High-p₇ identified particles in **PHENIX: data vs. theory**

19th Winter Workshop on Nuclear Dynamics Breckenridge, February 11, 2003

David d'Enterria

Nevis Labs, COLUMBIA University, NY

Overview

- 2 most significant experimental results at RHIC:
 - "High $p_{T} \pi^{0}$ suppression"
 - "Anomalous" high p_τ baryon/meson ratio
- Identified π^0 and p,pbar experimental results at high p_{τ} :
 - $\sqrt{s_{NN}}$ dependence (17 GeV, 31 GeV, 130 GeV, 200 GeV)
 - Magnitude and p_{τ} dependence of suppression
 - Centrality dependence of suppression
 - Flavor dependence of suppression
- Theoretical descriptions of nuclear & medium effects at high p_{τ} :
 - Nuclear shadowing. Cronin enhancement.
 - Parton energy loss (BDMPS, GLV, HSW).
 - Hadronic energy loss.
 - Gluon saturation.
 - Parton recombination.
- Summary & conclusions

High p₋ particles @ RHIC. Motivation

- Products of parton fragmentation (jet "leading particle").
- Early production in parton-parton scatterings with large Q².
- Direct probes of partonic phases of the reaction ⇒ Sensitive to dense medium properties: QGP energy loss, saturated CGC ...
- Info on medium effects accessible through comparison to nuclear- geometry scaled "vacuum" (pp) yields:

$$\sigma_{AB}^{hard} = \int d^2b \left[1 - e^{-\sigma_{NN}^{hard}T_{AB}(b)} \right] \approx \int d^2b \ \sigma_{NN}^{hard} \ T_{AB}(b) \qquad \text{Or}$$

"binary scaling": $\langle N_{coll} \rangle(b) = \sigma_{NN} \cdot T_{AB}(b) \Rightarrow \sigma_{AB}^{hard} \propto \langle N_{coll} \rangle_{C_1 - C_2}$

Production yields calculable theoretically (next slide) ...

Breckenridge, Feb. 11, 2003

High p₋ particles @ RHIC. Motivation (cont'd)

Production yields calculable via pQCD:

High p_T neutral pion spectra

Identified p,pbar high p_T spectra

High-p_{τ} π^0 @ 200 GeV: AuAu vs pp

pp data agree with pQCD

Periph. data agree with pp plus collision scaling

Strong suppression in central AuAu collisions

Nuclear modification factor: $\sqrt{s_{NN}}$ dependence

$$R_{AA}(p_T) = \frac{d^2 N_{AA}/d\eta dp_T}{\langle N_{coll} \rangle d^2 N_{pp}/d\eta dp_T}$$
Compilation of high p_T π^0 central A+A
CERN: Pb+Pb ($\sqrt{s_{NN}} \sim 17$ GeV), $\alpha + \alpha$ ($\sqrt{s_{NN}} \sim 31$ GeV): Cronin enhancement

• RHIC: Au+Au ($\sqrt{s_{NN}} \sim 130$, 200 GeV): x4-5 suppression with respect to N_{coll}

Breckenridge, Feb. 11, 2003

High-p_T suppression: Central/peripheral

Breckenridge, Feb. 11, 2003

Centrality dependence of π^0 suppression

Suppression vs N_{part}:

- Smooth suppression (no 1st order phase transition-like behavior).
- R_{AA} < 1 for 50-70% centrality:
 N_{part} ~ 40 ± 15

(coincidental agreement with parton percolation predictions ?)

Suppression vs E_{τ} :

- E_T measured in EMCal (S. Bazilevsky talk)
- Suppression apparent up to 50-60% centrality:

E_τ~ 20.5 GeV

Hadron composition at high-p_T: R_{AA} (p) vs $R_{AA}(\pi)$

- Protons (antiprotons) not suppressed for $p_T=1.5 3.5$ GeV/c :
 - ★ If $p_{\tau} > 2$ GeV/c particles \approx parton fragmentation products. What makes such a difference between baryonic and mesonic products ?

Hadron composition at high-p_{τ} : p/ π ratios

Central colls.: Baryon yield ≈ pion yield for p_T>2 GeV/c

Very different from jet fragmentation (strong non-perturbative production).

Breckenridge, Feb. 11, 2003

Hadron composition at high- p_{τ} : \overline{p}/p ratios

High-p_{τ} @ **RHIC:** a theorist "guide"

APPROACH "A" (based on pQCD, factorization theorem):

<u>Step 1</u>: pQCD (*NLO or LO+K-factor*) = *PDFs* + *scatt. matrix* + *FFs* <u>Step 2</u>: pQCD + nPDF (shadowing) + p_{T} broadening (Cronin)

✓ So far one can explain peripheral data

<u>Step 3</u>: pQCD + initial-state nuclear effects + Parton energy loss

- Energy loss 1: BDMPS (LPM, thick plasma)
- Energy loss 2: GLV (LPM, thin plasma)
- Energy loss 3: HSW (modified FFs), (g radiation + absorption)

✓ So far one can ~ explain central colls. (magnitude, p_{τ} dependence)

<u>Step 4</u>: pQCD + IS nuc. effects + Energy loss + parton recombination

Tries to explain flavor dependence of central colls. ...

APPROACH "B" (based in "classical" CD):

- Step 1: CGC (gluon saturated nuclear wave function: MLV, ...)
- Step 2: (classical) glue + glue collisions: $gg \rightarrow g$
- Step 3: Gluon fragmentation (FFs)

✓ Tries to explain: suppression, N_{part} scaling, flavor dependence ...
Breckenridge, Feb. 11, 2003
David d'Enterria

Magnitude of the suppression

Data vs. theory: What do we learn about the medium from "jet quenching" models ?

p_{T} dependence of the suppression (I)

■ All medium-induced (LPM) energy-loss models predict a smooth decrease of suppression ($\propto \sqrt{p_{\tau}}$) not seen in the data so far ...

p_{τ} dependence of the suppression (II)

- Energy loss with LPM interference effect: (1) gives too much suppression at moderate p_τ, (2) does not give the observed ~flat p_τ dependence of R_{AA}
- <u>Alternative 1</u>: Let's test the Bethe-Heitler limit ...

FIG. 8. Ratio of inclusive π^0 cross sections in heavy ion and p-p collisions at $\sqrt{s} = 200$ GeV, compared with PHENIX

- Alternative 2: Let's add all other relevant nuclear effects ...
 - Modified nuclear PDFs (aka "shadowing")
 - ✓ Initial-state p_{T} broadening (aka "Cronin effect")

Parton shadowing does not seem to play a role (?)

• (x,Q²) kinematical range relevant for RHIC ($p_{T} \sim 2-10 \text{ GeV/c}, y \approx 0$): $\begin{cases} x_{i,j} = (p_{T}/\sqrt{s}) \cdot (e^{\pm y^{1}} + e^{\pm y^{2}}) \approx 2p_{T}/\sqrt{s} \approx 0.01-0.2 \text{ (gluons dominant !)} \\ Q^{2} \approx p_{T}^{2} \approx 4 - 100 \text{ GeV}^{2} \end{cases}$

but ... what do we really know(*) about gluon shadowing ?

(*) = measured in lepton-A experiments

"propaganda"-plot for current dA run (and for eRHIC) ... Nuclear (x,Q²,A) plane is "terra incognita" compared to nucleon (x,Q²) !

Breckenridge, Feb. 11, 2003

Cronin enhancement does seem to play a role

Energy loss + Shadowing + Cronin = flat R_{AA}

• Initial state p_T broadening provides: (1) the needed enhancement at intermediate p_T , (2) the small decrease at higher p_T so as to compensate for the p_T dependence of energy loss and give the observed ~flat R_{AA} (p_T)

I.Vitev, M.Gyulassy PRL 89 252301 (2002)

It seems that parton energy loss can explain the data ... yet ...

High p_T suppression explainable too due to hadronic final-state interactions (*) !?

(*) "comovers"-like explanation (parentheses for the SPS J/Psi story "connaisseur")

Dense hadronic medium: <L/λ> ~ 2-3

• Main justification: fast parton hadronization time (i.e. inside expanding fireball) But, do τ_{had} estimates in pp (vacuum) apply to hadroniz. in (colored) medium ?

Description of scattering in the hadronic phase realistic enough ? ("... our calculations are at best semiquantitative ...").

Breckenridge, Feb. 11, 2003

p_T -dependence of π^0 suppression: N_{part} scaling ?

Centrality-dependence of π^{0} **suppression :** N_{part} **scaling ?**

• Integrated $R_{AA}^{Npart/2}$ above a given p_T (1.5 GeV/c, 4.5 GeV/c) vs. N_{part} compared to gluon saturation predictions:

Parton recombination and high p_{τ} "chemistry"

Recombination/coalescence models: ~10 pre-prints in the last 2 months

- Recombination dominates for $p_T \sim 1-4$ GeV/c: $\langle p_T(baryons) \rangle > \langle p_T(mesons) \rangle > \langle p_T(quarks) \rangle$ (coalescence, thermal quark distribution ...)
- Fragmentation dominates for $p_T > 5$ GeV/c: p_T (hadrons)= z p_T (partons), with z<1

High p_T identified particles @ PHENIX: Summary (I)

- Two most interesting physical "discoveries" @ RHIC:
 - 1. High p_{T} suppression.
 - 2. High p_{τ} baryon/meson enhancement.

"Clear signals of strong medium effects at work !"

- What can we learnt about the medium properties ?
- Final-state partonic jet quenching + parton recombination ? (QGP)
- Initial-state saturation of nuclear wave functions ? (CGC)
- Final-state hadronic absorption ? (very dense hadron medium)
- Answers:
- Experimental: Detailed analysis of Au+Au (d+Au) suppression pattern.
- Theoretical: Does scenario "X" consistently explains: the magnitude, p_T dependence, centrality evolution, and flavor behaviour of RHIC high-p_T suppression ?

High p_T identified particles @ PHENIX: Summary (II)

Experimental results:

- Central AuAu collisions:
 - ★ Strong suppression (factor ~ 5) of π^0 with respect to N_{coll} scaling (approx. N_{part} scaling above ~ 4 GeV/c).
 - * Suppression sets in over 50-70% centrality class ($N_{part} \sim 50$).
 - ***** No apparent suppression of (anti)protons up to ~4 GeV/c ("anomalous" p/π).
- Peripheral AuAu collisions:
 - ★ Behave effectively as pp collisions (i.e. as pQCD) for all species.

Data vs. theory:

- Magnitude of suppression in agreement with parton energy loss scenarios assuming opaque medium formation (dN^g/dy~900, λ/L~3-4, dE/dx~7GeV/fm). [But also with hadronic dense medium ?].
- ★ Flat p_T dependence (so far) of suppression not described with LPM energy loss alone. Other effects (esp. Cronin broadening) needed at intermediate p_T
- Parton coalescence proposed to explain baryon/pion~1 ratio at intermediate p_⊤
- ★ Gluon saturation prediction of N_{part} scaling of R_{AA} vs centrality seems to work at high p_T (but not at p_T~Q_s?).
 Breckenridge, Feb. 11, 2003
 David d'Enterria

Backup slides

Identified high p_r particles @ PHENIX

1.Mesons – π^0 , (π^{\pm}):

- a 130 GeV (p^{max} ≈ 3.5 GeV/c): PRL 2001
- a 200 GeV (p^{max} ≈ 10. GeV/c): QM 2002
- 2. Baryons p, \overline{p} :
 - a 130 GeV (p_T^{max} ≈ 3.5 GeV/c): PRL 2002
 - 200 GeV (р_т^{max} ≈ 4. GeV/c): QM 2002
- 3. Particles ratios (p/ π , p/p, p/h):
 - a 130 GeV (p_⊥^{max} ≈ 3.5 GeV/c): PRL 2002
 - a 200 GeV (p^{max} ≈ 4. GeV/c): QM 2002
- 4. Electrons: 130, 200 GeV (p^{max}≈ 4. GeV/c): PRL 2002, QM2002

Summary of published high p₋ observables

1. Inclusive p_T spectra (π^0 , p, p, ...):

For different AuAu centrality classes (central → periph. + min. bias)

2. Nuclear modification factor vs p_{τ} :

$$R_{AA}(p_T) = \frac{d^2 N_{AA}/d\eta dp_T}{\langle N_{coll} \rangle d^2 N_{pp} / d\eta dp_T}$$

p_T dependence of medium effects

Numerator : Different AuAu centrality classes. *Denominator* : - NN ref.: UA1 pp, PHENIX pp→ $\pi^{0}X$ @ 200 GeV - <N_{coll}> from Glauber

- Central/peripheral ratio vs p_T: For diff. AuAu cent. class combinations.
- 4. R_{AA} (p_T-integr.) vs centrality (N_{part}).
- Particle ratios vs p_T: For different AuAu centrality classes.

- → p_T dependence of medium effects
- Participant density dependence of medium eff.
- Flavor dependence of medium effects