Status of QGP search at RHIC - A PHENIX perspective(*) -

IKF Seminar

Inst. für Kernphysik, Frankfurt, September 30, 2004

David d'Enterria Nevis Labs, Columbia University, NY

(*) Based upon "PHENIX White Paper": http://www.phenix.bnl.gov/phenix/WWW/info/comment/

Overview/Summary

1. Introduction:

- Goal: Study Quantum Chromo (many-body) Dynamics (QGP, CGC) in high-energy A+A collisions [by comparing to p+A ("cold" QCD medium), p+p ("no medium")].
- 2. Energy densities:
 - Maximum $dE_T/d\eta \sim 600$ GeV at midrapidity consistent w/ initial $\epsilon > 5$ GeV/fm³
- 3. Elliptic flow:
 - Strong elliptic flow v_2 consistent w/ short thermalization times $\tau_0 \sim 1$ fm/c

4. Soft particle spectra:

- Shapes & yields consistent w/ hydrodynam. (thermal+coll. velocity) source emission
- Particles ratios consistent w/ chemical equilibrium before hadronization

5. Hard particle spectra:

- Strong high p_T suppression in central A+A (compared to p+p, p+A & pQCD) consistent w/ final-state partonic energy loss in dense system: dN^g/dy~1100
- 6. Intermediate p_{T} spectra:
 - Enhanced baryon yields & v₂ (compared to meson) consistent w/ quark recombination mechanisms in dense thermal system
- 7. Summary & open questions: "QGP" ? Observations @ lower √s ? Future measurements.

High-energy heavy-ion physics program (in 4 plots)

L= == Go Go Go + 5 8; (18 m Da + m;) 8; where Guy = Du A, - D, A, + the A, A, and $D_{\mu} = \partial_{\mu} + i t^2 \mathcal{A}_{\alpha}^* (\alpha_s = g^2/4\pi)$ $\alpha_s(Q^2) \sim 1/\ln(Q^2/\Lambda^2), \Lambda \sim 200 \text{ MeV}$

 Learn about 2 basic properties of strong interaction: (de)confinement, chiral symm. breaking (restoration)

 Probe quark-hadron phase transition of the primordial Universe (few µsec after the Big Bang)

4. Study the regime of non-linear (high density) many-body parton dynamics at small-x (CGC)

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

The "Little Bang" in the lab.

- High-energy nucleus-nucleus collisions: fixed-target reactions (\sqrt{s} ~17 GeV, SPS) or colliders (\sqrt{s} ~200 GeV, RHIC. \sqrt{s} ~5.5 TeV, LHC)
 - QGP expected to be formed in a tiny region (~10⁻¹⁴ m) and to last very short times (~10⁻²³ s).
 - Collision dynamics: Diff. observables sensitive to diff. react. stages

Relativistic Heavy-Ion Collider (RHIC) @ BNL

Specifications:

- 3.83 km circumference
- 2 independent rings:
 - 120 bunches/ring
 - 106 ns crossing time

A + A collisions @ $\sqrt{s_{NN}} = 200 \text{ GeV}$ Luminosity: 2·10²⁶ cm⁻² s⁻¹ (~1.4 kHz) p+p collisions @ $\sqrt{s_{max}} = 500 \text{ GeV}$ p+A collisions @ $\sqrt{s_{max}} = 200 \text{ GeV}$

4 experiments: BRAHMS, PHENIX, PHOBOS, STAR

Runs 1 - 4 (2000 - 2004):

Au+Au @ 200, 130, 62.4 GeV p+p @ 200 GeV d+Au @ 200 GeV

The 4 RHIC experiments

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

RHIC Au+Au luminosities

Au+Au collisions @ 200 GeV

~ 700 charged particles per unit rapidity at midrapidity (top 10% central)

Energy densities at RHIC

Energy density (Au+Au @ 200 GeV, y=0)

dE_T/dη at mid-rapidity measured by calorimetry (using PHENIX EMCal as hadronic calorimeter: E_T^{had} = (1.17±0.05) E_T^{EMCal})

David d'Enterria (Columbia Univ.)

1 fm/c thermalization time ?

- Not unrealistic at RHIC... (for the 1st time: $\tau_{therm} > \tau_{cross} = 2R/\gamma = 0.13$ fm/c)
- Energy density time evolution in long. expanding system: $\epsilon \sim 1/\tau$

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

Elliptic flow at RHIC

Elliptic flow

 Initial anisotropy in x-space in non-central collisions (overlap) translates into final azimuthal asymmetry in p-space (transverse to react. plane)

- 1. Truly collective effect (absent in p+p collisions).
- Early-state phenomenon: develops only in 1st instants of reaction, strongly self-quenches after t~2 fm/c

Time evolution of ellipsoid eccentricity:

$$\varepsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$$

1.5 2 ∆ (rad)

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

1 1.5 2 ∆≬(rad)

Elliptic flow at RHIC

 Large ν₂ signal at RHIC: Exhausts hydro limit for p₁<1.5 GeV/c

- \Rightarrow Strong (collective) pressure grads.
- \Rightarrow Large & fast parton rescattering: early thermalization.
- $\sqrt{s-dependence}$ of v_2 : ~50% increase from SPS Apparent saturation within 62-200 GeV

 Mass dependence of v₂ consistent w/ hydrodynamics too:

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

Soft particle production at RHIC

Soft particle spectra

• Bulk π^{\pm} , p(pbar) spectra ~reproduced by hydro w/ QGP EOS at $\tau_0=0.6$ fm/c

protons:

Solid lines: QGP+HG Dashed lines: HG

Ratios of particle yields

• Ratios of hadron yields consistent w/ system at chemical equilibrium (strangeness saturation factor γ_s =1) before hadronization (T_{chem.freeze-out} ~ T_{crit}):

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

Hard QCD production at RHIC

Hard QCD probes (I)

- Hard probes: High- p_{T} , jets, direct γ , heavy-quarks (D, B), ...
- 1. Early production ($\tau \sim 1/p_{\tau} < 0.1$ fm/c) in parton-parton scatterings with large Q²: Closest experimental probes to underlying QCD (q,g) degrees of freedom.
- 2. Direct probes of partonic phase(s) \Rightarrow Sensitive to QCD medium properties:

Hard QCD probes (II)

3. Production yields theoretically calculable via perturbative-QCD:

"Factorization theorem":

 $d\sigma_{_{AB \rightarrow hX}} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{f}_{_{a/A}}(\mathbf{x}_{_{a}}, \mathbf{Q}^{_{a}}) \otimes \mathbf{f}_{_{b/B}}(\mathbf{x}_{_{b}}, \mathbf{Q}^{_{a}}) \otimes d\sigma_{_{ab \rightarrow cd}} \otimes \mathbf{D}_{_{h/c}}(\mathbf{z}_{_{c}}, \mathbf{Q}^{_{a}})$

Independent scattering of "free" partons:

$$f_{a/A}(x,Q^2) = A f_{a/p}(x,Q^2)$$

A+B = "simple superposition of p+p collisions"

 $d\sigma_{AB \rightarrow hard} = A \cdot B \cdot d\sigma_{pp \rightarrow hard}$

At impact parameter b:

 $dN_{AB \rightarrow hard} (b) = T_{AB}(b) \cdot d\sigma_{pp \rightarrow hard}$ geom. nuclear overlap at b $T_{AB} \sim \# NN \text{ collisions ("N_{coll} scaling")}$

Nuclear Modification Factor:

High p_T p+p baseline data well described by pQCD

Good theoretical (NLO pQCD) description:

"N_{coll} scaling" in Au+Au @ 200 GeV: Direct Photons

Direct photon production in Au+Au (all centralities) consistent w/ N_{coll}-scaled p+p pQCD predictions:

"N_{coll} scaling" in Au+Au @ 200 GeV: Total charm

- Open-charm indirect measurement via semi-leptonic channel: $D \rightarrow e^{\pm} + X$
- Single e[±] Au+Au spectra & total cross-section consistent w/ N_{coll} -scaled p+p charm production:

pQCD parton scattering holds for hard processes in Au+Au (all centralities).

"N_{coll} scaling" in A+A @ 17, 31 GeV: High p_T hadrons

High p_T π⁰ production in (0-10%) central A+A at SPS (and α+α @ ISR) energies: consistent w/ "N_{coll}-scaling" (or Cronin enhancement):

"N_{coll} scaling" in d+Au @ 200 GeV: High p_{T} hadrons

- Enhanced high p_T production in d+Au (R_{dAu} > 1) also found in p+A at lower √s ("Cronin enhancement"): p_T broadening due to initial-state soft & semihard scattering.
- Expected pQCD behaviour ($R_{pA,dA} \sim 1$) recovered for $p_T > 8$ GeV/c

Suppressed high p_{T} hadroproduction in Au+Au @ RHIC !

Au+Au $\rightarrow \pi^0 X$ (peripheral)

Au+Au $\rightarrow \pi^0 X$ (central)

Suppressed high p_{τ} hadroproduction @ RHIC : $R_{\Lambda\Lambda}$ (π°)

Suppressed high p_T hadroproduction @ RHIC: R_{AA} (h[±] vs π°)

• Inclusive charged hadrons suppressed a factor ~ 4 – 5 at p_T > 5 GeV/c

"Jet quenching" predictions

- Multiple final-state gluon radiation off the produced hard parton induced by the traversed dense colored medium.
- Mean parton energy loss ~ medium properties:

 $\Delta E_{loss} \sim \rho_{gluon} \quad (gluon \ density)$ $\Delta E_{loss} \sim \Delta L^{(2)} \quad (medium \ length)$

- Energy is carried away by gluonstrahlung outside jet cone: $dE/dx \sim \alpha_s \langle k_\tau^2 \rangle$
- High-p_hadron Jet Gluon bremsstrahlung gluot Е θcone $E-\Delta E (\theta_{cone})$
- Formalisms: BDMPS (thick plasma), GLV (thin plasma),

• Correction for expanding plasma (1-D): $\Delta E_{1-D} = (2\tau_0/R_A) \cdot \Delta E_{static} \sim 15 \cdot \Delta E_{static}$ ($\tau_0 = 0.2$ fm/c, $R_A = 6$ fm)

Expected result: Suppression of high p_T leading hadrons due to non-Abelian final-state gluon radiation.

"Jet quenching" model vs. data (I)

Dense medium properties according to final-state parton energy loss models:

Large opacities imply fast thermalization.
All these values imply energy densities well above ε_{crit QCD} in thermalized syst.

"Jet quenching" model vs. data (II)

• sqrt(s) dependence of high p_{τ} suppression:

 $R_{AA} \sim 1 \text{ for } \sqrt{s} \sim 20 \text{ GeV } (dN^g/dy \sim 400)$ $R_{AA} \sim 0.3 \text{ for } \sqrt{s} \sim 62 \text{ GeV } (dN^g/dy \sim 650)$ $R_{AA} \sim 0.2 \text{ for } \sqrt{s} \sim 200 \text{ GeV } (dN^g/dy \sim 1100)$

I. Vitev nucl-th/0404052

Energy loss in a dense hadronic medium ?

Hadronic transport models (HSD, UrQMD) or DPM-based models do not produce enough suppression. Additional pre-hadronic energy loss needed.

Hadron production at intermediate p_T

Unsuppressed baryon production

• R_{cp} (ratio central/peripheral) at intermediate $p_T = 2 - 4$ GeV/c:

```
Baryons: p, \overline{p}, \Lambda, \overline{\Lambda} NOT (or much less) suppressed in central Au+Au.
```


Particle composition inconsistent with known (universal) fragmentation functions.

• Additional production mechanism for baryons in the intermediate p_{τ} range

Unsuppressed baryon production: not a mass effect !

• R_{cp} (ratio central/peripheral) at intermediate $p_T = 2 - 4$ GeV/c:

Baryons: p, \overline{p} , Λ , $\overline{\Lambda}$ **NOT** (or much less) suppressed in central Au+Au.

Heavy ϕ as suppressed as other mesons (π^0 , k_s^0 , η)

Particle composition inconsistent with known (universal) fragmentation functions.

• Additional production mechanism for baryons in the intermediate p_{T} range

Enhanced baryon/meson ratio

- Central Au+Au: p/π ~ 0.8 (at p_T = 2 4 GeV/c) at variance with perturbative production mechanisms (favour lightest mesons).
- Periph. Au+Au: $p/\pi \sim 0.2$ as found in p+p (ISR,FNAL) & e+e- jet fragmentation

"Anomalous" particle composition: hadron/meson ratio

Enhanced baryonic elliptic flow

Particle species hierarchy of flow values:

 $v_2^{\text{meson}} > v_2^{\text{baryon}}$ at low p_T $v_2^{\text{meson}} \approx v_2^{\text{baryon}}$ at $p_T \approx 2 \text{ GeV/c}$ $v_2^{\text{meson}} < v_2^{\text{baryon}}$ at higher p_T

 Simple v₂ scaling behaviour when v₂ and p_T normalized by number of constituent quarks:

n = 2 mesons n = 3 baryons

"Quark recombination" models vs. data

Quark recombination (coalescence) mechanisms provide a simple explanation of anomalous baryon enhancement & v₂ at p₁= 2-5 GeV/c:

- Via quark momenta addition, recombination dominates for p_T ~ 1- 4 GeV/c:
 p_T(baryons) > p_T(mesons) > p_T(quarks)
- Fragmentation dominates for $p_T > 5$ GeV/c: p_T (hadrons)= $z p_T$ (partons), with z<1
- Constituent-quark scaling of v₂ naturally explained

However ... pure thermal + thermal parton recombination inconsistent w/ jet-like (baryon and meson) near-side azimuthal correlations. Simple recomb. does not work.

Summary

- 1. Energy densities:
 - Maximum $dE_T/d\eta \sim 600$ GeV at midrapidity consistent w/ initial $\epsilon > 5$ GeV/fm³ > ϵ_{crit}

2. Elliptic flow:

• Strong elliptic flow v_2 consistent w/ short thermalization times $\tau_0 \sim 1$ fm/c

3. Soft particle spectra:

- Shapes & yields consistent w/ hydrodyn. (thermal+coll. velocity) source emission
- Particles ratios consistent w/ chemically equilibrated system before hadronization

4. Hard particle spectra:

 Strong high p_T suppression in central A+A (compared to p+p, p+A & pQCD) consistent w/ final-state partonic energy loss in dense system: dN^g/dy~1100

5. Intermediate p_{τ} spectra:

 Enhanced baryon yields & v₂ (compared to meson) consistent w/ quark recombination mechanisms in a thermal and dense system

All observations consistent with formation of thermalized dense partonic matter in central Au+Au collisions

OK ... but didn't we hear the same at SPS in 2000 ?

Creation of a new state of matter, quark-gluon plasma, which probably existed just after the Big Bang.

Summary (2)

- 1. Energy densities:
 - Maximum $dE_T/d\eta \sim 600$ GeV at midrapidity consistent w/ initial $\epsilon > 5$ GeV/fm³ > ϵ_{crit}
 - Seen at SPS ? Yes. $\varepsilon > 3.9$ GeV/fm³ > ε_{crit} (Note, however $\tau_{cross} = 1.6$ fm/c > $\tau_0 = 1$ fm/c)
- 2. Elliptic flow:
 - Strong elliptic flow v_2 consistent w/ short thermalization times $\tau_0 \sim 1$ fm/c
 - Seen at SPS ? No. Not as large v_2 . Described by hydro only with too short freezeout.
- 3. Soft particle spectra:
 - Shapes & yields consistent w/ hydrodynam. (thermal+coll. velocity) source emission
 - Particles ratios consistent w/ chemically equilibrated system before hadronization
 - Seen at SPS ? Yes.
- 4. Hard particle spectra:
 - Strong high p_T suppression in central A+A (compared to p+p, p+A & pQCD) consistent w/ final-state partonic energy loss in dense system: dN^g/dy~1100
 - Seen at SPS ? Probably. Suppression (not that strong) w.r.t. peripheral.
- 5. Intermediate p_T spectra:
 - Enhanced baryon yields & v₂ (compared to meson) consistent w/ quark recombination mechanisms in a thermal and dense system
 - Seen at SPS ? No.

We need a few additional observables to claim "QGP" at RHIC ... thermal photons (temperature of system), J/Ψ (deconfined system)

Summary (2)

- 1. Energy densities:
 - Maximum $dE_T/d\eta \sim 600$ GeV at midrapidity consistent w/ initial $\epsilon > 5$ GeV/fm³ > ϵ_{crit}
 - Seen at SPS ? Yes. $\varepsilon > 3.9$ GeV/fm³ > ε_{crit} (Note, however $\tau_{cross} = 1.6$ fm/c > $\tau_0 = 1$ fm/c)
- 2. Elliptic flow:
 - Strong elliptic flow v_2 consistent w/ short thermalization times $\tau_0 \sim 1$ fm/c
 - Seen at SPS ? No. Not as large v_2 . Described by hydro only with too short freezeout.
- 3. Soft particle spectra:
 - Shapes & yields consistent w/ hydrodynam. (thermal+coll. velocity) source emission
 - Particles ratios consistent w/ chemically equilibrated system before hadronization
 - Seen at SPS ? Yes.
- 4. Hard particle spectra:
 - Strong high p_T suppression in central A+A (compared to p+p, p+A & pQCD) consistent w/ final-state partonic energy loss in dense system: dN^g/dy~1100
 - Seen at SPS ? Probably. Suppression (not that strong) w.r.t. peripheral.
- 5. Intermediate p_T spectra:
 - Enhanced baryon yields & v₂ (compared to meson) consistent w/ quark recombination mechanisms in a thermal and dense system
 - Seen at SPS ? No.

We need a few additional typed to claim "QGP" at RHIC ... thermal photons (ter stav us system), J/Ψ (deconfined system)

backup slides ...

Thermal photons at RHIC

Thermal photon production in Au+Au @ $\sqrt{s_{NN}}$ = 200 GeV

 Thermal (real&virtual) γ are the most direct (the only ?) probe sensitive to the thermodynamical state (EOS) of underlying matter.

Medium effects in Au+Au $\rightarrow \gamma$ + X @ \sqrt{s} = 200 GeV

- However, (part of the) prompt photons can be distorted by the dense QCD medium (esp. in the region p_{τ} < 4 GeV/c).
- Photon production in p+p @ 200 GeV:

"Nuclear modif. factor" Au+Au $\rightarrow \gamma$ + X @ \sqrt{s} = 200 GeV

- Back-of-the-envelope ansatz for γ suppression: $R_{AA}(\gamma \text{ frag.}) = R_{AA}(q,g) \approx 0.25$
- $R_{AA} \approx Ratio of \gamma(tot 0.75*frag)/\gamma(tot)$:

 ~50% depleted prompt photon yield could mask the expected (enhanced) thermal emission around p_T = 2 GeV/c

Disentangling "thermal" γ from quenched prompt γ

• Step 1: Measure $p+p \rightarrow \gamma(isolated) + X$ down to $p_{\tau} = 1 \text{ GeV/c}$ with uncertainties ~10%

Handle on γ from qg-Compton, qqbar annihilation

• Step 2: Measure $p+p \rightarrow \gamma(\text{total}) + X$ down to $p_T = 1 \text{ GeV/c}$ with uncertainties ~10%

Handle on fragmentation γ production

• Step 3: Measure Au+Au $\rightarrow \gamma$ (total) + X down to p_T = 1 GeV/c with uncertainties ~10%

- Step 4: (AuAu γ_{total}) T_{AB} •(pp $\gamma_{isolated}$) Upper limit on thermal spectrum.
- Step 5: $(AuAu \gamma_{total}) T_{AB} \cdot (pp \gamma_{total})$ Lower limit on thermal spectrum.

High p_T suppression at SPS ?

Enhanced high p_T production in Pb+Pb @ CERN-SPS ?

- NO p+p $\rightarrow \pi^0 X$ baseline measurement at SPS Pb+Pb energy ($\sqrt{s} = 17.3$ GeV)
- R_{AA} for central Pb+Pb constructed with 2 different parametrizations:

$p+p \rightarrow \pi + X$ references @ $\sqrt{s} \approx 20$ GeV

• $p+p \rightarrow \pi^0 X$ parametrizations confronted to data @ $\sqrt{s} = 16 - 20$ GeV:

New p+p $\rightarrow \pi$ +X reference @ $\sqrt{s} \approx 20$ GeV

• New parametrization [Blattnig00] versus p+p data $\sqrt{s} = 16 - 20$ GeV:

Much better agreement in shape and magnitude (within exp. uncertainties)

> D.d'E. nucl-ex/0403055 PLB 596 (2004) 32

New WA98, WA80 & CERES nuclear modification factors:

Indications of high p_T suppression @ SPS

• Centrality evolution of high $p_{\tau} \pi^0$ production at SPS:

• "Collision scaling" in 0-8% central collisions ($R_{AA} \sim 1$).

- Cronin" enhancement in peripheral ... and suppression in 1% most central
- Look for onset of suppression at RHIC Au+Au, p+p @ $\sqrt{s_{NN}} \approx 20$ GeV ?

Nuclear modification factor (π^0): $\sqrt{s_{NN}}$ dependence

 R_{AA} (π^{0}) compilation in nucleus-nucleus collisions:

- CERN-SPS: Pb+Pb central ($\sqrt{s_{NN}}$ = 17.3 GeV): no suppression(*) (within errors)
- CERN-ISR: $\alpha + \alpha$ ($\sqrt{s_{NN}} = 31$ GeV): Cronin enhancement.
- RHIC: Au+Au ($\sqrt{s_{NN}}$ = 62, 130, 200 GeV): x3 x5 suppression.

High p_T suppression at 62.4 GeV

Au+Au @ 62.4 GeV (central): suppression predictions

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

Au+Au @ 62.4 GeV (R_{AA} central): π⁰ suppression !

Charged hadrons vs. pions

Pions more suppressed than h^{+/-} at intermediate p_T (also found at 200 GeV):
R_{AA} ~ 0.6 at p_T~2 GeV/c

• "Universal" (PID) and constant suppr. at high p_T : $R_{AA} \sim 0.3$ for $p_T > 6$ GeV/c

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

Gluon saturation at RHIC ?

Initial-state CGC effects

Initial conditions at RHIC: high-energies + large nuclei

→ Values of small-x: $x_{Bj} = 2p_T / \sqrt{s} <<1$

Large gluon densities

$$\rho_A \simeq \frac{x G_A(x, Q^2)}{\pi R_A^2} \sim A^{1/3}$$

RHIC ~ HFRA x $A^{1/3}$

Colliding nuclei described via a colored highly saturated gluonic wave-function ("Color Glass Condensate").

"Classical" approach valid around "sat. scale": Q_s~1.5 GeV/c

Particle production via glue-glue collisions:
Extension to p_T > Q_s ("geometric scaling")
via quantum evolution.

Expected result: gluon fusion at low x leads to an effective depletion of the number of partonic scattering centers in the initial state.

Particles density at central rapidity in Au+Au

Initial multi-particle production:

Increases faster than linearly with N_{part} :

Particle density at y=0 well described by pQCD- & CGC- based models alike:

✓ "Soft + hard" (string + pQCD "minijet"): increased hard contribution (∝N_{coll})

✓ Initial-state gluon saturation (CGC): $dN_{ch}/dy \sim dN_{gluon}/dy \sim 1/\alpha_{s} \sim N_{part} ln(N_{part})$

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

Unquenched d+Au production at high p_{T}

Suppression in central Au+Au not due to initial-state effects

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)

The quest for gluon saturation effects @ RHIC ...

d+Au nuclear modification factor ($\eta = 3.2$)

David d'Enterria (Columbia Univ.)

Is this "standard" nuclear shadowing ?

Take the predictions of your favourite leading-twist approach ...

NLO DGLAP global analysis of nuclear PDFs

D. de Florian & R.Sassot hep-ph/0311227

- Maximum gluon shadowing at x~10⁻⁴ (indirectly) constrained by available DIS data on nuclear targets is ~0.8
- IF indeed R_{dAu}(p_T~2 GeV/c) ≈ 0.5 ≡ R_G(x=10⁻⁴) ≈ 0.5 this could be an evidence of extra higher-twist effects at small-x (breakdown of QCD factorization). [BUT, soft physics effects can still be playing a role here ...]

Au+Au @ 200 GeV (central): baryons > mesons !

Baryon/meson ratios: ~1 !

• Additional production mechanism for baryons in the intermediate p_{τ} range

Inst. Kernphysik, Frankfurt, Sept. 30, 2004

David d'Enterria (Columbia Univ.)