High-energy heavy-ion physics program (in 4 plots)

= to Gen Gen + where Guy = du A, - d, A, + of a A, A, and $D_{\mu} = g_{\mu} + i t^{\alpha} \mathcal{A}_{z}^{\alpha} (\alpha_{s} = g^{2}/4\pi)$ $\alpha_s(Q^2) \sim 1/\ln(Q^2/\Lambda^2), \Lambda \sim 200 \text{ MeV}$

 Learn about 2 (so far unexplained) properties of the strong interaction: confinement, chiral symmetry breaking

2. Study the phase diagram of QCD matter (esp. produce & study the QGP)

3. Probe the properties of the primordial Universe (few µsec after the Big Bang).

4. Study the regime of non-linear (high density) many-body parton dynamics at small-x (CGC).

Erice, Sept 1, 2003

The "Little Bang" in the lab

- High-energy nucleus-nucleus collisions: in fixed-target reactions $(\sqrt{s}-17 \text{ GeV}, \text{SPS})$ or in colliders $(\sqrt{s}-200 \text{ GeV}, \text{RHIC})$
- QGP expected to be formed in a tiny region (~10⁻¹⁴ m) and to last very short times (~10⁻²³ s).
- Collision dynamics: Diff. observables probe diff. reaction stages

ce, Sept 1, 2003

"Canonical" QGP signals

1. "Jet quenching":

- Multiple final-state gluon radiation off the produced hard parton induced by the traversed medium (ΔE_{loss} ~ ρ_{gluon})
- Probe: Jet absorption, suppression leading particle (high p_T) spectra
- 2. Quarkonia suppression:
 - $rac{1}{2}$ Debye screening of QQ potential at deconfinement
 - 🗢 Probe: J/Ψ, Υ
- 3. Enhanced direct photon production:
 - Thermal radiation from the hot medium
 - Probe: Prompt γ , Prompt γ^* (e⁺e⁻, $\mu^+\mu^-$)

Relativistic Heavy-Ion Collider (RHIC) @ BNL

Specifications:

- 3.83 km circumference
- 2 independent rings:
 - 120 bunches/ring
 - 106 ns crossing time

Au + Au collisions @ $\sqrt{s} = 200 \text{ GeV}$

(~10 times CERN-SPS energy) Luminosity: 2-10²⁶ cm⁻² s⁻¹ (~1.4 kHz) p+p collisions @ 500 GeV p+A collisions @ 200 GeV

4 experiments:

PHENIX, STAR, PHOBOS, BRAHMS

Run-1 (2000): Au+Au @ 130 GeV Run-2 (2001-2): Au+Au, p+p @ 200 GeV Run-3 (2002-3): d+Au, p+p @ 200 GeV

PH ENIX @ RHIC

International collaboration.

~400 people 50 institutions 14 countries

- 11 detector subsystems:
 2 central arms, 2 forward arms
 Global dets.
- Designed to measure rare probes:
 - + high rate capability & granularity
 - + good mass resolution and PID
 - limited acceptance

Erice, Sept 1, 2003

Au+Au in PHENIX

~600 charged particles per unit rapidity at mid-rapidity (5% most central)

Erice, Sept 1, 2003

High p_T suppression (AuAu vs pp)

Nuclear modification factor

Data vs models

- Dense medium properties according to "jet quenching" models (pQCD NLO, nuclear PDFs, gluon radiative energy loss):
- 1.5 * High opacities: Levai (no dE/dx) $<n> = L/\lambda \approx 3-4$ ★ Large initial gluon densitie Wang dN^g/dy ~ 800-1200 (no dE/dx) * Transport coefficients: Wang (with dE/dx) 0.5 <q_> ~ 3.5 GeV/fm² Vitev (with dE/dx) Medium-induced gluon radiative energy losses: (with dE/dx) $dE/dx \approx 0.25 \text{ GeV/fm}$ (expanding) 8 10 6 $dE/dx|_{off} \approx 14 \text{ GeV/fm}$ (static source) p_{T} (GeV/c)

"Anomalous" hadron composition at high-p_{τ} : p/ π ratio

- Central colls.: baryon/meson ~ 1.0 for p_T > 2 GeV/c at variance with perturbative production mechanisms (favour lightest meson).
- Peripheral colls. baryon/meson ~ 0.3 as in p+p,pbar (ISR, FNAL) and in e+e- jet fragmentation

High p_{T} suppression: Initial- or final- state effect ?

- Two theoretical explanations for the high p_{τ} suppression:
 - 1. "QGP models": Due to non-abelian energy loss of scattered partons in a very dense medium.
 - 2. "CGC models": Due to (strongly) depleted parton distribution functions in the nuclei at the relevant (x,Q^2) .

Experimental disentanglement: p,d+A "control" experiment Au+Au ("hot & dense" QCD medium) vis-à-vis d+Au ("cold" QCD medium).

Nuclear modification factor in d+Au (min. bias)

- No high p_{τ} suppression but enhancement !
- d+Au results at RHIC clearly reminiscent of p+A "Cronin enhancement" (initial-state soft and semihard scatterings).
- No shadowing or strong saturation of Au PDF.

Nuclear modification factor: d+Au vs Au+Au

- Opposite centrality dependence of nuclear enhancement (in p+Au) compared to nuclear suppression (in Au+Au) !
- Conclusion: Au+Au suppression not due to a "cold" nuclear matter (initial-state) effect.

Erice, Sept 1, 2003

High p_r azimuthal correlations (d+Au, Au+Au periph.)

Jet-like near- and away- side azimuthal correlations (as in p+p).

Erice, Sept 1, 2003

High p_T azimuthal correlations (d+Au, Au+Au central)

Diminished away-side correlation consistent with absorbed back-to-back jet

Erice, Sept 1, 2003

Summary (I)

Scientific goals of high-energy heavy-ion physics:

- Investigate the QCD phase diagram.
- Produce/study the QGP in the laboratory (color deconfinement & chiral symmetry restoration).
- Probe the quark-hadron phase transition of the early Universe.
- Study high gluon density & small-x physics.
- Means:
 - ➡ Producing the densest and hottest matter ever formed on Earth in high-energy (√s ~ 200 GeV) Au+Au collisions.
 - Analyzing the experimental probes sensitive to this new state of matter.
 - Comparing to "vacuum" (p+p) and "cold medium"(d+Au) data.

Summary (II)

• High p_{τ} data in central Au+Au collisions:

- ★ Strong suppression (factor ~ 4-5) of π^0 and h[±] above p_T~ 4 GeV/c (compared to p+p collisions).
- * No apparent suppression of (anti)protons in ~1-4 GeV/c: "anomalous" $p/\pi \sim 0.8$ ratio >> than in p+p and e+e- jet fragmentation.
- Disappeareance of jet-like away-side azimuthal correlations.
- Peripheral Au+Au collisions behave effectively as p+p collisions (i.e. as pQCD) for all species and for all observables.
- High p_{τ} data in d+Au collisions:
 - ★ No suppression observed in min. bias d+Au reactions.
 - **Cronin-like enhancement** for π^0 (small) and h[±] (larger).
 - ★ Opposite behaviour of the centrality dependence of high p_T production compared to Au+Au.
 - ★ No "cold" nuclear matter effects (strong saturation of nuclear PDFs) seem to explain high p_T Au+Au suppression.
- (Personal) Corollary: "We've got ~1/3 of QGP evidence at RHIC. Let's wait (not very long !) for the J/ψ and the photons ..."

Erice, Sept 1, 2003