High p_T spectra: Experimental overview

INT/RHIC Winter Workshop on First Two Years of RHIC: Theory versus Experiments

Seattle, December 13-15, 2002

David d'Enterria Nevis Labs, Columbia University, NY

High p₋ particles @ RHIC. Motivation

- Products of parton fragmentation (jet "leading particle").
- Early production in parton-parton scatterings with large Q².
- Direct probes of partonic phases of the reaction ⇒ Sensitive to hot/dense medium: parton energy loss ("jet quenching").
- Info on medium effects accessible through comparison to scaled "vacuum" (pp) yields ("binary scaling"):

Nucl. geom. scaling:
$$\sigma_{AB}^{hard} = \int d^2 b \left[1 - e^{-\sigma_{NN}^{hard}T_{AB}(b)} \right] \approx \int d^2 b \sigma_{NN}^{hard} T_{AB}(b)$$

Since: $\langle N_{coll} \rangle \langle b \rangle = \sigma_{NN} \cdot T_{AB}(b) \Rightarrow \frac{(d^2 \sigma_{AB}^{hard})_{C_1 - C_2}}{dp_T dy} = N_{coll} C_{1 - C_2} \cdot \frac{\sigma_{AB}^{geo}}{\sigma_{NN}} \cdot \frac{d^2 \sigma_{pp}^{hard}}{dp_T dy}$

Production yields calculable via pQCD:

$$\sigma_{\mathsf{AB}\to\,\mathsf{hX}}^{hard} \propto \mathbf{f}_{\mathsf{a}/\mathsf{A}}(\mathbf{X}_{\mathsf{a}},\mathbf{Q}_{\mathsf{a}}^{2}) \otimes \mathbf{f}_{\mathsf{b}/\mathsf{B}}(\mathbf{X}_{\mathsf{b}},\mathbf{Q}_{\mathsf{b}}^{2}) \otimes \sigma_{\mathsf{a}\,\mathsf{b}\to\,\mathsf{cd}} \otimes \mathbf{D}_{\mathsf{h}/\mathsf{c}}(\mathbf{Z}_{\mathsf{c}},\mathbf{Q}_{\mathsf{c}}^{2})$$

Measured Au+Au high p_r spectra @ RHIC

- **0.** *Foreword*: "high p_T " $\equiv p_T > 1.5$ GeV/c @ mid-rapidity (but $y \approx 2$. BRAHMS π^-)
- 1. Unidentified charged-particles:
 - a 130 GeV (p_τ^{max}≈ 5. GeV/c): PHENIX, STAR (PRL 2001, PRL 2002)
 - 200 GeV (p_T^{max} ≈ 12. GeV/c): BRAHMS, PHENIX, PHOBOS, STAR (QM 2002)
- 2. Identified baryons p, p:
 - 130 GeV (p_T^{max} ≈ 3.5 GeV/c): PHENIX (PRL 2002)
 - a 200 GeV (p_⊥^{max} ≈ 4. GeV/c): PHENIX (QM 2002)
- 3. Identified mesons π^0 , π^{\pm} :
 - a 130 GeV (p_τ^{max} ≈ 3.5 GeV/c): PHENIX (PRL 2001)
 - 200 GeV (p_τ^{max} ≈ 10. GeV/c): PHENIX, BRAHMS (π⁻<4 GeV/c) (QM 2002)
 </p>
- 4. Particles ratios (p/π , p/p, p/h):
 - 130 GeV (p^{max} ≈ 3.5 GeV/c): PHENIX (PRL 2002)
 - a 200 GeV (p_τ^{max} ≈ 4. GeV/c): BRAHMS, PHENIX, STAR (QM 2002)
- 5. Electrons: 130, 200 GeV (p^{max}≈ 4. GeV/c): PHENIX (PRL 2002, QM2002)

INT/RHIC, Be14, 2002

Talk by R.Averbeck

Summary of published high p₋ observables

1. Inclusive p_{T} spectra (h[±], π^{0} , p, \overline{p} , ...):

For different AuAu centrality classes (central → periph. + min. bias)

2. Nuclear modification factor vs p_{τ} :

$$R_{AA}(p_T) = \frac{d^2 N_{AA}/d\eta dp_T}{\langle N_{coll} \rangle d^2 N_{pp}/d\eta dp_T}$$

Numerator : Different AuAu centrality classes. *Denominator* : - NN ref.: UA1 pp, PHENIX pp→ π^0 X @ 200 GeV - <N_{coll}> (<N_{part}> for PHOBOS) from Glauber

- Central/peripheral ratio vs p_T: For diff. AuAu cent. class combinations.
- 4. R_{AA} (p_T-integr.) vs centrality (N_{part}).
- **5.** Particle ratios $vs p_T$:

For different AuAu centrality classes.

- → p_T dependence of medium effects
- Participant density dependence of medium eff.
- Flavor dependence of medium effects

Compilation I: Inclusive charged particle spectra

Compilation II: Identified high p_T spectra

High-p_T AuAu vs pp (π^0 @ 200 GeV)

pp data agree with pQCD

Periph. data agree with pp plus collision scaling

Strong suppression in central AuAu collisions

High-p_T AuAu spectra vs pQCD (π^0 @ 200 GeV)

- Peripheral: Reproduced with no significant nuclear effects.
- Central: Well below predictions without energy loss. Increasing suppr. with p_τ (inconsistent with const. ε_{loss})

INT/RHIC, **Be**14, 2002

David d'Ente^{rria}

Hadron suppression: central AuAu (130 GeV)

- Strong suppression (from N_{coll} scaling) in π^0 : R_{AA} (p_T=3.5 GeV/c) ≈ 0.25
- Less suppression for charged hadrons: R_{AA} ($p_T = 5 \text{ GeV/c}$) ≈ 0.4
- Significantly different behaviour than at lower energies: SPS Pb+Pb and ISR $\alpha + \alpha$ (Cronin enhancement: $R_{AA} > 1$ for $p_T > 2$ GeV/c)

INT/RHIC, **Be14**, 2002

Hadron suppression: central AuAu (200 GeV)

- Neutral pions :
- Similar suppression as @ 130 GeV
- * Increasing with p_T .
- ★ R_{AA} saturates at ~0.2 for p_T> 5 GeV/c
- ★ Diff. $p_T(x_T)$ evolution than expected for nuclear shadowing.
- Charged hadrons :
- ★ Increasing with p_T and saturating at high p_T too: R_{AA}~0.35
- ***** Less suppressed than π^0
- ★ BRAHMS > STAR > PHOBOS >

PHENIX. Diffs. (within errors): Glauber + cent. trigger ~ 10% pp ref. ~ 10% Eff. corrections: ~15%

- Local maximum @ p_T≈ 2 GeV/c:
 - ★ "Cronin enhancement" on top of N_{part} scaling ?

INT/RHIC, Be14, 2002

Hadron suppression: Central/peripheral

Similar info than R_{AA}. But now: No need of pp reference, & part of the exp. uncertainties cancels out (but larger N_{coll} errors).

central(0-10%)/peripherial(60-92%) G.Kunde, J.Klay 0.9 STAR Preliminary Au+Au nucl-ex/0211018 0.8 200 GeV 0. 130 GeV 0.3 0.2 J. Jia, PHENIX preliminary 0-5%/60-80% nucl-ex/0209029 10⁻¹ 0.1 8 6 10 12 **n** 9 10 7 8 6 p_T [GeV/c] p_{T} (GeV/c) STAR ≈ PHENIX Less suppression than seen in R_{AA} Stronger suppression than seen in R_{AA}

STAR h[±]

PHENIX h[±]

Hadron suppression: Central/mid-central

Suppression & N_{part} scaling ?

• R_{AA} using N_{part} (/2) in the denominator:

PHOBOS h[±]

• Approx. N_{part} scaling, $R_{AA} \sim 1$, only for $p_T > 5$ GeV/c?

"Cronin enhancement" at ~2 GeV/c ?

Clear N_{part} scaling signal in Run-3: R_{AA} = Yield(Au+Au) / [N_{part} x Yield(d+Au)] ≈ 1 INT/RHIC, Be¹⁴, 2002

Hadron suppression: central AuAu (data vs theory)

What does it tell us about the medium ?

INT/RHIC, Be14, 2002

1999 "Last Call for RHIC predictions"

X.N. Wang's nuclear modification factor:

• Factor ~2 suppression @ high p_{τ} (also prediction by I.Vitev).

INT/RHIC, Be14, 2002

Centrality dependence of hadron suppression

INT/RHIC, Be14, 2002

pQCD-compatible high- p_{τ} yield increase (130 \rightarrow 200 GeV)

- N_{ch}(200/130) ~ independent of centrality: roughly the same amount suppression per centrality at both energies.
- * $\Delta N_{ch}(130 \rightarrow 200)_{soft} \approx +15\%$ at low p_{T} in agreement with global multiplicity increase.
- ★ $\Delta N_{ch}(130 \rightarrow 200)_{hard} \approx +15\%$ → +100% increase at high p_T in agreement with pQCD predictions (mini-jet production).

Hadron composition at high- p_{τ} : p/π ratios

Strong non-perturbative (anti)baryon enhancement

Central colls.: Baryon yield ≈ pion yield for p_T>2 GeV/c (≠ jet fragmentation)

INT/RHIC, **Be**14, 2002

Hadron composition at high-p₁: R_{AA} (p) vs $R_{AA}(\pi)$

- Protons/antiprotons not suppressed for $p_{\tau}=1.5 3.5$ GeV/c :
 - Flow ? quenching+ baryon junctions ? different (medium) fragmentation for mesons than for baryons ? parton recombination ?

Hadron composition at high- p_{τ} : \overline{p}/p ratios

Peripheral pbar/p: Decreases with p_τ (perturbative behaviour)

Central pbar/p: ~ 0.7 const. up to 3.5 GeV/c (PHENIX, STAR, BRAHMS) decreasing trend above 4 GeV/c (STAR).

High p_{T} @ RHIC: Summary (I)

- Large amount of high quality data after 2 years of RHIC: Results globally consistent within errors among the 4 experiments.
- Central AuAu collisions:
 - **Strong suppression** (factor ~5) of π^0 with respect to N_{coll} scaling.
 - ★ Suppression (factor ~3.5) of unidentified charged hadrons.
 - * No apparent suppression of (anti)protons up to ~4 GeV/c ("anomalous" p/ π).
 - Approx. N_{part} scaling of hadrons above ~5 GeV/c.
 - Magnitude of suppression in agreement with parton energy loss scenarios assuming opaque medium formation (dN⁹/dy~900, λ/L~3-4).
 - ★ Flat p_T dependence (so far) of suppression not described with LPM energy loss alone.
- Peripheral AuAu collisions:
 - * Behave effectively as pp collisions (i.e. as pQCD predicts) for all species.
- Suppression sets in over 40-70% centrality class (N_{part} ~ 50).
- Relative increase of high p_T yields (130 to 200 GeV) in agreement with pQCD: particle production from (mini)jets.

Summary (II)

- Two most interesting physical "discoveries" @ RHIC:
 - 1. High p_{T} suppression.
 - 2. High p_{τ} baryon/meson enhancement.

"Clear signals of strong medium effects at work !"

- What do we learn about the medium properties ? QGP yes/no ?
- Final-state partonic jet quenching ? (QGP)
- Initial-state saturation of nuclear wave functions ? (CGC)
- Final-state hadronic absorption ? (very dense hadron medium)
- 🗢 other ... ?
- Answers:
- * Experimental: d+Au ...
- ★ <u>Theoretical</u>: Does scenario "X" consistently explains: the magnitude, p_T dependence, centrality evolution, and flavor behaviour of RHIC high-p_T suppression ?

Backup slides

Cronin enhancement

INT/RHIC, Be14, 2002

Hadron composition at high-p_T: Summary

INT/R

Centrality dependence of hadron suppression (R_{AA} for N_{part} scaling)

INT/RHIC, **Be**14, 2002

Hadron composition at high-p_r

Baryon yield ≈ pion yield for p_T>2 GeV/c in central colls.

Onset of suppression ?

• R_{AA} plotted as a function of centrality ~ transverse energy (~ $\epsilon_{Biorken}$):

INT/RHIC, **Be14**, 2002