

Jets and jet quenching in high energy nuclear collisions

Hirschegg 2005

Kleinwalsertal, Austria, Jan. 19, 2005

David d'Enterria Nevis Labs, Columbia University, NY

Overview

- Introduction:
 - Jet production in pp, pA and AA collisions.
 - What can be learnt about high-energy-density QCD via jet physics in AA collisions ?
- Results I: Leading hadron production in pp, dAu, AuAu @ RHIC:
 - High p_{τ} hadro-production in baseline pp collisions (data vs. pQCD)
 - High p_{τ} suppression in central AuAu: p_{τ} -, sqrt(s)-, reaction-plane dependence.
 - Physics [Final state (FS) effects]: Parton energy loss \rightarrow QCD medium properties.

Results II: Jet production in QCD vacuum (pp) & cold QCD medium (dAu):

- Full jet reconstruction (pp).
- Dijets via dihadron $\Delta \phi$ correlations (pp, dAu).
- Extraction of jet properties: $\textbf{j}_{\scriptscriptstyle T},\,\textbf{k}_{\scriptscriptstyle T}$
- Physics [Initial state (IS) effects]: multiple scattering in cold nuclear matter
- Results III: Jet production in a hot & dense QCD medium (AA):
 - Dijets: away-side disappearance: sqrt(s)-, reaction-plane dependence.
 - Extraction of jet properties (j $_{T}$, k $_{T}$, "FFs").
 - Dihadron $\Delta \eta$ correlations.
 - Physics [Final state (FS) effects]: Jet quenching \rightarrow QCD medium properties.

Jet production in pp collisions

Jet : Collimated spray of hadrons in a cone (R = √Δη² + Δφ² ~ 0.7) with 4-momentum of original fragmenting parton:
 (i) Leading hadron takes away large fraction (<z> ~0.6 –0.8 @ RHIC) of parent parton p₁

N.B.(1) -- High p_{τ} (leading) hadron: pp, ppbar

N.B.(1) -- High p_{T} (leading) hadron: pp, ppbar

• $p_T > 2$ GeV/c: Power-law (Ed³ σ /d³ $p \sim 1/p_T^n$, n~ 6 -10) with strong \sqrt{s} -dependence.

Jet production in pp collisions

Jet : Collimated spray of hadrons in a cone (R = √Δη² + Δφ² ~ 0.7) with 4-momentum of original fragmenting parton:
 (i) Leading hadron takes away large fraction (<z> ~0.6 –0.8 @ RHIC) of parent parton p_T

• Jet is balanced back-to-back by other hard-scattered "parton" (jet, direct γ , ...)

N.B.(2) -- Jets in pp, ppbar collisions

p+p → jet+jet [\sqrt{s} = 63 GeV] AFS @ CERN-ISR (1982)

 $p+p \rightarrow jet+jet \ [\sqrt{s} = 200 \text{ GeV}] - \text{STAR} @ \text{RHIC} (2003)$

p+pbar \rightarrow jet+jet [\sqrt{s} = 1.96 TeV] – D0 @ Tevatron (2001)

p+pbar → jet+jet [\sqrt{s} = 560 GeV] UA2 @ CERN-SppS (1983)

HIRSCHEGG'05, January 19th 2005

Jet production in pp collisions

• Jet : Collimated spray of hadrons in a cone ($R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \sim 0.7$) with 4-momentum of original fragmenting parton:

(i) Leading hadron takes away large fraction (< z > ~0.6 - 0.8 @ RHIC) of parent parton p_T

(ii) Average jet fragmentation transverse momentum (jet "width"): $\langle j_T \rangle$

• Jet is balanced back-to-back by other hard-scattered "parton" (jet, direct γ , ...)

Jet production in pp collisions

- Jet : Collimated spray of hadrons in a cone ($R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \sim 0.7$) with 4-momentum of original fragmenting parton:
 - (i) Leading hadron takes away large fraction (<z> ~0.6 –0.8 @ RHIC) of parent parton p_{T}
 - (ii) Average jet fragmentation transverse momentum (jet "width"): $\langle j_{T} \rangle$
- Jet is balanced back-to-back by other hard-scattered "parton" (jet, direct γ, ...) A (small) acoplanarity appears due to intrinsic transv. k_T (parton Fermi motion + g rad.).

HIRSCHEGG'05, January 19th 2005

Jet production in pA collisions

 Extra nuclear k_τ broadening due to multiple scattering in the nuclear medium (Cronin enhancement of leading hadron).

Jet production in pA collisions

- Extra nuclear k_T broadening due to multiple scattering in the nuclear medium (Cronin enhancement of leading hadron, dijet broadening).
- At (very) small-x values (forward rapidities) there is a reduced effective number of parton scattering centers due to gluon-gluon fusion processes.

Jet production in AA collisions

Parton energy loss due to final-state gluon-strahlung in dense medium:
 (i) Reduces energy of the leading hadron: high p_T hadron suppression,
 (ii) Modifies (di)jet shape properties: k_T, j_T, dN/dx_E, ...

Jet production in AA collisions

Approach: Compare jet production in p+p,d+A & A+A :

- I. Inclusive leading hadron: dN/dp_{T}
- II. Di-hadron correlations: $dN_{pair}/d\phi$, $dN_{pair}/d\eta$
- III. Obtain (di)jet properties: k_T , j_T , dN/dx_E (~FF)

... to learn about transport & thermodyn. properties of dense QCD medium.

HIRSCHEGG'05, January 19th 2005

Jet production in AA : (a few) theoretical expectations

Medium-modified FFs:

X.N.Wang; Salgado&Wiedem. Arleo, ...

Jet broadening in eta:

Armesto et al hep-ph/0405301

+ Valuable diagnostic tools of QCD medium ($dN^{g}/dy, <q_{0}>, ...$)

HIRSC HEG G'05, January 19th 2005

David d'Enterria (Columbia Univ.)

Leading hadron production at RHIC: pp, dAu, AuAu

Leading hadron spectra: pp @ 200 GeV

• High $p_{\tau} \pi^0$, h[±] spectra up to ~15 GeV/c. Good theoretical (NLO pQCD) descript.

Leading hadron spectra: pp @ 200 GeV

High p_T π⁰ well described by <u>collinear</u> NLO pQCD: No apparent need of large intrinsic k_T (though this is maybe FF-dependent) at variance w/ lower sqrt(s) results:

Higher-order theoretical corrections (soft-g rad., threshold resumm.) cure the problem. [Vogelsang & deFlorian, to be submitted]

HIRSCHEGG'05, January 19th 2005

Leading hadron spectra: pp @ 200 GeV

• High $p_{\tau} \pi^0$, h[±] spectra up to ~15 GeV/c. Good theoret. (NLO pQCD) description.

 $p+p \rightarrow h^{\pm} X$ (non singly diffractive)

Well calibrated (experimentally & theoretically) p+p baseline spectra at hand !

Leading hadron spectra: AuAu, dAu @ 200 GeV

Au+Au:

HIRSC HEG G

Comparing AA, pA and pp hard inclusive spectra

Production yields computable in perturbative QCD:

"Factorization theorem":

$$d\sigma_{AB \to bX} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{f}_{a|A}(\mathbf{x}_{a}, \mathbf{Q}_{a}^{2}) \otimes \mathbf{f}_{b|B}(\mathbf{x}_{b}, \mathbf{Q}_{b}^{2}) \otimes d\sigma_{ab \to cd} \otimes \mathbf{D}_{b|c}(\mathbf{z}_{c}, \mathbf{Q}_{c}^{2})$$

Independent scattering of "free" partons: $f_{a/A}(x,Q^2) = A f_{a/p}(x,Q^2)$

A+B = "simple superposition of p+p collisions"

$$d\sigma_{AB \rightarrow hard} = A \cdot B \cdot d\sigma_{pp \rightarrow hard}$$

$$(d\sigma_{pA \rightarrow hard} = A \cdot d\sigma_{pp \rightarrow hard})$$

At impact parameter b:

$$dN_{AB \rightarrow hard} (b) = T_{AB}(b) \cdot d\sigma_{pp \rightarrow hard}$$

$$geom. nuclear overlap at b$$

$$T_{AB} \sim \# NN \text{ collisions ("Ncoll scaling")}$$

Nuclear Modification Factor:

HIRSCHEGG'05, January 19th 2005

High $p_{T} \pi^{0}$: AuAu vs pp @ 200 GeV

Au+Au $\rightarrow \pi^0 X$ (peripheral)

Peripheral data agree well with p+p (data&pQCD) plus N_{coll} scaling

Strong suppression in central Au+Au collisions

Au+Au $\rightarrow \pi^0 X$ (central)

AuAu @ 200 GeV (central): high p_{T} suppression !

dAu @ 200 GeV: high p_r enhancement !

Conclusion: Suppression in central Au+Au is due to final-state effects.

HIRSCHEGG'05, January 19th 2005

David d'Enterria (Columbia Univ.)

High p_T suppression: QCD medium properties

Medium properties according to "jet quenching" models:

- Large opacities imply fast thermalization.
- All these values imply energy densities well above $\varepsilon_{crit QCD}$ in thermalized syst.

High p_T suppression: Excitation function

 sqrt(s)-dependence of R_{AA} consistent w/ parton E_{loss} models (ΔE_{loss}~ dN/dy) + Bjorken expansion:

High p₋ suppression: Reaction-plane dependence

 $\Delta \Phi = 0^{\circ}$

Jet production: QCD vacuum (pp) versus cold QCD medium (dAu)

Full jet reconstruction in pp

• First attempt to fully reconstruct jets @ RHIC (p+p @ \sqrt{s} = 200 GeV)

HIRSCHEGG'05, January 19th 2005

Dijets via dihadron azimuthal correlations: pp, dAu

- Two-particle correlations: $h^{\pm} h^{\pm}$, $\pi^{0,\pm} h^{\pm}$. Trigger: highest p_{τ} (leading) hadron.
- Associated $\Delta \phi$ distribution (e.g. "assorted": 2 GeV/c < p_T^{assoc} < $p_T^{trigger}$)
- Normalized to number of triggers:

$$\frac{1}{N_{trig}}\frac{dN}{d\Delta\phi} = \frac{1}{N_{trig}}\frac{N_{cor}(\Delta\phi)}{N_{mix}(\Delta\phi)}$$

• Clear near- $(\Delta \phi \sim 0)$ and away- $(\Delta \phi \sim \pi)$ side jet signals:

Jet properties from dihadron correlations

(1) 2-hadron correlation function:

(2) Fit to 2-gaussians:

 $\frac{1}{N_{tr\,ig}}\frac{dN}{d\Delta\phi} = B + \frac{Yield_N}{\sqrt{2\pi}\sigma_N}e^{\frac{-\Delta\phi^2}{2\sigma_N^2}} + \frac{Yield_F}{\sqrt{2\pi}\sigma_F}e^{\frac{-(\Delta\phi-\pi)^2}{2\sigma_F^2}}$

 \implies near-side σ_{N} , far-side σ_{F} widths

(3) Extraction of j_T, k_T from σ_N, σ_F via
 [*], [**] (and dN/dx_E from Yield_{N,F})

[details in J.Jia, nucl-ex/0409024]

HIRSCHEGG'05, January 19th 2005

Mean transverse momentum of jet hadrons (j_{T}) : pp, dAu

• Jet (near-angle) "width" j_{T} :

< j_T> ~ 500 MeV/c (from full jet reco)

- < j_T> ~ 500 MeV/c: Agreement between RHIC and ISR data.
- No apparent difference between dAu and pp.
- Fragmentation not affected by cold QCD medium.

Di-jet acoplanarity ("intrinsic" k_r) : pp, dAu

Ø

 $\langle z \rangle = 0.75$ taken as constant

5

- **pp: <k**_{Tv}**> ~ 1.1 GeV/c** ("unseen" in inclusive high p_{τ} hadron spectra $\langle \mathbf{k}_{\mathrm{T}} \rangle_{\mathrm{pair}} \neq \langle \mathbf{k}_{\mathrm{T}} \rangle_{\mathrm{incl}}$
- In dAu: $\langle k_T^2 \rangle_{dAu} = \langle k_T^2 \rangle_{pp} + \langle k_T^2 \rangle_{nuclear}$
- Non-null (but small) <k_T>_{nuclear} (constraints models of multiple scattering in cold nuclear medium)

HIRSCHEGG'05, January 19th 2005

[GeV/c]

1

0

[GeV/c]

10

P_{T,trig}

David d'Enterria (Columbia Univ.)

Di-jet acoplanarity ("intrinsic" k_r): Excitation function (pp)

• sqrt(s)-dependence of $< k_T >_{pair}$:

(Logarithmic) increase with sqrt(s) consistent with growing gluon radiation contribution (not just intrinsic parton Fermi motion).

Jet production in hot & dense QCD matter (AA collisions)

Jets in high-energy AA collisions

Full jet reconstruction w/ standard algorithms is unpractical at RHIC due to huge soft background ("underlying event"):

p+p → jet+jet [\sqrt{s} = 200 GeV] STAR @ RHIC (2003)

Au+Au \rightarrow X [$\sqrt{s_{_{NN}}}$ = 200 GeV] STAR @ RHIC (2003)

Dijets via dihadron azimuthal correlations: AuAu (200 GeV)

- [Same analysis as in pp, dAu plus elliptic flow subtraction]
- Discovery of "monojet"-like topologies in central AuAu: (disappearance of away-side jet correlations):

Dijets via dihadron azimuthal correlations: AuAu (200 GeV)

Centrality dependence of near- and away- side correlations "strengths":

$$I_{AA}(\Delta\phi_1, \Delta\phi_2) = \frac{\int_{\Delta\phi_1}^{\Delta\phi_2} d(\Delta\phi) [D^{AuAu} - B(1 + 2v_2^2 \cos(2\Delta\phi))]}{\int_{\Delta\phi_1}^{\Delta\phi_2} d(\Delta\phi) D^{pp}}$$

STAR, PRL90, 082302 (2003)

HIRSCHEGG'05, January 19th 2005

David d'Enterria (Columbia Univ.)

Reaction-plane dependence of away-side dissapeareance

Reaction-plane dependence of away-side dissapeareance

Reaction-plane dependence of away-side dissapeareance

Away-side disappearance also at 62 GeV (statistics limited):

Dihadron azimuthal correlations: PbPb (17 GeV)

Large broadening of away-side correlations seen in di-pion azimuthal correlations at CERN-SPS:

- Gaussian peaks have diff. widths: $\sigma_{N} = 0.27 \pm 0.05$ rad, $\sigma_{F} = 0.55 \pm 0.17$ rad.
- Centrality dependence: σ_N is constant, σ_F increases w/ centrality
- Significant k_{T} broadening: $\langle k_{T} \rangle = 2.8 \pm 0.6$ GeV/c

Jet properties (j_T , k_T): AuAu (200 GeV)

• Centrality dependence of $\langle |j_{Tv}| \rangle$ and $\langle z \rangle \langle |k_{Tv}| \rangle$ in Au+Au:

• $< j_T >_{AuAu} ~ < j_T >_{pp}$: near-side fragmentation unaffected by QCD medium.

Significant k_T broadening (k_T~3 GeV/c) in AuAu (strongly centrality dependent) indicating substantial final-state rescattering of away-side fragmenting parton.

HIRSCHEGG'05, January 19th 2005

"Fragmentation functions": Central AuAu (200 GeV)

• Associated ($p_{Tassoc} = 0.15 - 4 \text{ GeV/c}$) near- and away- side hadron p_T spectra:

Associated near-side jet yields unmodified (pp ~ AuAu)

• Associated away-side jet yields "shifted down" in p_T : spectra closer to pure

"soft" inclusive hadron production ("thermalized")

HIRSCHEGG'05, January 19th 2005

"Fragmentation functions": Central AuAu (200 GeV)

Baryon-meson dependence of associated near- and away- side hadron p_T spectra:

- Associated yields similar for meson & baryon triggers (perhaps weak reduction for baryons in very central collisions).
- Slight increase of associated near-side jet yields in mid-central AuAu.
- Jet-like production but different suppression for leading baryons and mesons !?

"Fragmentation functions": AuAu (200 GeV)

Associated near- and away-side baryon&meson yields:

Dihadron An correlations: AuAu (200 GeV)

- Significant broadening of pseudo-rapidity correlations in AuAu compared to pp,dAu. ("stretching" of jet cone along η).
- Coupling of g radiation w/ longitud. expanding medium?

HIRSCHEGG'05, January 19th 2005

0.3

0.2

0.1<u>⊢</u>____2

STAR

8 Pt(trig) (GeV/c)

∎ĭ∎

6

Summary: "Jet quenching" at RHIC

Results I: Leading hadron production in pp, dAu, AuAu @ RHIC:

- Strong (factor ~5) high p_{T} suppression in central AuAu: p_{T} -, sqrt(s)- dependence consistent with parton energy loss in dense QCD medium (dN^g/dy~1100).

- Reaction-plane dependence of the suppression provides additional constraints to the path-length dependence of the energy loss.

Results II: Jet production in QCD vacuum (pp) & cold QCD medium (dAu):

- Small differences on the extracted properties (j $_{\tau}$, k $_{\tau}$) of the jets emitted in pp & dAu
- Relatively small initial state effects (multiple scattering) in cold nuclear matter.
- Results III: Jet production in a hot & dense QCD medium (AA):
 - Away-side disappearance consistent with:

(i) "Mono-jet" predictions due to high-energy parton "absorption" in dense QCD matter. (enhanced suppression following line of longest path).

- (ii) Large broadening of di-jet acoplanarity (k_T~3 GeV/c) due to multiple scattering of away-side parton in the medium. (Can we extract a transport coeffic. consistent w/ the observed dN^g/dy ?).
- Unmodified near-side azimuth. jet properties (j_{τ}) : Vacuum fragm. of unquenched trigger had.
- No strong flavor dependence at intermediate $p_{\scriptscriptstyle T}$ observed
- Dihadron eta correlations consistent w/ coupling of g rad. w/ longitud. expand. medium

"Cartoon summary": Jet-quenching at RHIC

Jet profile in pp (dAu) collisions: • Jet profile in AuAu central collisions:

Near-side width: $\langle j_{\tau} \rangle \sim 600 \text{ MeV/c}$ Dijet acoplanarity: $\langle k_{\tau} \rangle \sim 1.8$ GeV/c

Factor ~5 suppression of leading hadron. (Increased) dijet acoplanarity: $\langle k_{T} \rangle \sim 3$ GeV/c "Thermalized" associated low p_{τ} yields Dijet broadening in eta.

• ... and exciting jet-physics expected at LHC: γ -, Z-, jet-jet correlations

Backup slides

Dijets via dihadron azimuthal correlations: AuAu

- $2.5 < p_T^{trig} < 4 \text{ GeV/c}, 1.0 < p_T^{assoc} < 2.5 \text{ GeV/c}$
- Additional associated yield in same jet in Au+Au
 - But same angular width observed !!!

HIRSCHEGG'05, January 19th 2005

Summary

Jet production and fragmentation:

- Good agreement of the jet properties in pp collisions with other lower s
 experiments
- dAu $j_{\scriptscriptstyle T}$ and $k_{\scriptscriptstyle T}$ consistent with pp
- In AuAu significant broadening of "effective" k_{τ} with centrality
- Back-to-back correlations
- Suppression of away-side jet \rightarrow jet quenching picture
- Suppression dependent on reaction plane orientation
- No strong flavor dependence at intermediate p_T observed
- Near-side correlations
- Evidence for <u>near-side jet broadening</u> in central Au+Au
- 8

High p_{τ} <u>central Au+Au</u> vs p+p at midrapidity at RHIC:

(1) Inclusive spectra suppressed by a factor of 4-5 at 200 GeV and by a factor of \sim 3 at 62.4 GeV

(2): Intermediate p_T hadron composition inconsistent

with known fragmentation functions in free space.

(3) Disappearance of away-side jet correlations. Enhanced mono-jet pattern following line of longest path.

High p_T in d+Au at forward rapidities at RHIC: HIRSCHEGG'05, January 19th, 2005

David d'Enterria (Columbia Univ.)

Dihadron azimuthal correlations: AuAu "mono-jets"

Centrality dependence of near- and away- side correlations "strengths":

$$I_{AA}(\Delta\phi_1, \Delta\phi_2) = \frac{\int_{\Delta\phi_1}^{\Delta\phi_2} d(\Delta\phi) [D^{AuAu} - B(1 + 2v_2^2 \cos(2\Delta\phi))]}{\int_{\Delta\phi_1}^{\Delta\phi_2} d(\Delta\phi) D^{pp}}$$

[A.Majumder, nucl-th/041261]

Dijets via dihadron azimuthal correlations: AuAu

In dN_{pair}/d∆ for "trigger" (p_T > 4GeV/c) & associated (p_T = 2- 4 GeV/c) charg. hadrons:

High p_r azimuthal correlations: jets in dAu, pp

0

Back-to-back jets do not disappear in central d+Au !

"N_{coll} scaling" in Au+Au @ 200 GeV: Direct Photons

Direct photon production in Au+Au (all centralities) consistent w/ p+p incoherent scattering ("N_{coll}-scaled" pQCD) predictions:

Au+Au @ 62.4 GeV (central): suppression predictions

HIRSCHEGG'05, January 19th 2005

David d'Enterria (Columbia Univ.)

High p_r @ CERN-SPS: "Cronin" or "quenching" ?

• New nuclear modification factor (better p+p $\rightarrow \pi^0$ ref. @ $\sqrt{s_{NN}} = 17.3$ GeV)

- No "Cronin" effect in central collisions ($R_{AA} \sim 1$).
- "Cronin" enhancement in peripheral ... and suppression in top central ?
- Look for onset of suppression at RHIC Au+Au, p+p @ √s_{NN}≈ 20 GeV ?

d+Au nuclear modification factor (at y=0)

- High p_T production in d+Au not suppressed but enhanced ! R_{dAu} > 1 as in p+A "Cronin enhancement": p_T broadening due to initial-state soft & semihard scattering.
- "pQCD" cross-sections ($R_{AA} \sim 1$) recovered at $p_T > 8$ GeV/c
- No Au shadowing effects in kinematic region probed (y = 0).

HIRSCHEGG'05, January 19th 2005