Hard scattering in Au+Au, p+p and d+Au at $\sqrt{s} = 200 \text{ GeV}$: Latest results from PHENIX @ RHIC

NATO ASI "Structure & Dynamics of Elementary Matter"

KemeTurkey, Sept. 29, 2003

David d'Enterria

Nevis Labs, COLUMBIA University, NY

Overview

1. Introduction:

- High-energy heavy-ion physics topics.
- Hard scattering probes.
- PHENIX experiment at RHIC.
- Run history: Au+Au @130 GeV, 200 GeV, p+p @ 200 GeV, d+Au @ 200 GeV
- 2. High p_r results (central Au+Au vs. p+p):
 - Suppression of hadron inclusive spectra
 - Anomalous" hadron composition
 - Azimuthal anisotropies: strong collective elliptic flow, disappearance of away-side dijet correlations.
- 3. Theory vs. data:
 - QGP- and CGC- models vis-à-vis data
- 4. High p_r results in d+Au ("control" experiment):
 - Cronin-like enhancement
- 5. Summary

High-energy heavy-ion physics program (in 4 plots)

 Learn about 2 (so far unexplained) properties of the strong interaction: confinement, chiral symmetry breaking

2. Study the phase diagram of QCD matter (esp. produce & study the QGP)

3. Probe the properties of the primordial Universe (few µsec after the Big Bang).

4. Study the regime of non-linear (high density) many-body parton dynamics at small-x (CGC).

Hard QCD probes (I)

- Hard probes: high-p_T (jets, prompt γ), heavy-flavor (D, B, J/ Ψ , ...)
- Early production ($\tau \sim 1/p_{\tau} < 0.1$ fm/c) in parton-parton scatterings with large Q²
- Direct probes of partonic phases \Rightarrow Sensitive to dense medium properties: parton E_{loss} ("jet quenching"), color screening ("onia" suppression), ...
- Incoherent processes: direct comparison to baseline "vacuum" (pp) data via "collision scaling":

$$\sigma_{AB (hard)} = \int d^2b \left[1 - e^{-\sigma_{pp}T_{AB}(b)}\right] \propto T_{AB} \times \sigma_{pp (hard)}$$

 $T_{AB} \propto #$ of binary inelastic *NN* colls .

Production yields calculable via perturbative or classical-field QCD:

Kemer (Turkey), Sept 29, 2003

Hard QCD probes (II)

Allow us the study of QCD medium properties via sensitive and well calibrated (experimentally & theoretically) observables:

The full pallet of QCD probes created at RHIC can be measured in the PHENIX experiment:

High p_{T} in a strongly interacting medium

Hard scattering processes – Initial- vs final-state effects:

- Experimental handles on high p_T particle production: [Standard jet finding algorithms not applicable in HI reactions due to large bckgd].
 - 1. Depletion of high p_T inclusive hadrons (jet leading particles)
 - 2. Attenuation / absorption of jets ("jet quenching"): photon-tagged jets, modification of angular correlations between jet products
 - 3. Changes in particle composition

PH ENIX @ RHIC

- 11 detector sub-systems
- 2 Arm central spectrometers:
 - $|\eta| < 0.35$, $\Delta \phi = \pi$ (e, γ , hadrons)
 - Open geometry axial field
- 2 forward spectrometers:
 - $1.2 < |\eta| < 2.5, \Delta \phi = 2\pi$ (muons)
 - Radial magnetic field
- 3 global (inner) dets.: trigger, centrality
- Designed to measure rare probes:
 - + high rate capability & granularity
 - + good mass resolution and PID
 - limited acceptance

Kemer (Turkey), Sept 29, 2003

PHENIX run history

Run	Year	Species	s ^{1/2} [GeV	′] ∫Ldt	N _{tot}	tot. data
01	2000	Au - Au	130	1 μb ⁻¹	10M	3 TB
02	2001/2002	Au - Au	200	24 µb⁻¹	170M	~20 TB
		p- p	200	0.15 pb ⁻¹	3.7G	~10 TB
03	2002/2003	d - Au	200	2.74 nb ⁻¹	5.5G	46 TB
		p - p	200	0.35 pb ⁻¹	4.0G	35 TB

2002/2003

Au+Au in PHENIX

~600 charged particles per unit rapidity at mid-rapidity (5% most central)

p+p reference @ 200 GeV: high-p_T π^{0}

• Experimentally "unbiased" reference for Au+Au $\rightarrow \pi^0$

Kemer (Turkey), Sept 29, 2003

AuAu *vs* pp @ 200 GeV: high p_τ π⁰

Nuclear modification factor (π^{0})

$$R_{AA}(p_T) = \frac{d^2 N_{AA}/d\eta dp_T}{\langle N_{coll} \rangle d^2 N_{pp} / d\eta dp_T}$$

Nuclear modification factor: $\sqrt{s_{_{NN}}}$ dependence

 R_{AA} compilation for π^0 in central A+A:

- CERN: Pb+Pb ($\sqrt{s_{_{NN}}} \sim 17 \text{ GeV}$), $\alpha + \alpha$ ($\sqrt{s_{_{NN}}} \sim 31 \text{ GeV}$): Cronin enhancement
- RHIC: Au+Au ($\sqrt{s_{NN}}$ ~ 130, 200 GeV): x4-5 suppression with respect to N_{coll}

Kemer (Turkey), Sept 29, 2003

Nuclear modification factor: π^0 vs. charged hadrons

Centrality dependence of suppression

Kemer (Turkey), Sept 29, 2003

Hadron composition at high- $p_T(I)$: R_{AA} (p,pbar)

- Protons (antiprotons) **NOT** suppressed in central Au+Au (p_{τ} < 4.5 GeV/c)
- Ratio central/periph ~ $R_{AA} \approx 1 \rightarrow N_{coll}$ scaling holds for baryons.
 - (Consistent with observed $R_{AA}(h^{t}) > R_{AA}(\pi^{0})$ in the same p_{τ} range).
- Indicates different production mechanisms for baryons and mesons in the intermediate p_{τ} range.

Kemer (Turkey), Sept 29, 2003

Hadron composition at high-p_{τ} (II): p/ π ratio

- Pronounced centrality dependence of p/π ratio.
- Central colls.: baryon/meson ~ 1.0 for p_T > 2 GeV/c at variance with perturbative production mechanisms (favour lightest meson).
- Peripheral colls. baryon/meson ÷ 0.3 as in p+p,pbar (ISR,FNAL) and in e+e- jet fragmentation

Hadron composition at high-p_{τ} (III): h/ π ratio

Central colls.: $h/\pi \sim 2.5$ at intermediate p_{τ} 's (enhanced baryon production) Peripheral colls.: $h/\pi \sim 1.6$ as in p+p (perturbative ratio) +h⁻)/2π 3 Kretzer vs KKP FFs 2.5 1.8 62 GeV 62 CeV 1.7 130 CeV 130 CeV 00 Ce\ 1.5 1.5 Kretzer and sending 1.4 1 1.3 0.5 1.2 charged hadron and π^0 yield equally suppressed above $p_{T} \sim 5 \text{ GeV/c}$ 1.1 Normalization Error (Xiaofei Zhang) 0.3 0.2 p_T(GeV) PHENIX Collab. 0.1 to appear in PRL nucl-ex/0305036 0 8 0 pT (GeV/c)

Since $h^{\pm} = \pi^{\pm} + p(pbar) + K^{\pm} \Rightarrow$ baryon non perturbative enhancement limited to $p_{\tau} < 5 \text{ GeV/c}$

Kemer (Turkey), Sept 29, 2003

High-p $_{\tau}$ @ **RHIC**: theory confronting data

APPROACH "A" (pQCD + parton energy loss):

<u>Step 1</u>: pQCD (*NLO or LO+K-factor*) = *PDFs* + *scatt. matrix* + *FFs* <u>Step 2</u>: pQCD + nPDF (shadowing) + p_T broadening (Cronin)

✓ Peripheral data explained

<u>Step 3</u>: pQCD + initial-state nuclear effects + parton energy loss

- Energy loss 1: BDMPS, Wiedemann & Salgado (LPM, thick plasma)
- Energy loss 2: Gyulassy-Levai-Vitev (LPM, thin plasma)
- Energy loss 3: HSW (modified FFs), (g radiation + absorption)

✓ Goal: explain central colls. (quenching, p_{τ} dependence, away-side suppr.)

<u>Step 4</u>: pQCD + IS nuc. effects + energy loss + parton recombination

✓ Goal: explain baryon-meson diff. in central colls.

APPROACH "B" ("classical" QCD):

<u>Step 1</u>: CGC → gluon saturated nuclear wave function (MLV) + geometric scaling (KLN)

<u>Step 2</u>: glue + glue collisions: $gg \rightarrow g$

Step 3: Gluon fragmentation (FFs)

✓ Goal: explain high p_{τ} deficit, away-side suppression, N_{part} scaling ...

Kemer (Turkey), Sept 29, 2003

Final-state QGP effects (I)

- Multiple final-state gluon radiation off the produced hard parton induced by the traversed dense colored medium:
 - Mean parton energy loss probes medium properties:

 $\Delta E \sim \rho_{gluon}$ (gluon density)

 $\Delta E \sim \Delta L^2$ (medium length)

- Energy is carried away by gluon bremsstrahung outside jet cone: dE/dx ~ $\alpha_s \langle k_{\tau}^2 \rangle$
- Formalisms: BDMPS (thick plasma), GLV (thin plasma), Wiedemann (combined).
- Correction for expanding plasma: $\Delta E_{1-D} = (2\tau_0/R_A) \cdot \Delta E_{stat} \sim 15 \cdot \Delta E_{stat}$ ($\tau_0 = 0.2$ fm/c, R_A=6 fm)

Final-state QGP effects (II)

- Dense medium properties according to "jet quenching" models:
 - * High opacities:
 - <n $> = L/\lambda \approx 3 4$
 - Large initial gluon densities:
 dN^g/dy ~ 800-1200
 - Transport coefficients:
 <q_0 > ~ 3.5 GeV/fm²
 - Medium-induced gluon radiative energy losses:

 $\frac{dE/dx \approx 0.25 \text{ GeV/fm (expanding)}}{dE/dx} \approx 14 \text{ GeV/fm (static source)}$

Final-state QGP effects (III)

 Quark recombination/coalescence explains the anomalous high p_τ "chemistry" at intermediate p_τ's:

- High parton densities in a thermal medium favour quark coalescence
- Recombination dominates for p_T ~ 1- 4 GeV/c:
 - $\langle p_T(baryons) \rangle > \langle p_T(mesons) \rangle > \langle p_T(quarks) \rangle$
- Fragmentation dominates for $p_T > 5$ GeV/c: p_T (hadrons)= z p_T (partons), with z<1

Initial-state effects in a Color Glass Condensate

- Initial conditions at RHIC: high-energies + large nuclei
 - Values of small-x: $x_{Bj} = 2p_T / \sqrt{s} <<1$

High parton (gluon) densities

$$\rho_A \simeq \frac{x G_A(x,Q^2)}{\pi R_A^2} \sim A^{1/3}$$

RHIC ~ HERA x $A^{1/3}$

Colliding nuclei described with a colored highly saturated and gluonic wave-function ("Color Glass Condensate"):

Saturation scale:

 $Q_s^2 \sim \alpha_s \frac{xG_A(x,Q_s^2)}{\pi R_A^2} \sim 1.5 \text{ GeV}^2/\text{c}^2 @ \text{ RHIC}$ $Q_s^2 \gg \Lambda_{QCD}^2 \Rightarrow \alpha_s <<1 \text{ (weak coupling)}$

"Classical" (Chromo-Dynamics) methods applicable Extension to $p_{T} > Q_{s}$ via "geometric scaling"

Suppression due to reduced # of partonic scattering centers in the initial-state

Particle production via glue-glue collisions:

Final-state effects in a dense hadronic medium ?

- Energy loss in a dense hadronic medium ($<L/\lambda > ~ 2-3$) seems to provide a (flat ?) suppression too ... 10⁴ 1.0 10^{3} Gallmeister, Greiner, Xu 0 -10 % PRC 67, 044905 (2003) R (with loss)/(no loss) 10² · 60-80 % 1/p_T dN_{m0}/dp_T [GeV⁻²] Comparison to 10 PHENIX data 10° AuAu π^0 130 GeV 0.5 (**0**^{-'} 10-2 10-4 0.0 10^{-5} 2 8 10 6 2 3 5 4 0 p_T [GeV] p_T [GeV]
 - Main argument: fast parton hadronization time implies rescatering of hadronic jet fragments ("pre-hadrons") inside expanding fireball.
 - Description of scattering in the hadronic phase realistic enough ? ("... our calculations are at best semiquantitative ...").
 - New results (within HSD transport code) very soon (C. Greiner dixit)

d+Au ("control" experiment) high p_T results

"hot & dense" vis-à-vis "cold" QCD medium. (final- versus initial- state effects)

d+Au (min. bias) nuclear modification factor (I)

d+Au (min.bias) nuclear modification factor (II)

• Combined R_{dAu} for charged hadrons and π^0 :

- d+Au results at RHIC clearly reminiscent of p+A "Cronin effect" (initial-state soft and semihard scatterings).
- No strong shadowing or saturation of Au PDF.
- Same results in p+Au (neutron-tagged) collisions

Nuclear modification: d+Au vs Au+Au

- Opposite centrality dependence of nuclear enhancement (in p+Au) compared to nuclear suppression (in Au+Au) !
- Conclusion: Au+Au suppression not due to a "cold" nuclear matter (initial-state) effect.

Kemer (Turkey), Sept 29, 2003

High p_T azimuthal correlations: Elliptic flow (I)

 Initial anisotropy in coord. space (overlap) in non-central collisions translates into final azimuthal asymmetry in momemtum space (transverse to react. plane)

Truly collective effect (absent in p+p colls.)

- \Rightarrow strong (collective) pressure grads.
- \Rightarrow large and fast (t<1.0 fm/c) parton rescattering (early thermalization).

High p_T azimuthal correlations: Elliptic flow (II)

Particle species dependence of flow:

PHENIX Collab. to appear in PRL nucl-ex/0305013

 $v_2^m > v_2^b$ at low $p_T, v_2^m \approx v_2^b$ at $p_T \approx 2$ GeV/c, and $v_2^m < v_2^b$ at higher p_T 's

 Reasonably well explained in quark recombination models (v₂ scaled by # of constituent quarks):

$$(n = 2 \text{ for mesons}, n = 3 \text{ baryons})$$

Kemer (Turkey), Sept 29, 2003

High p_r azimuthal correlations (II): p+p vs Au+Au

• High- $p_T \gamma(\pi^0)$ triggered ($p_T > 4 \text{GeV/c}$) events: $dN/d\Delta\phi$ for h^{\pm} ($p_T = 2-4 \text{ GeV/c}$)

• Near-side correlation as in p+p: trigger particles ($p_T > 4GeV/c$) come from jets

High p_r azimuthal correlations (III): d+Au vs Au+Au(periph)

Jet-like near- and away- side azimuthal correlations.

Kemer (Turkey), Sept 29, 2003

High p_{τ} azimuthal correlations (IV): d+Au vs Au+Au(central)

Diminished away-side correlation consistent with lost jet in "far side"

Kemer (Turkey), Sept 29, 2003

What hard scattering data at RHIC tell us(*) about the properties of the underlying QCD matter ...

Summary of possible physical scenarios:

- 1. Dense final-state partonic medium: Parton energy loss + quark recombination.
- 2. Dense initial-state partonic medium: Gluon saturation.
- 3. Dense final-state hadronic medium: hadronic energy loss.

(*) via confronting data to theory

"QGP" models vs. data

- ✓ Magnitude of Au+Au suppression → dense partonic medium:
 - High opacities: $\langle n \rangle = L/\lambda \approx 3 4$
 - Large initial gluon densities: dN^g/dy ~ 800-1200
 - " transport coefficients: $\langle q_0 \rangle \sim 3.5 \text{ GeV/fm}^2$
 - Radiative energy losses: dE/dx ≈ 0.25 GeV/fm (expand.) ≈ 14 GeV/fm (static)
- Centrality dependence of Au+Au suppression.
- ✓ Dissapeareance of away-side dijet angular correlations.
- ✓ No quenching in d+Au collisions.
- **x** p_{τ} dependence of Au+Au suppression \rightarrow not described in 1st instance:
- Additional nuclear effects needed to "flatten" LPM R_{AA} (probably justified given the d+Au results)
- **X** \sqrt{s} dependence of Au+Au suppression clear ?
- no jet quenching observed in Pb+Pb @ SPS with dN^g/dy ~ 500 ? (usual explanations: short plasma life-time, quark-dominated plasma, very small hard cross-sections: Cronin-effect dominates ...)
- ✗ Particle species dependence of Au+Au suppression ("baryon enhancement") → not perturbative !
- Additional final state effects: q recombination (or baryon junctions, ... ?) needed.

"CGC" models vs. data

- ✗ Foreword: High p_⊤ at midrapidity at RHIC is above Q_s ~ 1-2 GeV/c (straight application of CGC arguable in 1st instance).
- ✓ Magnitude of Au+Au suppression → saturated (evolved) Au wave function (KLM). But: no suppression expected in other calculations (e.g. Baier, Wiedemann *et al.*).
- ✓ Centrality dependence of Au+Au suppression → N_{part} scaling -like observed.
- Dissapeareance of away-side angular correlations (monojet production)

X Some deficit (R_{dA}~ 0.75) expected in d+Au collisions (Kharzeev *et al.*). However: Cronin enhancement built in the initial wave function (Baier, Wiedemann *et al.*). Similar conclusions by J.Jalilian-Marian too (though no calculations y < 1), but missing in KLM.</p>

More converging agreement needed between diff. calculations ... (seem to describe either Au+Au or d+Au, but not both consistently)

Hadronic model vs. data

- X Foreword: Very dense hadronic medium scenarios should have gone first through an (even) denser partonic phase.
- ✓ Magnitude of Au+Au suppression \rightarrow dense hadronic medium:
- High opacities: $\langle n \rangle = L/\lambda \approx 2$
- p_T dependence of Au+Au suppression → apparently described but with counter-intuitive arguments (in apparent contradiction to the assumed hadron formation time ansatz).
- Possible "control" calculations (not observed in data but expected in hadronic medium description): charm meson energy loss, suppressed near-side jet correlation, ...

Estimates are only "semiquantitative". More realistic model calculations (badly) needed !

Summary (I)

• Vast amount of high p_{T} data (yields, particle ratios, angular correlations) in p+p, Au+Au, and d+Au collisions @ $\sqrt{s} = 200$ GeV

- Central Au+Au collisions results:
- ★ Strong suppression (factor ~ 4-5) of π^0 and h[±] (with respect to N_{coll} scaling) above p_T~ 4 GeV/c.
- ★ Flat p_{T} dependence of suppression above ~4 GeV/c.
- * Very different behaviour than at lower \sqrt{s} (high p_T enhancement).
- ★ Smooth centrality dependence of suppression (weak N_{part} scaling).
- * No apparent suppression of p,pbar up to ~4 GeV/c: "anomalous" $p/\pi \sim 0.8$ ratio >> $p/\pi \sim 0.2$ in p+p and e+e- jet fragmentation.
- ★ Hadron/meson ~ 1.6 above p_T~ 5 GeV/c as in p+p: baryon enhancement limited to p_T<5 GeV/c.</p>
- * Strong elliptic flow signal (early collective rescattering).
- Jet-like signal in azimuthal near-side correlations.
- Suppression of jet away-side azimuthal correlations.

Summary (II)

- Peripheral Au+Au collisions:
- ★ Behave effectively as p+p collisions plus N_{coll} scaling (expected pQCD behaviour) for all species and for all observables !

d+Au collisions:

- ★ No suppression observed in min. bias d+Au (and p+Au) reactions.
- **Cronin-like enhancement** for π^0 (small) and h[±] (larger).
- ★ Opposite behaviour of the centrality dependence of high p_T production compared to Au+Au.
- No "cold" nuclear matter effects (strong saturation of nuclear PDFs) seem to explain high p_T Au+Au suppression.

Data vs. theory:

- pQCD-based final-state parton energy loss models ("QGP" models) reproduce more aspects of the data (Au+Au, d+Au) than other approaches.
- ★ Non negligible "leftovers" lacking 100% consistent explanation.

• Corollary:
$$QGP = P_{QCD} + (R_{AA} + I_{AA}) + dAu + J/\psi + T_{\gamma}$$

"100% evidence of QGP @ RHIC requires the J/ψ

& (thermal) photon signals (hopefully soon ...)"

Kemer (Turkey), Sept 29, 2003