Photon Physics @ RHIC: Highlights

RHIC

ATE

Booster

2005 RHIC & AGS Annual Users' Meeting

June 20 - 24, 2005 at Brookhaven National Laboratory

BNL, June 24th, 2005

David d'Enterria Nevis Labs, Columbia University, NY

Agenda Photon Workshop (R6)

http://www.phenix.bnl.gov/~enterria/ags_rhic_photons_05/

Talk :

"Photons in high-energy hadronic and nuclear collisions: A historical perspective" [<u>PDF</u>] PPT]

"Photons @ RHIC: Results from PHENIX" (EXP) [PDF | PPT]

"Photons @ RHIC: Results from STAR" (EXP) [PDF | PPT]

'Perturbative photons n p+p and A+A collisions at RHIC energies" (TH) [<u>PDF</u> | <u>PPT</u>]

'Thermal photons in A+A collisions at RHIC energies" (TH) [<u>PDF</u> | <u>PPT</u>]

Coffee break

- "Photons at<mark>forward rapidities</mark> at RHIC" (TH)
- (Joint session with the 'Femtoscopy' Workshop):

"Light from parton<mark> cascading and jet-medium</mark> interaction in A+A at RHIC" (TH) [<u>PDF</u> | <u>PPT]</u>

"Gamma<mark>-</mark>gamma interferometry at RHIC" (EXP)

"Photons @ RHIC: Summary & Experimental perspectives [PDF | PPT]

Speaker:

Paul Stankus Hisa Torii Marcia Maria de Moura Monique Werlen Dmitri Peressounko

Jamal Jalilian-Marian

Steffen Bass

Jack Sandweiss

Justin Frantz

Why direct photons ?

[Definition: direct photons = photons not coming from hadronic decays]

Advantages:

- Weakly interacting. Travel unaffected to detectors after production.
- Direct coupling to (point-like) scatterings.
- Good theoretical understanding: γ quark coupling precisely known (QED)
- "Clean" probes in many QCD environments (pp, pA, AA).
- pp collisions:
 - Access to (polarized) gluon PDF (via qg Compton).
 - Testing ground of pQCD. Baseline reference for AA collisions.

pA collisions:

- Access to nuclear modifications of gluon PDF
- Initial-state multiple scattering (Cronin)
- Cold nuclear-matter effects

AA collisions:

t<~0.2 fm/c: perturbative photons unaffected by QCD medium (monitoring jet quenching: yields and correlations).

t<~0.6 fm/c: secondary ("cascading") photons – thermalization mechanism t<~5 fm/c: thermal photons – access to medium T and EoS (!)

 $\gamma - \gamma$ correlations: space-time size of radiating source

$p + p \rightarrow \gamma + X @ RHIC:$ Testing ground for pQCD

Preliminary p+p $\rightarrow \gamma + X @ \sqrt{s} = 200 \text{ GeV}$

AGS/RHIC Users Meetg., June 24th, 2005

Direct photon components

Monique Werlen

Only the sum $\sigma(D) + \sigma(F)$ is a physical observable

γ "world data" vs. state-of-the-art NLO/NLL

Monique Werlen

- PHENIX preliminary data in very good agreement w/ NLO QCD predictions (like most of ISR & fixed target data).
- Enhanced pBe (E-706) production: non-perturbative k_T + Cronin ? (partially) accounted for by latest NLL gluon resummation calculations ?

AGS/RHIC Users Meetg., June 24th, 2005

Theoretical uncertainties at RHIC

Monique Werlen

Relatively small:

Scales uncertainty Fragmentation BFGI/BFGII 2 Theory/Theory with scales $M=\mu=M_{\rm F}=p_{\rm T}$ Theory/Theory with freqmentation BFG set II 1 7 7 7 8 8 8 8 8 7 √s=200 GeV pp → γX CTEQ5M BFG set II 1.8 √s= 200 GeV pp →yX 1.6 $M = \mu = M_{F} = 0.5 p_{T}$ CTEQ5M M-H-M-0.5pt 1.4 and the second second second 1.2 BFG Bet I <10% 1 ~20% 0.8 0.8 0.6 0.5 0.4 $M = \mu = M_F = 2p_T$ 0.4 0.2 0.2 0 0 10² pr[GeV/c] 10 10 p,IGeV/c]

AGS/RHIC Users Meetg., June 24th, 2005

David d'Enterria (Columbia Univ.)

10

Isolated versus non-isolated photons

Monique Werlen

Handle on the γ fragmentation component via "isolation cut" measurement (important also for AA studies of possible (?) γ energy loss):

K.Odaka hep-ex/0501066

- Isolated spectrum: yield depends on applied isolation criteria.
- Inclusive ≈ isolated (for R=0.5): Small non-isolated production in data and theory @ RHIC

d + Au $\rightarrow \gamma$ + X @ RHIC: Probing cold nuclear-matter medium

Preliminary d+Au $\rightarrow \gamma + X @ \sqrt{s_{NN}} = 200 \text{ GeV}$

Hisa Torii

- The analysis method is similar to p+p
- NLO pQCD Calculation p+p collisions [W.Vogelsang]
- CTEQ6M + GRV
- Scale(renormalization and factorization scale) 0.5,1.0,2.0p_T
- Averaged number of collisions (8.42) from the Glauber model was multiplied to the calculation.

Result consistent with the binary – scaled NLO-pQCD calculation

AGS'RHIC Users Meetg., June 24th, 2005

Nuclear effects in d+Au @ √s_{NN} = 200 GeV

$A + A \rightarrow \gamma + X$: Probing hot & dense QCD medium

AGS/RHIC Users Meetg., June 24th, 2005

Photons in AA @ RHIC: different contributions

Paul Stankus

PHYSICAL REVIEW C 69, 014903 (2004)

AGS/RHIC Users Meetg., June 24th, 2005

Photons in AA: the pre-RHIC (fixed-target) era

Summary:

- 1. The early days had more enthusiasm than rigor.
- 2. In S+Au upper limits on thermal photons were used to set limits on initial temperatures; weak evidence for high # d.o.f.
- **3**. Direct photon spectrum (ie upper *and* lower limits) observed in heavier Pb+Pb collisions.
- 4. Thermal radiation from boosted Hadron Gas may dominate thermal radiation from cooler QGP.
- 5. Ambiguity between pQCD sources with intrinsic plus nuclear k_{T} effects, and hotter thermal sources. More definitive pQCD calculations would be a great help.
- 6. Limiting initial temperatures in Pb+Pb possible, not yet done.

AGS'RHIC Users Meetg., June 24th, 2005

Paul Stankus

AuAu $\rightarrow \gamma(\pi^0) + X @ \sqrt{s_{NN}} = 130, 62.4 \text{ GeV} (STAR)$

Marcia Moura Measurement obtained from γ conversion in TPC e^+ and e^- are selected through dE/dxCentrality dependence 10 ⁻⁵ Efficiency € Se γ ~ 2% PRC 70 (2004) 044902 1/(2 πN) 1/p, d²N • $\pi^0 \sim 0.04\%$ x8 Goes lower in p_{τ} than PHENIX meas. 10 x2 10⁻² (important ! see later) 10 0 0 5 $d^2N / (2 \pi p_t dp_t dy)$ Error bars: statistical only STAR preliminary centrality 0-10% 10 10-20% / 2 Systematic uncertainty: 20% 10 20-40%/4 40-80%/ Combinatorial background has been subtracted 10 10

 Other contributions, such as Λ decays, were verified to be negligible

10

10^{-*}

10

10

-1 < v < 1

p, (GeV/c)

AuAu $\rightarrow \pi^{0}$ +X @ $\sqrt{s_{NN}}$ = 62.4 GeV (STAR)

Marcia Moura

• <u>Direct</u> photons accessible (hopefully soon) after subtraction of measured π^0 (and other meson) decays:

- Each point is the gaussian fit of the 2γ invariant mass distribution for a given p_T
- ~10 MeV width, depending on $p_{\rm T}$
- Systematic uncertainty of 30%

Comparison of π^0 to π^+ and $\pi^$ from STAR TPC dE/dx and TOFr shows good agreement.

Au+Au $\rightarrow \gamma + X @ \sqrt{s_{NN}} = 200 \text{ GeV} (PHENIX)$

Direct photon production in Au+Au (all centralities) consistent w/ p+p incoherent scattering ("N_{coll}-scaled" pQCD) predictions:

AGS/RHIC Users Meetg., June 24th, 2005

Au+Au $\rightarrow \gamma$ +X @ 200 GeV. Theory vs data: prompt + thermal

Dmitri Peressounko

PHENIX 0-10% AuAu photons compared to 5 hydro (+ pQCD) calculations:

All calculations predict considerable thermal contribution for $p_{\tau} < 3$ GeV

All calculations agree with current (upper limit) data.

Calculations with similar initial time (temperature) result in similar spectra. Dependence on used emission rates & details of description of evolution is modest.

AGS'RHIC Users Meetg., June 24th, 2005

Theory vs data: prompt + (cascade) + thermal

Steffen Bass

Photon yield very sensitive to parton-parton rescattering

relevant processes:

•Compton: $\mathbf{q} \ \mathbf{g} \rightarrow \mathbf{q} \ \mathbf{\gamma}$

•annihilation: q qbar \rightarrow g γ

-bremsstrahlung: $\textbf{q^*} \rightarrow \textbf{q}~\textbf{\gamma}$

• Short emission time in the PCM, 90% of photons before 0.3 fm/c Hydrodynamic calculation with $T_0=0.3$ fm/c allows for a smooth continuation of emission rate

Theory vs data: prompt + (cascade) + thermal

LPM destructive interference important !

Au+Au; E_{CM}=200 AGeV

PCM w/o LPM:

Large overprediction of γ yield

PCM with LPM:

 γ yield for p_t < 6 GeV strongly reduced strong p_t dependence of LPM suppression good agreement with data

AGS/RHIC Users Meetg., June 24th, 2005

David d'Enterria (Columbia Univ.)

Steffen Bass

Theory vs data: extra jet-photon contribution

Latest calculations by Duke group:

plasma mediates a jet-photon conversion:

Fries, Muller, Srivastava PRL 90 132301 (2003)

$$\mathbf{q}_{\mathrm{hard}} + \overline{\mathbf{q}}_{\mathrm{QGP}} \rightarrow \gamma + \mathbf{g}$$

 $\mathbf{q}_{\mathrm{hard}} + \mathbf{g}_{\mathrm{OGP}} \rightarrow \gamma + \mathbf{q}$

jet passing through the medium:

large energy loss: jet quenching. electromagnetic radiation (real & virtual photons) from jet-medium interactions.

can escape without rescattering use as probe of energy loss?

[Fries, Mueller & Srivastava, ms in preparation] 100 10^{-1} Au+Au@200 GeV/A /GeV² 10-2 0-10%; PHENIX 10-3 $T_{AA} \times pp$ 10^{-4} Jet-Photon Conversion dN/d²p_Tdy 10⁻⁵ 10-6 10-7 10⁻⁸ Thermal 10 2.5 5.0 7.5 0.0 10.0 12.5 15.0

> Reduced effect compared to previous calculations (consistent K-factors for γ and jets now). For p_t<6 GeV, FMS photons give still significant contribution to photon spectrum: 50% @ 4 GeV

 p_{T} (GeV)

AGS'RHIC Users Meetg., June 24th, 2005

Steffen Bass

Back to the "thermal region" ($p_T \sim 1 - 4 \text{ GeV/c}$)

Dmitri Peressounko

• Current upper limits in $p_{\tau} = 1 - 4$ GeV/c consistent w/ possible thermal γ comp.

- <u>Caveat 1</u>: Upper limits only as of now (data could be lower).
- <u>Caveat 2</u>: Prompt γ reference used is NOT real p+p data but NLO pQCD: Large uncertainties below p_T ~ 4 GeV/c (unknown contribution of dominant jet bremsstralung component). Need direct p+p measurement for p_T< 4 GeV/c

AGS/RHIC Users Meetg., June 24th, 2005

QGP temperature from thermal γ

Dmitri Peressounko

- Good correlation between exponential photon slope and initial temperature:
- T_{eff} dominated by hottest phase 8

Small smearing of effective temperature due to:

- Final thickness of matter
- Temperature gradients T(r)
- Collective velocity

0.3

0.28

0.26

0.24

0.22 0.2 0.18 0.16 0.14

0.12 0.14

T_{eff} (GeV)

QGP "EoS" from thermal γ & hadron multiplicities (I)

Dmitri Peressounko

- Access EoS correlating thermal γ slopes (temperature) & hadron multiplicities (dN_{ch}/dη ∝entropy in isentropic expansion) measured in diff AuAu centralities.
- Evolution of the effective # of degrees of freedom, g(s,T), with centrality:

RHIC-II Sci. Workshop, April 29th, 2005

QGP "EoS" from thermal γ & hadron multiplicities (II)

- AuAu @ 200 GeV produces "too hot" medium (QGP for all centralities). Insensitive to any centrality-dependent change due to QCD phase transition.
- Preliminary hydro calculations for AuAu @ 62 GeV :

Apparent phase transition change in g_{eff}(dN_{ch}/dη,T_{eff}) for centrality 50-60%

Should show up in more central collisions for lighter / lower-√s: AuAu, CuCu @ 62 GeV. AuAu, p+p @ √s = 40 GeV (RHIC-II) ?

RHIC-II Sci. Workshop, April 29th, 2005

David d'Enterria (Columbia Univ.)

Dmitri Peressounko

 $\tau_{i} = 4R/\gamma = 0.45 \text{ fm/c}$

Reducing systematics at low p_{T} !

Isolating the thermal component requires:
(i) small systematic uncertainties in AA and pp !
(ii) within p_T ~ 1 – 4 GeV/c !

AGS/RHIC Users Meetg., June 24th, 2005

"Tips" from the expert (I): Dominating systematics

Justin Frantz

- EM Calorimeter "Base Method": Count Cal Hits
- PHENIX Calorimeters (seg. $\Delta\phi\Delta\theta\sim0.01^2$) PbSc/Gl MidRap
- STAR Calorim. (BC seg. $\Delta\phi\Delta\theta\sim0.05^2$ MidRap, ECC ForwardRap seg smaller)

- Systematic errors for photon 10-15%, π^0 14-18%
- High p_τ: dominated by Energy Scale and Efficiency
- Low p_T : large hadron contamination

"Tips" from the expert (II): Going lower in p_{T}

- Use the conversion measurement ! (e⁺⁻ ID runs out @ 5 Gev/c)
- Energy Resolution has opposite behavior:

At low p_T < ~3 GeV systematics smaller. Total systematics 13% (STAR)

- Factor of 10²⁻⁴ loss in statistics won't hurt in Run-4.
- In the region of overlap with EMCal measurements, reduce γ energy scale uncertainty by "combining" rate normalization.
- Extend $p+p \rightarrow \gamma$ measurement to low p_T (need baseline in "interesting" region !)
- Result: Constrain thermal rates below 4 GeV and confirm/deny jet-medium enhancement

AGS/RHIC Users Meetg., June 24th, 2005

Justin Frantz

Many exciting topics in photon physics

Summary:

Paul Stankus Justin Frantz

The central interest in thermal direct photons continues in RHIC and LHC nuclear collisions. But photon production, as well as W and Z production, touches on a wide range of physics topics beyond QCD thermodynamics:

- γ-h correlations: calibrated away-side energy. separation angular jet shape differences btw Bremss., Compton π⁰ bkg. Also difference in flow contribution of γ-h angular correlation shape.
- Reaction plane dependent direct γ analysis. Measure direct γ flow directly (may be 0). Constrain path dependencies.
- Direct photon- (and Z-) tagged jet fragmentation
- Jet+medium-induced direct photons
- Investigate the approach to thermal equilibrium (parton cascade)
- Beam-stopping collective bremstrahlung
- Source size via γγ HBT correlations

۰...

Backup slides

AGS/RHIC Users Meetg., June 24th, 2005

Energy loss in Au+Au $\rightarrow \gamma$ + X @ \sqrt{s} = 200 GeV ?

(Part of the) prompt photons can be distorted by the dense QCD medium (esp. in the region p_{τ} < 4 GeV/c).

Photon production in p+p @ 200 GeV:

AGS/RHIC Users Meetg., June 24th, 2005

"Tips" from the expert (II): photon energy loss ?

Any (bremsstrahlung) photon energy loss ?

- *p+p* Preliminary Comparison between isolation/non-iso method: null Brems?
- Plenty of room in those systematics
- Make real R_{AA} (with p+p γ–it's all there!) More precise also look for nuclear effects (k_T, Cronin)?

Justin Frantz

Theoretical models

NLO codes

. - -

	type of code	Direct	Fragmentation
INCNLO (*)	I/FO	NLO	NLO
Vogelsang, Gordon (*)	I/FO	NLO	NLO
Owens et al. (*)	G/FO	NLO	LO
Frixione, Vogelsang	G/FO	NLO	LO
JETPHOX (*)	G/FO	NLO	NLO

L		Inclusive
G	•	Generator
FO	:	Fixed Order

(*) http://wwwlapp.in2p3.fr/lapth/PHOX_FAMILY/main.html Threshold resummation:(*) Catani et al. (*) Kidonakis, Owens

Guillet, DIS04

Disentangling "thermal" γ from quenched prompt γ

Step 1: Measure $p+p \rightarrow \gamma$ (isolated) + X down to $p_{\tau} = 1 \text{ GeV/c}$ with uncertainties ~10%

Handle on γ from gg-Compton, ggbar annihilation

Step 2: Measure p+p $\rightarrow \gamma$ (total) + X down to $p_{\tau} = 1 \text{ GeV/c}$ with uncertainties ~10%

Handle on fragmentation γ production

Step 3: Measure Au+Au $\rightarrow \gamma$ (total) + X down to $p_{\tau} = 1 \text{ GeV/c}$ with uncertainties ~10%

Step 4: (AuAu γ_{total}) – $T_{AB} \cdot (pp \gamma_{isolated})$ Upper limit on thermal spectrum.

Step 5: (AuAu
$$\gamma_{total}$$
) – T_{AB}^{\bullet} (pp γ_{total})
Lower limit on thermal spectrum.

AGS/RHIC Users Meetg., June 24th, 2005

10

12

1

Photons from quark jets in the medium ?

- Duke group predictions for Compton & annih. of fast quark in medium
- LO for photons (& not most recent thermal photon rates)
- But NLO (K = 2.5) for jets, no energy loss taken into account ... Effect probably overestimated

