO bus, etc)

Physics Motivation of ALICE-FOCAL

- Main physics topics:
 - Gluon saturation (pA)
 - Fully exploit the opportunity at the LHC to access smaller-x region & large saturation scale by going to forward rapidity.
 - RHIC forward rapidity (η =3) \Leftrightarrow LHC mid-rapidity. Importance to understand initial state effects systematically at the LHC (pA).
 - Thermalization mechanism (saturation \rightarrow glasma) (AA)
 - Systematic measurements of hot and dense medium (AA)
 - Elliptic flow/ridge/jet quenching (AA)
- Provide forward (η>3) coverage for identified particle measurements
 - EM calorimeters for (prompt) γ , π^0 , η , heavy quark(onia), jets
 - Requires high granularity (lateral and longitudinal)
- Favored technology: W+Si calorimeter

Location of FOCAL in ALICE

- Detector Location
 - Stage 1 (z=3.5m, 2.5<η<4.5) in 2016
 - Stage 2 (downstream, 4.5<η<6) in 2020.
 - Need to modify the beam pipes and support stuffs.

Project Institution CNS Tokyo, Yonsei, Kolkata, Mumbai, Jammu, Utrecht/Amsterdam, Prague, Jyväskylä, Copenhagen, Bergen, Oak Ridge, Nantes, Jaipur

Key parameters

- Dynamic range
 - Annual yield of π^0 (p+p)
 - pT < 30-40 GeV is the maximum reach in annual year. \rightarrow 500 GeV in total E.
- Particle density
 - N_{γ} ~ N_{ch} ~0.03 /cm² (η =4) in p+A
 - N $_{\gamma}$ is dominated (95%) by low pT(<1GeV) $\dot{\gamma}$

inclusive y 8.8TeV p- Pb

CNS, India, ORNL, 7

Conceptual Detector Design-I

• "Standard" W+Si (pad/strip) calorimeter (CNS)

– Similar to the PHENIX FOCAL but 3.5m away from IP

- Single sided Si-Strip (2X₀-6X₀)
 - 2γ separation, 6 inch wafer
 - 0.7mm pitch (128ch/wafer)

• Summing up raw signal longitudinally in segments

3 longitudinal segments

Taku, Hideki, 8

Readout Flow

- Composition
 - Summing board: (1.5mm thickness)
 - sum up signals in segments longitudinally, biases
 - ASIC cards :
 - Preamplifer + shaper (analog out) or preamplifer with QTC (digital out)
 - ADC(12-14bit)/TDC(TMC)+FPGA board:
 - Digitizer, ZS, feature extraction, formatting, trigger handling, buffering
 - SRU (scalable readout unit):
 - Developed by RD51. Trigger handling, data format & transfer, master of slow control

ASIC development

- Pads readout :
 - Dynamic range: 50fc 200pC . Cross talk < 1%. S/N=10@MIP</p>
 - Relatively fast readout is needed for L0 trigger generation.
 - R&D of the ASIC is being done by CNS+RIKEN/KEK and ORNL
 - Dual charge sensitive preamplifier using capacitive division
 - QTC (charge-to-time converter, no CMOS switches)
 - Dual transimpedance preamplifier
 - (details are in backup 23-31 and Chuck's slides.)
- Strip readout:
 - Dynamic range: 4fc 2pC.
 - PACE-III (CMS preshower counter, LHCf W+Si readout)
 - Discussion to use PACE-III has been started with CMS.

Taku, Tomoya, 10

Detector Performance (Simulation)

Another choice of Readout

- Readout individual layers. Amplification, shaping, digitization, serialization are done behind the wafer.
 - Lower noise compared to raw signal driving on summing board and smaller dead space between towers.
 CMS preshower

David, Terry, Hans, 12

Another geometrical Idea

- hexagonal towers
 - fit nicely in circles around beam-pipe
 - uses more silicon surface of cylindrical ingot
- triangular pads

Conceptual Detector Design-II

- W absorber + Monolithic pixel sensor
 - MIMOSA chips (digital readout) are promising to use.
 - Development has been started.
 - 20 μ pixel size \rightarrow 100 μ pixel size (10⁹ pixels)
 - suppress data volume, reduce RO time charge collecting diode
 - avoid saturation
 - GBT/GBR being developed by CERN in the end
 - Personal interests as preshower counter
 - and hybrid with pads

- CMOS wafer including thin sensitive volume and electronic layers
- charge from traversing

particles collected at diodes

Gert-Jan, Thomas, Martijn 14

Detector Performance (Simulation)

• Detector simulation for pixels

Hardware readiness and beamtest

- Hardware readiness
 - Alloy (94W-4Ni-2Cu) for one tower (Japan Tungsten Co. Ltd)
 - Si pad and Si strip for one tower (Hamamatsu Co. Ltd)
 - Jig for assembling layers
- Beamtest in 2011 at PS/SPS@CERN
 - Currently, LHC will shutdown in 2012.
 - PS/SPS will not be available in 2012.
 - FOCAL beamtest is planned in 2011.
 - One tower of W+Si pad/Si strip

configuration.

- Performance test (linearity, resolution)
- Partial of W+MIMOSA pixel configuration
 - Proof of principle.

<u>Summary and Development ideas for</u> <u>the PHENIX cEMC</u>

16

- There are a lot of activity, design considerations, options, and ideas for the ALICE FOCAL.
 - Still needs to be developed in hardware and lots of quantitative studies by simulations are needed.
 - There might be overlap efforts for the ALICE FOCAL and PHENIX cEMC.
- We (CNS, ORNL) hope for some collaboration between ALICE FOCAL and PHENIX cEMC.
- Chuck will discuss this more just after this talk.

Thank you for your attention.

Backup slides

"Possible" HI Plan at LHC

18

Studying QGP Era (MB)

<u>2010 (official)</u> - $\sqrt{s_{NN}}$ = 2.76 TeV Pb + Pb (4 weeks) L~10²⁵ cm⁻²s⁻¹

<u>2011 (anticipated)</u>- Vs_{NN} = 2.76 TeV Pb + Pb (4 weeks) L ~ few 10²⁶ cm⁻²s⁻¹

2012 (official) – Shutdown for maintenance, installation & repair

<u>2013</u> - $\sqrt{s_{NN}}$ = 5.5 TeV Pb + Pb, L~10²⁷ cm⁻²s⁻¹

<u>2014</u> - $\sqrt{s_{NN}}$ = 5.5 TeV Pb + Pb, L~10²⁷ cm⁻²s⁻¹

Control experiments

 $2015 - \sqrt{s_{NN}} = 8.8 \text{ TeV } p + Pb \& Pb + p \text{ or lighter } A + A$

<u>2016</u> – Shutdown – LINAC4 /Collimation/RF & detector upgrade

<u>2017</u> – $\sqrt{s_{NN}}$ = 5.5 TeV <u>lighter A + A or $\sqrt{s_{NN}}$ = 8.8TeV p+Pb/Pb+p</u>

Detail Studying Era (rare probes)

<u>2018</u> – $\sqrt{s_{NN}}$ = 5.5 TeV high L Pb + Pb for hard probe physics <u>2019</u> – $\sqrt{s_{NN}}$ = 5.5 TeV high L Pb + Pb for hard probe physics <u>2020</u> – Shutdown – upgrades

Timeline for the Upgrade

- Timeline for the upgrades
 - (of course, the schedule could be changed...)

ADC/TDC & FPGA board

- At least, 10 bit is not enough. More than 12 bit.
 - Commercial FADC (TI, AD,,,) with multi-channel/chip, 10-50MSPS, low power consumption
 - Roughly speaking, data size in p+A could be:
 - 0.3(occupancy) x 256 (tower) x 64 x 3 (ch/tower) x 2 (H/L) x 12 (bit) x 20 (# of samples) = 0.9MB/event
 - Reference: dN/dy=700, 15MB/evt (TPC), 1.1MB/evt (TRD)
 - Need to extrapolate to A+A
 - FPGA (Xilinx Virtex series) for zero suppression, feature extraction (online pulse shape analysis, summation), event building, formatting, trigger input handing, output buffering (and send to SUR)
 - Similar to TRU in PHOS/EMCAL.

FEE & SRU

• Use SRU as EMCAL/DCAL/(TPC) will do. — developed by RD51+ALICE project

Scheme: FEE and SRU

<u>Preamplifier</u>

- Three different types of readout amplifier:
 - Charge sensitive amplifier (CSA)
 - Pad output current is integrated on the feedback capacitor in CSA. Best in terms of noise...
 - Voltage amplifier
 - Pad output signal is integrated on the pad capacitance (Cd) and the voltage across the capacitor is amplified. Uniformity of Cd is necessary.
 - Current amplifier
 - Pad output signal is directly amplified and transformed into a voltage signal. Low input impedance and this limits the use in systems with large capacitive loads...

Dual charge sensitive preamplifier

- Due to the limited output swing of ASIC (5V, 3.3V, 2.5V depending on process), dual input preamplifier with dual gain is designed.
- *Requirements:*
 - Open loop gain is sufficiently larger compared to the capacitance ($Z = 1/\omega C + r/A$, $1/\omega C >> r/A$)
 - Input impedance (Z) is sufficiently smaller compared to Cd

Overall linearity

- Overall linearity at the end of dual integrator
 - Peaking time: $\tau_{peak} \sim 2usec$
 - Good linearity up to 200pC
- 2usec peaking time is not good for trigger generation

Next plans including trigger capability

- *Revisit our charge sensitive preamplifier*
 - To enlarge bandwidth, phase margin, open (closed) loop gain
- Another type of QTC without CMOS switches and shaper
 - Design is underway.
- Another type of preamplifier
 - Voltage amplifier proposed by Chuck (ORNL)
 - Pad output signal is integrated on the pad capacitance (Cd) and the voltage across the capacitor is amplified.
 - Source follower at the 1st stage
 - See Chuck and David's slides shown in last week.
 - Current amplifier
 - Pad output signal is directly amplified and transformed into a voltage signal. Low input impedance and this limits the use in systems with large capacitive loads...

Voltage amplifier

• Shown by Chuck & David (ORNL) last week

Quick simulation using LTSPICE (by Taku)

Taku 27

Taku 28

Current preamplifier

<u>Lin</u>earity

- Linearity
 - V=V(out)-V(baseline)
 - Zin=100hm
 - No gain optimization
 - Good linearity is seen.
- Need to optimize CMOS

parameters (gm, W/L, I etc) and gain according to realistic conditions.

- One of the crucial issues is how large impedance the transmission line has....
 - We are planning to use long line for raw signal driving (10cm).
 - Conductance, capacitance, resistance should be carefully evaluated.

<u>QTCv2</u>

- QTC without CMOS switches (Taku)
 - Constant current feedback by sensing the output voltage.

RIKEN 31

Detector, micro-cable, holder

32

Inv. Mass in p+A using Si-PADs

- Two photon invariant mass at $3 < \eta < 3.5$ from HIJING 8.8 TeV p+Pb events
 - Energy and position are smeared according to the resolution

Rejection of charged particles

• Longitudinal shower shape analysis

Taku, Yasuto 35

PiO Reconstruction using PADs

Two gammas enter the neighboring pads Two gammas share the same pad Reconstruction efficiency Reconstruction efficiency with energy asymmetry cut (< 0.8).

- Pi0 up to 60 GeV (pT = 6 GeV/c at h = 3) can be reconstructed using the Sipads only.
- For piO above 60 GeV, finer hit position information is needed.

<u>Performance of the strips</u>

PiO reconstruction using Si-Strips

- Two clusters in the Si-pads starts to merge into one cluster when the two-hit distance is below 2cm (for 1cm x 1cm pads)
- Locate a cluster with large energy deposit in the Si-pads & define search region in the Si-strips
- Search for two clusters & obtain distance between the clusters

Taku, Yasuto 38

PiO reconstruction using Si-strips

- Tentatively obtained efficiency at present is ~50% -- trade-off with fake single photon probability
- Further efforts will be made to reconstruction algorithm

PiO simulation by Aliroot

- Obtained through AliRoot
- Input pi0 : 1 < p_T<13 GeV (16<E<215 GeV) at η=3.5

PiO identification efficiency using Invariant mass reconstruction with pads

• effective for low pT

PiO identification efficiency using two hit @ strip and merged energy with pad • effective for high pT

<u>Occupancy</u>

- Detector occupancy and deposited energy
 - Average: 0.9% (MB), 2% (hard process)
 - Maximum: ~ 5%
 - Event rate is another important issue to see and this will be done.

<u>Pi0 in p+p MinimumBias</u>

Only pads information is used (no CPV, no strip)

One layer, split in two halflayers

one halflayer

- 1.5 mm W
- W is good heat conductor 170 W/mK (Al 240 W/mK)
- estimated heat resistance ~1 K/W
- no additional interconnect layer/ mounting board

One layer, split in two halflayers

- 1 layer = two halflayers mounted face to face
 - 3 mm W
 - 16 chips, their dead zones overlapping
 - 4 flextails sticking out
 - total thickness 1.5 + 0.5 + 0.5 + 1.5 mm
 - further reduction towards 0.5 mm in total for sensors and cables seems possible,

requires gluing all layers together

1 layer	cooling pipes at sid after assembly of to
	these sides for ca
first halflayer partially cut away showing overlap	tension rods together (pro
(grey and green chips)	

es will be inserted wer

bles

keep stack totype)

Two gamma separation Calorimeter hits - full detector

-1.5

Y (cm)

0.5

-0.5

-1.5

2 $\hat{X}_{(cm)}$

0.5

-0.5

-1.5

-2 0

2

1.5

2 X (cm)

0.5