Systematics of high-p_τ η production in p+p, d+Au and Au+Au at RHIC

APS / DNP Fall Meeting

Chicago, IL, October 30, 2004

David d'Enterria

Nevis Labs, COLUMBIA University, NY

η ? Why η ...? Motivation

- Perturbative (high p_T) π⁰, h[±] production in central Au+Au at RHIC suppressed compared to expectations of incoherent partonparton scattering.
- Consistent with "jet quenching" in hot/dense QCD medium.
- Q: To what extent is this suppression "universal" (magnitude, p_τ-, centrality-dep., ...) for diff. particle species ?

- <u>Goal (1)</u>: Compare high p_T production for a new hadron species (η) in 3 systs: p+p (QCD vacuum), d+Au (cold QCD medium), Au+Au (hot QCD medium)
- Goal (2): Have under control the 2nd largest hadronic source (η) of decay photon bckgd for direct γ and e[±] studies.

High p_T η spectra (p+p, d+Au at RHIC)

p+p, d+Au→ η+X @ \sqrt{s} = 200 GeV (Run-3)

• Spectra go up to $p_T = 12 \text{ GeV/c}$ (well in the perturbative regime)

• η is the 3rd highest p_{τ} identified particle (after π^0 , γ) at RHIC

High p_τ η spectra (Au+Au at RHIC)

Au+Au $\rightarrow \eta$ +X @ $\sqrt{s_{NN}}$ = 200 GeV (Run-2)

• Spectra go up to $p_T = 10 \text{ GeV/c}$ (well in the perturbative regime)

High p_T η in "cold QCD matter" (d+Au)

η production in d+Au follows (within uncertainties) N_{coll}-scaling
for all centralities: No significant "Cronin broadening"

High $p_T \eta$ in "hot QCD matter" (Au+Au)

Au+Au \rightarrow η +X @ $\sqrt{s_{NN}}$ = 200 GeV

- Au+Au central: Strong suppression (R_{AA}~0.2)
- Au+Au semi-central: Suppression (R_{AA}~0.4)
- Au+Au peripheral: consistent w/ N_{coll} scaling (R_{AA}~0.9)

High p_{τ} meson production: η vs. π° (Au+Au central)

 Coincident suppression pattern for π⁰ and η: magnitude, p_T dependence

High p_{τ} meson production: η vs. π° (Au+Au central)

• Coincident suppression pattern for π^0 and η : magnitude, p_{τ} dependence

 Agreement with parton energy loss (GLV) predictions in dense medium (up to the highest p_τ values measured so far)

APS/DNP, Chicago, Oct. 30, 2004

David d'Enterria

High p_{τ} meson production: η vs. π° (other centralities)

Au+Au semicentral (20--60%)

Au+Au peripheral (60--92%)

 Similar suppression pattern for π⁰ and η: magnitude, p_τ-, centrality- dependence

9

Perturbative η/π° ratio in hadronic collisions (I)

 η/π° "world systematics" [p+p, p+p, π^{\pm} +p, p+A, A+A @ \sqrt{s} ~10 – 540 GeV]

• η/π° is approx. constant above $p_{\tau} \sim 2 \text{ GeV/c:} 0.46 \pm 0.03$

Perturbative η/π° ratio in hadronic collisions (II)

APS/DNP, Chicago, Oct. 30, 2004

David d'Enterria

η/π° ratio in p+p and d+Au at RHIC

- Approx(*) flat η/π° ratio above $p_{\tau}= 2$ GeV/c. (*) Slow rise with p_{τ} probable.
- η/π° ratio at RHIC consistent with "world average".
- "m_τ scaling" does not seem to provide an excellent reproduction of spectral ratio for p_τ<2 GeV/c ...

Perturbative η/π° ratio in Au+Au at RHIC

- Flat η/π° ratio versus p_{τ} . No apparent centrality dependence.
- η/π° ratio in Au+Au consistent with "world average".

Perturbative η/π° ratio in Au+Au, d+Au, p+p at RHIC

No apparent system-size dependence: η/π° ratio in Au+Au, d+Au consistent with "world average"

Perturbative η/π° ratio in Au+Au, d+Au, p+p at RHIC

- No apparent collision system dependence: η/π° ratio in Au+Au, d+Au, p+p consistent with "world average".
- Hot/dense QCD medium suppresses meson yields at high p_τ but preserves "universality" (PID-wise) of fragmentation function.

Summary

• High $p_T \eta$ measured in the range $p_T \approx 2$ —12 GeV/c in p+p, d+Au, and Au+Au collisions at $\sqrt{s} = 200$ GeV.

• <u>p+p</u>:

- $\eta/\pi^{\circ} \sim 0.48$ consistent with 0.46 "world ratio" in hadronic colls.
- " m_T scaling" hypothesis not excellent for eta's below ~2 GeV/c
- <u>d+Au</u>:
- No (or small) "Cronin effect" (R_{dA}~1 for all centralities within uncertainties).

● <u>Au+Au</u>:

- Factor x5 suppression in central (0-20%) colls.
- Same suppression pattern for η and π^0 : magnitude, p_{τ} and centrality dependence.
- Agreement w/ parton energy loss calculations up to highest p_T
- η/π° consistent w/ 0.46 "world ratio" (PID universality of FF preserved in QCD medium).

Backup slides