Probing QCD matter with hard scattering processes in PHENIX: High  $p_T$  in Au+Au, d+Au and p+p at  $\sqrt{s} = 200$  GeV

# "INT-03-1: The first three years of heavy-ion physics at RHIC"

Seattle, June 03, 2003

David d'Enterria

Nevis Labs, COLUMBIA University, NY



## **Overview**

- PHENIX high  $p_{T}$  measurements :
  - Charged hadrons,  $\pi^0$ , and p,pbar in Au+Au, d+Au, p+p.
- Au+Au vs p+p "hot & dense medium" vis-à-vis "vacuum"
  - 2 most significant "discoveries" at RHIC:

"High p<sub>T</sub> hadron suppression" & "anomalous" baryon/meson ratio

- $\sqrt{s_{NN}}$  dependence of suppression
- Magnitude and  $p_T$  (and  $x_T$ ) dependence
- Centrality dependence
- Particle species dependence
- d+Au vs p+p "cold" medium vis-à-vis "vacuum"
  - Role of "conventional" nuclear effects: Cronin, shadowing.
- Data vs theory properties of underlying QCD matter:
  - Dense partonic medium (FSI): Parton energy loss + recombination.
  - Dense partonic medium (ISI): Gluon saturation.
  - Dense hadronic medium (FSI): Hadronic energy loss.
- Summary & conclusions

## High p<sub>-</sub> particles @ RHIC. Motivation

- Products of parton fragmentation (jet "leading particle").
- Early production in parton-parton scatterings with large Q<sup>2</sup>.
- Direct probes of partonic phases of the reaction ⇒ Sensitive to dense medium properties: QGP energy loss, saturated CGC ...
- Info on medium effects accessible through comparison to nuclear- geometry scaled "vacuum" (pp) yields:

Small hard cross-sections + factorization  $\rightarrow$  "collision" scaling

$$\sigma_{AB}^{hard} = \int d^2 b \left[ 1 - e^{-\sigma_{NN}^{hard} T_{AB}(b)} \right] \approx \int d^2 b \, \sigma_{NN}^{hard} \, T_{AB}(b) \propto \langle N_{coll} \rangle(b)$$
$$\langle N_{coll} \rangle(b) = \sigma_{NN} \cdot T_{AB}(b)$$

Production yields calculable theoretically (next slide) ...

Seattle, June 3, 2003

## High p<sub>r</sub> particles @ RHIC. Motivation (cont'd)

Production yields calculable via pQCD:



## Data (1): high $p_{T}$ neutral pions (Au+Au)



### Data (2): inclusive charged hadrons (Au+Au)



David d'Enterria

Seattle, June 3, 2003

## Data (3): identified p,pbar (Au+Au)



## Data (4): high- $p_{\tau}$ neutral pions (p+p @ 200 GeV)



#### Data (5): neutral pions, d(p)+Au @ 200 GeV



Seattle, June 3, 2003

#### Data (6): charged hadrons, d(p)+Au @ 200 GeV

 $d+Au \rightarrow h^{\pm}X$ 

#### $p+Au \rightarrow h^{\pm}X$



## High p<sub>T</sub>: AuAu *versus* pp

#### "hot & dense" QCD medium vis-à-vis QCD "vacuum" ...

## AuAu vs pp (neutral pions)



#### Nuclear modification factor ( $\pi^{0}$ ): central & periph.



Seattle, June 3, 2003

## Nuclear modification factor: $\sqrt{s_{NN}}$ dependence

- $R_{AA}$  compilation for  $\pi^0$  in central A+A:
- CERN: Pb+Pb ( $\sqrt{s_{NN}} \sim 17 \text{ GeV}$ ),  $\alpha + \alpha$  ( $\sqrt{s_{NN}} \sim 31 \text{ GeV}$ ): Cronin enhancement
- RHIC: Au+Au ( $\sqrt{s_{NN}}$  ~ 130, 200 GeV): x4-5 suppression with respect to N<sub>coll</sub>



#### Nuclear modification factor: charged hadrons vs $\pi^{0}$



#### **Centrality dependence of suppression (1)**



#### Centrality dependence of suppression (2): N<sub>part</sub> scaling ?

- Does high  $p_{T}$  production show  $N_{part}$  scaling ?
- If yes, is it the same N<sub>part</sub> scaling as observed in soft particle production ?



## Hadron composition at high- $p_T(1)$ : $R_{AA}(p)$ vs $R_{AA}(\pi)$

- Protons (antiprotons) not suppressed in central Au+Au for  $p_{\tau} < 4.5$  GeV/c
- Ratio central/periph ~  $R_{AA} \approx 1$  ( $N_{coll}$  scaling holds for baryons).
- (consistent with observed larger  $R_{AA}$  for  $h^{\pm}$  than for  $\pi^{0}$  in the same  $p_{\tau}$  range).
- Different production mechanisms for baryons and mesons in the intermediate  $p_{\rm T}$  range ...



#### Hadron composition at high-p<sub> $\tau$ </sub> (2): p/ $\pi$ ratio

- Pronounced centrality dependence of  $p/\pi$  ratio.
- Central colls.: baryon/meson ~ 0.8 for p<sub>T</sub> > 2 GeV/c at variance with perturbative production mechanisms (favour lightest meson).
- Periph. colls. baryon/meson ~ 0.3 as in p+p,pbar (ISR,FNAL) and in e+e- jet fragmentation



PHENIX Collab. Submitted to PRL nucl-ex/0305036

#### Hadron composition at high-p<sub> $\tau$ </sub> (3): p,pbar/ $\pi$ ratios

- Same info as former slide but now individually for p and pbar ...
- Enhanced baryon production in central Au+Au:

 $p/\pi \sim 1$  and  $pbar/\pi \sim 0.7$  (in agreement with global finite net baryon density at midrapidity, p/pbar ~ 0.7)



#### Hadron composition at high-p<sub> $\tau$ </sub> (4): h/ $\pi$ ratio

Central colls.: h/p ~ 2.5 at intermediate p<sub>τ</sub>'s (enhanced baryon production)
Peripheral colls. h/p ~ 1.6 as in p+p (perturbative ratio)



Since h<sup>±</sup> = π<sup>±</sup> + p(pbar) + K<sup>±</sup> ⇒ proton (antiproton) non perturbative enhancement limited to p<sub>T</sub> < 5 GeV/c</p>

Seattle, June 3, 2003

#### $x_{T}$ scaling in Au+Au collisions



•  $x_T$  scaling does not seem to hold for  $h^{\pm}$  (central)  $\rightarrow$  non-perturbative effects Seattle, June 3, 2003 David d'Enterria

#### (x<sub>T</sub> scaling in hadronic collisions)

• Hard scattering cross-sections can be factorized in 2 terms:  $f(\sqrt{s}) \ge g(x_{T})$ 



## high p<sub>T</sub>: d+Au *versus* p+p

"cold" QCD medium vis-à-vis QCD "vacuum" ...

#### d+Au (min. bias) nuclear modification factor (I)



No suppression observed in min. bias d+Au reactions ( $N_{coll} = 8.4 \pm 0.4$ )

Neutral pions: R<sub>dAu</sub> ~ 1.1
(Slight enhancement with respect to collision scaling)

Apparent decreasing trend above 8 GeV/c

- Charged hadrons: R<sub>dAu</sub> ~ 1.4 (Larger enhancement)
  - ~ flat between 3 8 GeV/c

(All errors are 1-sigma)

#### d+Au (min.bias) nuclear modification factor (II)

• Combined  $R_{dAu}$  for charged hadrons and  $\pi^0$ :



- + d+Au results at RHIC clearly reminiscent of p+A Cronin effect
- No shadowing or strong saturation of Au PDF.

#### p+Au nuclear modification factor



#### Nuclear modification: d+Au(min.bias) vs Au+Au(central)



Conclusion: Au+Au suppression not due to a "cold" nuclear matter effect.

## **High-p**<sub>T</sub> @ **RHIC:** theory confronting data

#### APPROACH "A" (pQCD, factorization theorem):

<u>Step 1</u>: pQCD (*NLO or LO+K-factor*) = *PDFs* + *scatt. matrix* + *FFs* <u>Step 2</u>: pQCD + nPDF (shadowing) +  $p_{T}$  broadening (Cronin)

✓ Peripheral data explained

<u>Step 3</u>: pQCD + initial-state nuclear effects + Parton energy loss

- Energy loss 1: BDMPS (LPM, thick plasma)
- Energy loss 2: GLV (LPM, thin plasma)
- Energy loss 3: HSW (modified FFs), (g radiation + absorption)

✓ Goal: explain central colls. (magnitude of quench,  $p_{\tau}$  dependence)

<u>Step 4</u>: pQCD + IS nuc. effects + Energy loss + parton recombination

✓ Goal: explain baryon-meson diff. in central colls.

APPROACH "B" ("classical" CD):

- Step 1: CGC (gluon saturated nuclear wave function: MLV, "evolved")
- Step 2: glue + glue collisions:  $gg \rightarrow g$
- Step 3: Gluon fragmentation (FFs)
  - ✓ Goal: explain deficit, N<sub>part</sub> scaling ...

#### "QGP" models (FSI parton energy loss) vs. data (I)

✓ Foreword: Jet quenching is a true prediction of QGP models.

✓ Magnitude of Au+Au suppression → properties of dense medium:

- High opacities:  $\langle n \rangle = L/\lambda \approx 3-4$
- Large initial gluon densities: dN<sup>g</sup>/dy ~ 800-1200
- Transport coefficients:  $\langle q_0 \rangle \sim 3.5 \text{ GeV/fm}^2$
- Radiative energy losses: dE/dx ≈ 0.25 GeV/fm (expand.) ≈ 14 GeV/fm (static)
- Centrality dependence of Au+Au suppression (detailed comparison of quenching vs N<sub>part</sub> needed).
- ✓ x<sub>T</sub> dependence of Au+Au yields → indication of perturbative (hard) mechanisms (modulo baryons in central reactions).
- ✓ No suppression in d+Au collisions.

## "QGP" models (FSI parton energy loss) vs. data (II)

- $p_{T}$  dependence of Au+Au suppression  $\rightarrow$  not described in 1<sup>st</sup> instance:
- Additional nuclear effects needed to "flatten" LPM R<sub>AA</sub> (though they are probably justified given the d+Au results)
- $\sqrt{s}$  dependence of Au+Au suppression clear ?
- Why there is no jet quenching observed in Pb+Pb @ SPS if dN<sup>9</sup>/dy ~ 500 ?
- Particle species dependence of Au+Au suppression → not described in 1<sup>st</sup> instance:
  - Additional non-perturbative final state effects (quark recomb., baryon junctions, others ?) needed.

#### ISI gluon saturation ("CGC") models vs. data

- X Caveat: High p<sub>T</sub> at midrapidity at RHIC is above Q<sub>s</sub> ~ 1-2 GeV/c (straight application of CGC questionable in first instance).
- ✓ Magnitude of Au+Au suppression → saturated Au wave function (Kharzeev et al.). But: no suppression expected by Baier et al.
- ✓ Centrality dependence of Au+Au suppression → N<sub>part</sub> scaling -like observed (modulo quantitative details).
- X Some deficit expected in d+Au collisions (Kharzeev et al.).
- ✓ d+Au Cronin enhancement built in the initial wave function (Baier *et al.*). Similar conclusions by J.Jalilian too (though no calculations at y = 0).
- Somewhat confusing interpretation of Au+Au, d+Au results. More converging agreement needed ...

#### FSI hadronic reinteractions model vs. data

- X Caveat 1: Very dense hadronic medium scenarios should result in partonic scenarios by definition.
- X Caveat 2: Really quantitative calculations non-existent (more realistic description of hadronic expanding medium needed).
- ✓ Magnitude of Au+Au suppression → dense hadronic medium:
- High opacities:  $\langle n \rangle = L/\lambda \approx 2$
- p<sub>T</sub> dependence of Au+Au suppression → apparently described but with counter-intuitive arguments (due to the assumed formation time ansatz).
- Possible "control" calculations (not observed in data but expected in hadronic medium description): charm meson energy loss, suppressed near-side jet correlation, ...

## High p<sub>-</sub> @ PHENIX: Summary (I)

A wealth of experimental measurements:

- 1. Identified mesons  $\pi^0$ :
  - a Au+Au @ 130 GeV (2 centralities, p<sub>1</sub><sup>max</sup> ≈ 3.5 GeV/c), PRL 2001
  - Au+Au @ 200 GeV (10 centralities,  $p_{\tau}^{max} \approx 10$ . GeV/c), submitted to PRL
  - p+p @ 200 GeV ( $p_{\tau}^{max} \approx 14$ . GeV/c), submitted to PRL
  - d+Au @ 200 GeV (p+Au via n-tagged too,  $p_{\tau}^{max} \approx 10$ . GeV/c), preliminary
- 2. Inclusive charged hadrons h<sup>±</sup>:
  - a Au+Au @ 130 GeV (6 centralities,  $p_{\tau}^{max} \approx 5$ . GeV/c), PRL 2002
  - Au+Au @ 200 GeV (10 centralities,  $p_{\tau}^{max} \approx 10$ . GeV/c), submitted to PRL
  - a d+Au @ 200 GeV (p+Au via n-tagged too, p<sub>⊥</sub><sup>max</sup> ≈ 8. GeV/c), preliminary
- 3. Identified baryons p, pbar:
  - a Au+Au @ 130 GeV (2 centralities, p<sub>τ</sub><sup>max</sup> ≈ 3.5 GeV/c), PRL 2002
  - Au+Au @ 200 GeV (10 centralities, p<sub>⊥</sub><sup>max</sup> ≈ 4.5 GeV/c), submitted to PRL

4. *Electrons*: 130, 200 GeV (*p*<sup>*max*</sup>≈ 4. GeV/*c*): *p*RL 2002, QM2002

#### High $p_{T}$ @ PHENIX: Summary (II)

- Central Au+Au collisions:
- ★ Strong suppression (factor ~ 4-5) of  $\pi^0$  and h<sup>±</sup> (with respect to N<sub>coll</sub> scaling) above p<sub>T</sub>~ 4 GeV/c.
- ★ Flat  $p_{T}$  dependence of suppression above ~4 GeV/c.
- \* Very different behaviour than at lower  $\sqrt{s}$  (high  $p_{\tau}$  enhancement).
- \* Suppression pattern seemingly gradual with centrality (not yet settled).
- ★ Departure from N<sub>coll</sub> scaling at a 2-sigma level over 50-60% centrality class: N<sub>part</sub> ~ 50, ε<sub>Bjorken</sub> ~ 1.2 GeV/fm<sup>3</sup>.
- ★ No true N<sub>part</sub> scaling.
- \* No apparent suppression of (anti)protons up to ~4 GeV/c: "anomalous"  $p/\pi \sim 0.8$  ratio >> than in p+p and e+e- jet fragmentation.
- ★ Hadron/meson ~ 1.6 above p<sub>T</sub>~ 5 GeV/c as in p+p (baryon enhancement limited to p<sub>T</sub><5 GeV/c).</p>
- \*  $\mathbf{x}_{\mathsf{T}}$  scaling holds for  $\pi^0$  not for hadrons (in limited  $\mathbf{x}_{\mathsf{T}}$  range).

## High p<sub>τ</sub> @ PHENIX: Summary (III)

- Peripheral Au+Au collisions:
- Behave effectively as p+p collisions plus N<sub>coll</sub> scaling (expected pQCD behaviour) for all species and for all observables !

#### d+Au collisions:

- No suppression observed in min. bias d+Au (and p+Au) reactions.
- \* Cronin-like enhancement for  $\pi^0$  (small) and h<sup>±</sup> (larger).
- ★ No "cold" nuclear matter effects (shadowing, strong modification of nuclear PDFs) seem to explain high p<sub>T</sub> Au+Au suppression.

#### Data vs. theory:

- pQCD-based final-state parton energy loss models reproduce more aspects of the data (Au+Au, d+Au) than other approaches.
- Non negligible "leftovers" lacking consistent explanation.

## **Backup slides**

#### "Jet quenching" models: Magnitude of suppression

Dense medium properties according to "jet quenching" models:

m

- \* High opacities.
  - <n $> = L/\lambda \approx 3 4$
- \* Large initial gluon densities: dN<sup>g</sup>/dy ~ 800-1200
- Transport coefficients: <q<sub>0</sub>> ~ 3.5 GeV/fm<sup>2</sup>
- Medium-induced gluon radiative energy losses:

 $dE/dx \approx 0.25 \text{ GeV/fm}$  (expanding)  $dE/dx|_{eff} \approx 14 \text{ GeV/fm}$  (static source)



#### "Jet quenching" models: $p_{T}$ depend. of suppression (I)

All medium-induced (LPM) energy-loss models predict a smooth decrease of suppression ( $\propto \sqrt{p_{\tau}}$ ) not seen in the data ...



## "Jet quenching" models: $p_T$ depend. of suppression (II)

- Energy loss with LPM interference effect: (1) gives too much suppression at moderate p<sub>τ</sub>, (2) does not give the observed flat p<sub>τ</sub> dependence of R<sub>AA</sub>
- Alternative 1: Test the Bethe-Heitler limit ...



FIG. 8. Ratio of inclusive  $\pi^0$  cross sections in heavy ion and p-p collisions at  $\sqrt{s} = 200$  GeV, compared with PHENIX

Alternative 2: Add all other relevant nuclear effects ...

Modified nuclear PDFs (aka "shadowing")

✓ Initial-state p<sub>⊤</sub> broadening (aka "Cronin effect")

#### "Jet quenching" models: parton en. loss + shadowing + Cronin = flat $R_{AA}$

• Initial state  $p_T$  broadening provides: (1) the needed enhancement at intermediate  $p_T$ , (2) the small decrease at higher  $p_T$  so as to compensate for the  $p_T$  dependence of energy loss and give the observed ~flat  $R_{AA}$  ( $p_T$ )





Seattle, June 3, 2003

#### "Jet quenching" models: final-state quark recombination

• Recombination/coalescence models and high  $p_{\tau}$  "chemistry"





- Recombination dominates for  $p_T \sim 1-4$  GeV/c:  $\langle p_T(baryons) \rangle > \langle p_T(mesons) \rangle > \langle p_T(quarks) \rangle$ (coalescence, thermal quark distribution ...)
- Fragmentation dominates for  $p_T > 5$  GeV/c:  $p_T$ (hadrons)= z  $p_T$ (partons), with z<1

#### Gluon saturation models: Centrality-dependence of $\pi^0$ suppression

Integrated R<sub>AA</sub><sup>Npart</sup> above a given p<sub>T</sub> (1.5 GeV/c, 4.5 GeV/c) vs. N<sub>part</sub> compared to gluon saturation predictions:



# Hadronic models: energy loss due to final-state hadron interactions

• Dense hadronic medium (<L/ $\lambda$ > ~ 2-3) seems to provide a flat suppression



• Main justification: fast parton hadronization time (i.e. inside expanding fireball) [But, do  $\tau_{had}$  estimates in pp (vacuum) apply to hadroniz. in (colored) medium ? ]

Description of scattering in the hadronic phase realistic enough ? ("... our calculations are at best semiquantitative ...").

## (even more) Backup slides from other presentations

#### Parton shadowing does not seem to play a role (?)

• (x,Q<sup>2</sup>) kinematical range relevant for RHIC ( $p_{T} \sim 2-10 \text{ GeV/c}, y \approx 0$ ):  $\begin{cases} x_{i,j} = (p_{T}/\sqrt{s}) \cdot (e^{\pm y^{1}} + e^{\pm y^{2}}) \approx 2p_{T}/\sqrt{s} \approx 0.01-0.2 \text{ (gluons dominant !)} \\ Q^{2} \approx p_{T}^{2} \approx 4 - 100 \text{ GeV}^{2} \end{cases}$ 



#### but ... what do we really know(\*) about gluon shadowing ?

#### (\*) = measured in lepton-A experiments



"propaganda"-plot for dA run (and for eRHIC) ...

Nuclear (x,Q<sup>2</sup>,A) plane is "terra incognita" compared to nucleon (x,Q<sup>2</sup>) !

#### Cronin enhancement does seem to play a role



Expected  $k_{T}$  broadening @ RHIC

## Hadron composition at high- $p_{T}$ : $\overline{p}/p$ ratios

• Peripheral pbar/p: Decreases with  $p_{\tau}$  (perturbative behaviour)



Seattle, June 3, 2003