Calorimeter upgrade ~from analysis point of view~

Takao Sakaguchi BNL

Sorry, no detail study on a specific detector design. Will be done in the

Quantities to measure by calorimeter

- In any case, we want to measure any
 - Momentum
 - Energy
 - Mass
 - of particles.

$$\sigma_0(E) = 1.55 \oplus \frac{5.7}{\sqrt{E}} (mm), \qquad E(GeV)$$

$$\frac{\sigma(E)}{E} = \frac{8.1\%}{\sqrt{E (GeV)}} \oplus 2.1\% (PbSc),$$

$$\frac{\sigma(E)}{E} = \frac{5.9\%}{\sqrt{E (GeV)}} \oplus 0.8\% (PbGl).$$

$$\sigma_x(E) = \frac{[8.4 \pm 0.3]\text{mm}}{\sqrt{E/GeV}} \oplus [0.2 \pm 0.1]\text{mm}.$$

- Calorimeter should be able to identify particles and measure their energies
 - Hit Positions of particles are part of the important measurement.
- Can also be complimentary used for momentum measurement
 - Mostly high pT (can not compete with tracking devices at low pT)
 - Another usage: use like a Pad chamber (a component in the track fitting)

Systems and observables

- Au+Au or heavy ions -detail study of QGP using:
 - Jets with various flavor
 - Including high pT identified single particles
 - Penetrating probe (direct photons, electrons)
 - Quarkonium
- d+Au
 - Detail study of nuclear structure and cold nuclear matter effect.
 - Same observables but to extend to forward rapidity region

• p+p

- Baseline for measurement in Au+Au and d+Au
- Spin physics would like better S/B.
 - Higher PID efficiency and rejection power of particles not in interest.
 - Doesn't care too much of energy scale.
- Cleaner background, but sometimes signal is smaller also.

<u>I will take very limited cases</u>

Jets with various flavor (light quark jets)

- Light quark jets
 - Full jet reconstructio n
- Systematic errors: ~20%
 - ~15% is coming from energy scale of jets

AN748, Run5 p+p

jets)

• To be delivered

Jets with various flavor (single particle)

- Became a classic measurement, but still a strong probe
- Single particle measurement up to 20GeV/c
 - Above 10GeV/c, correction for merged two photons from π⁰ should be evaluated
- The result exhibited a lot of discussion on energy loss model

Total Systematic error: ~ 9% for low pT ~20% for high pT

More in single particle

- Single high pT particle in precise measurement
- Adding precise higher pT points would increase rejection power to models

PPG079

What is the merging effect?

- Because of limited granularity of the detector, two γ's from π⁰ can not be resolved at very high p_T (γ's merged. mass can not be reconstructed).
 - Opening angle: θ ~ mass/p_T
- We corrected for the inefficiency due to merging, but also introduced a large systematic error.

How can we offer better data?

- How about η ? The next lightest meson in the world
 - Pros: p_T reach will be extended by $M\eta/M\pi = -4$, because of a larger opening angle.
 - Cons: one has to assume that η is produced from light quark or ssbar is suppressed the same amount as light quarks.

- Name: π⁰
- Mass: 0.1350MeV/c²
- $\Gamma(\pi \rightarrow \gamma \gamma) / \Gamma(\pi \rightarrow X)$: 0.988
- Wave function:
 - (uubar-ddbar)/√2

- Name: η
- Mass: 0.5479 MeV/c²
- Γ(η→γγ)/ Γ(η→X): 0.393
- Wave function:
 - (uubar+ddbar)/2+ssbar/√2

$\eta/\pi^0 = \sim 0.5$ (measured at high pT)

Invariant mass distributions

- Successfully reconstructed π^0 and η in RHIC Year-7 Au+Au
 - 3.9B events (80% of recorded events), PbSc EMCal only.
- we can see that reconstructed η to π^0 ratio increases as a function of p_T
- Number of reconstructed π⁰ is decreased

π^0 and η R_{AA} in single panel

- We could use eta as an alternative probe for high pT, but obviously, π^0 has much more statistics in the beginning. It would be nice to keep an idea of measuring π^0 up to very high pT.
 - Energy resolution, better **position** resolution (and granularity)

Quarkonium?

- J/ψ, φ
 - momentum is reconstructed using trackings
 - EMCal used for complementary identification of electrons
- If you go very high pT, one can measure momentum with calorimeter?
- χ_c measurement uses energy information of AN624 Cun5/6 p+p χ_c measurement 13% sys error due to error on photon energy measurement in EMCal

Direct photons (real photons, 1)

- Low pT
 - Good photon PID power is strongly desired in addition
- No idea at this moment how to reject hadrons (charged and neutral), except for charge VETO and sophisticated shower shape cut.
 - And timing cut..
- Good photon ID (or hadron ID) would be important for inclusive jet measurement
 - Fragmentation function, etc.

Direct photons (real photons, 2)

- High pT
 - In principle, hadron free
 - Has to fight against merged clusters
 - Should efficiently identify clusters contributed by "single photon", not from "merged photon" from π^0
- On-going analysis (Run4 Au+Au photons)
 - Trying to subtract merged clusters, estimated by PISA simulation

Better position resolution helps

Key performance parameters (I)

Energy scale

- Hope to be accurate at the level of ~ 0.1%
 - In power-law spectra f = A/pT^n, where n=8, 1% off-scale produces 8% yield error

Energy resolution

- Accuracy of the energy scale is somewhat relying on the energy resolution
 - How can we set the right energy scale at the level of 0.1%, given the energy resolution is 15%.
 - In order to get 0.1% accuracy under the energy resolution of 15%, we need counts of N = (15/0.1)² = 22.5K counts.
 - Sounds small statistics, but need this count for pT>2GeV, each sector or tower, each run, etc.

Key performance parameters (II)

Position resolution

- Resolution power of adjacent particles would relate how high in pT we can measure hadrons decaying into two or more particles
 - Current PbSc: π^0 cleanly identified up to 12GeV/c, η to 50GeV/c

PID power

- Not necessary for particles decaying into multi particles
- Better PID would reduce combinatorial background, therefore increase S/B

Irreducible background

- Even PID is perfect, the amount of combinatorial background would be constrained by several physical and non-physical reason
 - Conversion of photons, Dalitz decays. Or, the signal itself is two small in our acceptance, e.g., eta-prime is hardly seen in twophoton decay mode.
- Acceptance or material budget issue. Has to be taken into

My thought on performance determination

- Single particle measurement is a key element of complicated, sophisticated, advanced measurement.
- If we look at the precision of single particle measurement, we would see what the ideal performance is required to the detector.