Hadron production at high p_T: experimental survey

"QUARK MATTER 2004" 17th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions

Oakland, CA, Jan. 14, 2003

David d'Enterria Nevis Labs, Columbia University, NY

Overview

1. Introduction:

- The goal: study Quantum Chromo many-body Dynamics: QGP, CGC.
- The means: compare hard scattering production in diff. colliding systems.
- 2. "QCD vacuum" production high p_T spectra in p+p:
 - Baseline reference data of hard scattering in free space.
- 3. "Hot QCD medium" production high p_T spectra in central A+A:
 - → Light-flavor (u,d,s): Suppressed (compared to free space).
 - \sqrt{s} , p_{T} , y, centrality, and particle species dependence.
 - Heavy-flavor (c): Unsuppressed (?).
 - \rightarrow Colorless particle (γ): Unsuppressed.
- 4. "Cold QCD medium" production high p_{τ} spectra in d+Au:
 - → Light-flavor (u,d,s) : Enhanced at $y \le 0$ (mid-rapid. & high x_2 in Au)

 $\boldsymbol{p}_{\scriptscriptstyle T}$, centrality, and particle species dependence.

Suppressed at $y \ge 1$ (small x_2 in Au)

CGC ?

QGP?

- 5. What have we learnt ? Data vs. theory.
- 6. Summary

Quark Matter 2004, Oakland, Jan. 14, 2003

Hard QCD probes. Motivation (I)

- Hard probes: High- p_{T} , jets, direct γ , heavy-quarks (D, B), ...
- [1] Early production ($\tau \sim 1/p_{\tau} < 0.1$ fm/c) in parton-parton scatterings with large Q²: Closest experimental probes to underlying QCD (q,g) degrees of freedom.
- [2] Direct probes of partonic phase(s) \Rightarrow Sensitive to QCD medium properties:

[3] Incoherent processes: Direct comparison A+A to p+p yields via " N_{coll} scaling" :

 $d\sigma_{AB \rightarrow hard}(b) = \mathbf{T}_{AB}(b) \cdot d\sigma_{pp \rightarrow hard}$

Nuclear overlap:

 $\mathbf{T}_{AB}(b) \propto N_{coll}(b)$: number of binary inelastic *NN* colls.

Quark Matter 2004, Oakland, Jan. 14, 2003

Hard QCD probes. Motivation (I)

[4] Production yields theoretically calculable via:

perturbative-QCD or ...

classical-field QCD:

Quark Matter 2004, Oakland, Jan. 14, 2003

- Approach: Study modifs. (incl. spectra, partic. composition) of high p_T production in A+A with respect to p+p, p+A to learn about QCD many-body dynamics:
 - "Quark Gluon Plasma" (final-state A+A) and/or
 - "Color Glass Condensate" (initial-state A).

Quark Matter 2004, Oakland, Jan. 14, 2003

High p_{T} spectra @ RHIC

High p_τ spectra @ RHIC

High p_τ spectra @ RHIC

 π^0 spectra as of QM'04

10 centralities 8 orders of magnitude $p_T^{max} = 15 \text{ GeV/c }!$

High p_τ spectra @ RHIC

High p_T spectra in Au+Au @ 200 GeV

Quark Matter 2004, Oakland, Jan. 14, 2003

David d'Enterria (Columbia Univ.)

High p_T p+p @ 200 GeV: "baseline" data

 $p+p \rightarrow \pi^0 X$

Good theoretical (NLO pQCD) description

Well calibrated (experimentally & theoretically) p+p references at hand !

Au+Au vs. p+p @ 200 GeV (π⁰)

Au+Au $\rightarrow \pi^0 X$ (peripheral)

Au+Au $\rightarrow \pi^0 X$ (central)

Quark Matter 2004, Oakland, Jan. 14, 2003

Nuclear modification factor (π^0)

Nuclear modification factor: $\sqrt{s_{NN}}$ dependence

 R_{AA} (π^{0}) compilation in nucleus-nucleus collisions:

- CERN: Pb+Pb ($\sqrt{s_{NN}}$ = 17.3 GeV), $\alpha + \alpha$ ($\sqrt{s_{NN}}$ = 31 GeV): Cronin enhancement.
- RHIC: Au+Au ($\sqrt{s_{NN}}$ = 130, 200 GeV): x 4-5 suppression.

High p_T @ CERN-SPS: "Cronin" or "quenching" ?

High p_{τ} @ CERN-SPS: "Cronin" or "quenching"?

Quark Matter 2004, Oakland, Jan. 14, 2003

High p_T suppression: centrality dependence (I)

back to RHIC energies

Smooth evolution of suppression w.r.t. N_{coll} scaling (in agreement with pQCD+parton energy loss expectations):

Quark Matter 2004, Oakland, Jan. 14, 2003

High p_T suppression: centrality dependence (II)

Approx. N_{part} scaling (in accord with CGC predictions too):

High p_τ suppression: centrality dependence (II)

Approx. N_{part} scaling (in accord with CGC predictions too):

High p_τ suppression: (pseudo)rapidity dependence

"The quenching medium extends also in the longitudinal direction."

Additional initial-state depletion at work too in this kinematic range (given the new d+Au results at forward rapidities).

Quark Matter 2004, Oakland, Jan. 14, 2003

High p_τ suppression: particle dependence (I)

• Inclusive charged hadrons suppressed a factor ~ 4 – 5 at p_{τ} = 5 GeV/c

High p_τ suppression: particle dependence (I)

• Inclusive charged hadrons suppressed a factor ~ 4 – 5 at p_{τ} = 5 GeV/c

• Universal (PID-wise) suppression above $p_T = 5 \text{ GeV/c}$

High p_T suppression: particle dependence (II)

- R_{cp} (ratio central/peripheral) at intermediate $p_T = 2 4$ GeV/c:
 - 1. Baryons: p, p, Λ , Λ NOT suppressed in central Au+Au.
 - 2. Mesons: π^0 , k_s^0 , η equally suppressed.

Particle composition inconsistent with known fragmentation functions.

Different production mechanism for baryons and mesons in the intermediate p_τ range (e.g. fragmentation vs. q recombination in dense partonic medium).

High p_{T} suppression: particle dependence (III)

- Central colls.: p/π ~ 0.8 (at p_T = 2 4 GeV/c) at variance with perturbative production mechanisms (favour lightest meson).
- Periph. colls.: $p/\pi \sim 0.2$ as in p+p,p (ISR,FNAL) & in e+e- jet fragmentation

- Charged hadron and π⁰ equally suppressed above p_T ~ 5 GeV/c: h/π ~ 1.6 as in p+p (perturbative ratio).
- Since $h^{\pm} = \pi^{\pm} + p(pbar) + K^{\pm} \Rightarrow$ baryon enhancement limited to $p_{\tau} < 4.5$ GeV/c

Unsuppressed (?) hard heavy-quark production

- Indirect measurement via semileptonic open-charm decays: $D \rightarrow e^{\pm}X$.
- Within uncertainties, single electron Au+Au central spectra and x-section(*) consistent with N_{coll} scaled p+p charm production:

(*) Charm production is intrinsically hard: N_{coll} scaling expected down to low p_{T}

• Possible reduction (1 σ) at high p_{T} ?

factor ~2 less suppression expected for D than for π (R_{AA}=0.2) in models of medium-induced energy loss

Wait for results from hi-stat. Run-4.

Strong(*) medium effects on heavy flavor production precluded so far.
(*) at least as strong as for light-quark mesons.

Quark Matter 2004, Oakland, Jan. 14, 2003

Unsuppressed hard colorless production

Control observable: direct photons are clean, penetrating (directly coupled to partonic vertex, no fragmentation) non-hadronic hard probes.

• Probes insensitive to colored final-state do show collision scaling at high p_T : pQCD incoherent parton scattering holds for hard processes in central Au+Au !

High p_τ in d+Au ("control" experiment)

Quark Matter 2004, Oakland, Jan. 14, 2003

d+Au nuclear modification factor (η=0)

Quark Matter 2004, Oakland, Jan. 14, 2003

- R_{dAu} > 1 in min. bias, central d+Au and p+Au (neutron-tagged) colls.
- High p_T d+Au unquenched: reminiscent of p+A "Cronin enhancement" (initial-state soft & semihard scattering).
- No Au gluon saturation effects in kinematic region probed $(\eta = 0)$.

d+Au nuclear modification factor ($\eta=0$)

Quark Matter 2004, Oakland, Jan. 14, 2003

PERIPHERAL Au+Au & d+Au

Quark Matter 2004, Oakland, Jan. 14, 2003

David d'Enterria (Columbia Univ.)

MID-PERIPHERAL Au+Au & d+Au

MID-CENTRAL Au+Au & d+Au

Quark Matter 2004, Oakland, Jan. 14, 2003

CENTRAL Au+Au & d+Au

Quark Matter 2004, Oakland, Jan. 14, 2003

- Opposite centrality dependence of d+Au nuclear enhancement compared to Au+Au nuclear suppression.
- (Model-independent) conclusion: Au+Au suppression at y = 0 not due to a "cold" (initial-state) nuclear matter effect: gluon saturation effects not relevant, final-state (QGP) interpretation favoured.

Quark Matter 2004, Oakland, Jan. 14, 2003

Nuclear attenuation factor in e+A

• Cronin-like p_{T} broadening observed in nuclear DIS too.

Nuclear attenuation ratio is free from modified nPDF effects:

$$R_M^h(z,\nu,p_t^2,Q^2) = \frac{\frac{N_h(z,\nu,p_t^2,Q^2)}{N_e(\nu,Q^2)}\Big|_A}{\frac{N_h(z,\nu,p_t^2,Q^2)}{N_e(\nu,Q^2)}\Big|_D}$$

Quark Matter 2004, Oakland, Jan. 14, 2003

The quest for gluon saturation effects @ RHIC ...

d+Au nuclear modification factor ($\eta = 3.2$)

- Significant suppression (factor ~2-3) of moderately high p_T hadroproduction at $\eta = 3.2$ (small x_2 in Au).
- Qualitative agreement with gluon saturation / strong shadowing effects.

d+Au nuclear modification factor (other results @ $\eta \neq 0$)

Quark Matter 2004, Oakland, Jan. 14, 2003

why so much excitement ...

Take the predictions of a standard "leading twist" approach ...
NLO DGLAP global analysis of nuclear PDFs (fit to ~450 experimental points from e+A, p+A Drell-Yann data):

- Maximum gluon shadowing at x~10⁻⁴ (indirectly) constrained by all available DIS data on nuclear targets is ~0.8
- IF indeed R_G(x=10⁻⁴) ≈ 0.2-0.4 (as suggested by BRAHMS), this could be an evidence of breakdown of QCD factorization at high p_T (due to high twist effects at small-x).

but (1) ... soft production is also suppressed in d+Au !

Particle multiplicities (low p_T) in d+Au well below expectations from N_{part tot} scaling compared to p+p at forward rapidities (d fragmentation) ! Well known from p+A at lower sqrt(s). How this affect high p_T production?

Bottom line: Be careful with blind application of "usual" scaling laws for particle production at forward rapidities in asymmetric systems !

Quark Matter 2004, Oakland, Jan. 14, 2003

but (2) ... valence q (not g) dominate BRAHMS data

h+ > h- : deuteron valence quarks (high x₁) dominate over "wee" gluons from Au (small x₂).

(Personal) Conclusion: It's premature to claim R_{Gluon}(x=10⁻⁴) ≈ 0.2-0.4
It's premature to claim CGC at RHIC.

What hard scattering data at RHIC tell us(*) about the properties of the underlying QCD matter ...

Summary of possible physical scenarios:

1. Dense final-state partonic medium: Parton energy loss + quark recombination.

2. Dense initial-state partonic medium: Gluon saturation.

3. Dense final-state hadronic medium: hadronic energy loss.

(*) via confronting data to theory

Quark Matter 2004, Oakland, Jan. 14, 2003

Final-state "QGP" effects vs. data (I)

- Dense medium properties according to "jet quenching" models:
- Initial gluon densities:

dN^g/dy ~ 1100 [Vitev & Gyulassy]

★ Opacities:

 $<n> = L/\lambda \approx 3 - 4$ [Levai et al.]

* Transport coefficients:

 $<q_0 > \sim 3.5 \text{ GeV/fm}^2$ [BDMPS, Arleo,]

- * Plasma temperatures:
 - T ~ 0.4 GeV [G. Moore]
- ★ Medium-induced radiative energy losses:
 dE/dx ≈ 0.25 GeV/fm (expanding) dE/dx|_{eff} ≈ 14 GeV/fm (static source)

Large opacities imply fast thermalization.
All these values imply energy densities well above ε_{crit QCD} in thermalized syst.

Quark Matter 2004, Oakland, Jan. 14, 2003

Final-state "QGP" effects vs. data (II)

Quark recombination (coalescence) mechanisms provide a simple explanation of anomalous chemistry at intermediate p_τ's (2-5 GeV/c):

By quark momenta addition, recombination dominates for p_T ~ 1- 4 GeV/c:

 $p_T(baryons) > p_T(mesons) > p_T(quarks)$

 Fragmentation dominates for p_T > 5 GeV/c: p_T(hadrons)= z p_T(partons), with z<1

High parton densities in a thermal medium are required.

However... is recomb. consistent with (p+p-like) Au+Au dN/dφ near-side widths ?

Final-state effects in a dense hadronic medium ?

- Assumption: fast parton hadronization time implies rescattering of "prehadrons" (colorless but not fully formed) inside expanding (hadronic) fireball.
- Nuclear modification factor: [expanding system with $\epsilon_{init} \approx 1 \text{ GeV/fm}^{3}(*)$]

(*) NB: Such a dense hadronic medium should have gone first through an (even) denser partonic phase of course ...

Cassing, Gallmeister, Bratkovskaya, Greiner, Stoecker, nucl-th/0312049

• State-of-the-art hadronic models (HSD, UrQMD) produce suppression but ... sion of high p_T hadrons 35. The interactions of formed hadrons are found to be negligible in central Au+Au collisions at $\sqrt{s} = 200$ GeV for $p_T \ge 6$ GeV/c and the large suppression seen experimentally is attributed to a large extent to the interactions of 'leading' pre-hadrons with the dense environment, which should be partly of partonic nature in order to explain the large attenuation seen in central Au+Au collisions.

Quark Matter 2004, Oakland, Jan. 14, 2003

Summary

* High p_{T} <u>central Au+Au</u> vs p+p at midrapidity at RHIC:

- → Observation 1: Light-flavor (u,d,s) spectra suppressed by a factor 4-5. (possible suppression already at √s ≈ 20 GeV).
- ➡ Observation 2: Intermediate p_T light-flavor composition inconsistent with known fragmentation functions in free space.
- ➡ Observation 3: Heavy-flavor (c) spectra unsuppressed (?).
- Observation 4: Direct photon spectra unsuppressed.
- * High p_{τ} <u>d+Au</u> vs p+p at midrapidity at RHIC:
- ➡ Observation 5: Spectra enhanced by a factor ~1.3

★ "Explanation" (1,2 via 4,5): pQCD hard scattering + final-state parton energy loss + parton recombination: ⇒ Dense thermal QCD medium.

- * High p_{τ} in d+Au at forward rapidities at RHIC:
- ➡ Observation 6: Spectra suppressed by a factor ~2-3.

* "Explanation" (6): possible evidence of high twist effects at small-x.

backup slides ...

Quark Matter 2004, Oakland, Jan. 14, 2003

High $p_T @ CERN-SPS$: "Cronin" or "quenching" ?

High p_{τ} @ SPS: "Cronin" or "quenching" ?

Quark Matter 2004, Oakland, Jan. 14, 2003

David d'Enterria (Columbia Univ.)

Quark Matter 2004, Oakland, Jan. 14, 2003

David d'Enterria (Columbia Univ.)