the Nuo-State of Mer Matters

High p_{T} at RHIC: **Highlights.**

AGS&RHIC Users Meeting

BNL, NY - May 12, 2004

David d'Enterria Nevis Labs, Columbia University, NY

QGP & CGC search (2) RHIC in the high p_{T} **sector**

→ "QCD vacuum" reference results – p+p @ 200 GeV

- 1. Inclusive hadron spectra: Ed³σ/d³p
- 2. Jet properties ($dN_{pair}/d\phi$): $\langle j_T \rangle$, $\langle k_T \rangle$

Comparison to pQCD (NLO) expectations

→ "Hot QCD medium" highlights – central Au+Au @ 200,62 GeV

- 1. Suppressed hadron spectra: dN/dp_T
 - \sqrt{s} , p_{T} , centrality dependence
- 2. Suppressed di-jet correlations $(dN_{pair}/d\phi)$ reaction-plane dependence, low p_T assoc. correlations ...
- 3. Baryon "anomalies" @ intermediate p_T enhanced dN/dp_T and v2, jet-like dN_{pair}/d ϕ

→ "Cold QCD medium" highlights – d+Au @ 200 GeV

- 1. Inclusive hadron dN/dp_{T} enhancement at $y \le 0$
- 2. Inclusive hadron dN/dp_{T} suppression at $y \ge 1$

AGS&RHIC Users Meeting, May 12th 2004

Comparison to QGP expectations ("jet quenching" & "q recomb.")

Comparison to "Color-Glass-Condensate" expectations

Approach: Study modifications (dN/dp_T, particle composition, dN_{pair}/dφ, ...) of high p_T in A+A with respect to p+p, d+A to learn about QCD many-body dynamics:

- "Quark Gluon Plasma" (final-state A+A) and/or
- "Color Glass Condensate" (initial-state A).

AGS&RHIC Users Meeting, May 12th 2004

Part I:

p+p @ 200 GeV

"Calibrating" the QCD vacuum

AGS&RHIC Users Meeting, May 12th 2004

p+p @ 200 GeV: "baseline" spectra

Good theoretical (NLO pQCD) description ...

AGS&RHIC Users Meeting, May 12th 2004

p+p @ 200 GeV: "baseline" spectra

Good theoretical (NLO pQCD) description ...

... at variance with lower sqrt(s) results (factors of ~2-4 discrepancy): non-perturbative effects (intrinsic k_{τ}), partly cured by NLL soft g resummation

AGS&RHIC Users Meeting, May 12th 2004

p+p @ 200 GeV: "baseline" spectra

Good theoretical (NLO pQCD) description:

 $p+p \rightarrow \pi^0 X$ E*d³0/dp³ (mb.GeV⁻².c³) **PH**^{*}ENIX 10 10⁻² PHENIX Data 10⁻³ KKP FF 10 ···· Kretzer FF **10**⁻⁵ (PDF: CTEQ6M) 10 PHENIX Collab. 10⁻⁷ PRL91, 241803 10⁻⁸ hep-ex/0304038 <u>Δ</u>σ/σ (%) 40 20 0 -20 -40 4 KKP FF (Data-QCD)/QCD 2 0 4 Kretzer FF 2 0 Ď 5 10 15 p_T (GeV/c)

 $p+p \rightarrow h^{\pm} X$ (non singly diffractive)

Well calibrated (experimentally & theoretically) p+p references at hand !

David d'Enterria (Columbia Univ.)

AGS&RHIC Users Meeting, May 12th 2004

p+p @ 200 GeV: jet properties (I)

AGS&RHIC Users Meeting, May 12th 2004

David d'Enterria (Columbia Univ.)

p+p @ 200 GeV: jet properties (II)

AGS&RHIC Users Meeting, May 12th 2004

David d'Enterria (Columbia Univ.)

Part II:

Au+Au @ 200 GeV

Probing the hot & dense QCD medium

AGS&RHIC Users Meeting, May 12th 2004

Au+Au @ 200 GeV (central): suppression !

AGS&RHIC Users Meeting, May 12th 2004

d+Au @ 200 GeV: enhancement !

Suppression in central Au+Au due to final-state effects

AGS&RHIC Users Meeting, May 12th 2004

Au+Au @ 200 GeV (central): mono-jet correlations !

Trigger particle Near side jet d+Au FTPC-Au 0-20% 0.2 p+p min. bias ★ Au+Au Central I Associated particles Correlation of Away side jet 0.1 4<p_(trig)<6 GeV/c trigger particles $4 < p_T < 6.5$ GeV with p₋(assoc)>2 GeV/c associated particles $2 < p_T < p_{T,trig}$ p+p, peripheral Au+Au: 2 jets 0 2 -1 3 $\Delta \phi$ (radians) Central Au+Au: no away-side jet d+Au control: 2 jets p+p Au+Au 5% central Associated low-p_T yield ("jet remnants"): $1/N_{trigger} dN/d(\Delta \phi)$ near-side: jet-like away-side: broad $cos(\Delta \phi)$ -like from momentum conservation 0 2

AGS&RHIC Users Meeting, May 12th 2004

David d'Enterria (Columbia Univ.)

 $\Delta \phi$ (radians)

Au+Au @ 200 GeV (central): jet properties

• Central Au+Au: Associated away-side yields are "moved down" in p_{τ}

Au+Au @ 200 GeV (central): reaction-plane dependence of monojet topologies

 $\Delta \phi$ (radians)

Back-to-back suppression out-of-plane stronger than in-plane Effect of path length on suppression is experimentally accessible

Au+Au @ 200 GeV: "anomalous" hadron composition

p+p collisions: hadron/meson ~ 1.6

Particle composition inconsistent with known fragmentation functions.

AGS&RHIC Users Meeting, May 12th 2004

Au+Au @ 200 GeV (central): baryons > mesons !

Baryon/meson ratios: ~1 !

• Additional production mechanism for baryons in the intermediate p_{τ} range

AGS&RHIC Users Meeting, May 12th 2004

Theory vs. data (I): final-state very dense medium

Medium properties according to "jet quenching" models:

Such large opacities imply:
 (i) large rescattering: thermalization, (ii) energy densities e_{crit QCD} >> 1 GeV/fm3

AGS&RHIC Users Meeting, May 12th 2004

Theory vs. data (II): partonic or hadronic medium ?

Energy loss in Dual-Parton-Model based approaches ...

Final state interactions: Partons or hadrons?

We can divide our suppression factor

$$\widetilde{S}_{\pi^0}(b,s,y,p_T) = \exp\left\{-\widetilde{\sigma}\left[1 - \frac{N_{\pi^0}(b,s,y,p_T + \delta p_T)}{N_{\pi^0}(b,s,y,p_T)}\right] N(b,s,y) \ell n\left(\frac{N(b,s,y)}{N_{pp}(y)}\right)\right\}$$

where the log term corresponds to:

$$\ln\left(\frac{N(b,s,y)}{N_{pp}(y)}\right) = \ln\left(\frac{\tau_f}{\tau_0}\right)$$

in two parts:

Partonic: From initial density $N(b, s, y) = \frac{dN/dy}{\pi R_A^2} \sim \frac{1000}{\pi R_A^2}$ to $\frac{dN/dy}{\pi R_A^2} \sim \frac{300}{\pi R_A^2}$, or equivalently from $\tau_0 = 1$ fm to $\tau_p = 3.6$ fm

Hadronic: From partonic density $\frac{dN/dy}{\pi R_A^2} \sim \frac{300}{\pi R_A^2}$ to $N_{pp}(y) = 2.24$ fm⁻², or equivalently from $\tau_p = 3.6$ fm to $\tau_f = \infty(5-7)$ fm

We find that:

78% of the effect takes place in the partonic phase 22% of the effect takes place in the hadronic phase

(Elena Ferreiro)

... Mostly partonic

18 David d'Enterria (Columbia Univ.)

AGS&RHIC Users Meeting, May 12th 2004

Theory vs. data (III): final-state "quark" medium

Quark recombination (coalescence) mechanisms provide an additional mechanism for baryon production at intermediate p_τ's (2-5 GeV/c):


```
Via quark momenta addition:

p_T(baryons) > p_T(mesons) > p_T(quarks)

Fragmentation dominates for p_T > 5 GeV/c:

p_T(hadrons) = z p_T(partons), with z<1
```

Large quark densities in thermal medium required

However ... thermal + shower parton recombination needed to explain jet-like baryon near-side azimuthal

Part IIb:

Au+Au @ 62.4 GeV

Probing the (sligthly less) hot & dense QCD "medium"

AGS&RHIC Users Meeting, May 12th 2004

Nuclear modification factor (π^0): $\sqrt{s_{NN}}$ dependence

- CERN-SPS: Pb+Pb central ($\sqrt{s_{NN}}$ = 17.3 GeV): small suppression (?) (*)
- CERN-ISR: $\alpha + \alpha$ ($\sqrt{s_{NN}} = 31$ GeV): Cronin enhancement (too small system).
- RHIC: Au+Au ($\sqrt{s_{NN}}$ = 130, 200 GeV): x 4-5 suppression.

AGS&RHIC Users Meeting, May 12th 2004

Au+Au @ 62.4 GeV: p_T spectra

p+p @ 62.4 GeV: reference p_T spectra

• No concurrent p+p measured at RHIC. Have to rely on ISR measurements ...

Au+Au @ 62.4 GeV (R_{AA} central): h[±] suppression !

David d'Enterria (Columbia Univ.)

Au+Au @ 62.4 GeV (R_{AA} central): π⁰ suppression !

Charged hadrons vs. pions

Pions more suppressed than h^{+/-} at intermediate p_T (also found at 200 GeV):
 R_{AA} ~ 0.6 at p_T~2 GeV/c

• "Universal" (PID) and constant suppr. at high p_T : $R_{AA} \sim 0.3$ for $p_T > 6$ GeV/c

AGS&RHIC Users Meeting, May 12th 2004

Au+Au @ 62.4 GeV (R_{AA} central): baryons again !

1.5

2

2.5

p, (GeV/c)

0.5

• Central p/π + ratio similar to 200 GeV Au+Au result at high p_{τ} .

 Central pbar/π⁻ ratio at 2-3 GeV is smaller than 200 GeV results.

 Smaller pbar/p ratio due to more baryon transport to mid-rapidity and less pbar production.

AGS&RHIC Users Meeting, May 12th 2004

Au+Au @ 62.4 GeV (central): suppression predictions

AGS&RHIC Users Meeting, May 12th 2004

Au+Au @ 62.4 GeV (central): data vs. theory

• Reasonably good agreement (esp. high p_T) within uncertainties

• Caveat: uncertainty in the p_{τ} shape (esp. low p_{τ}) of the p+p reference ...

d+Au @ 200 GeV at y~3 Probing the QCD cold "medium"

AGS&RHIC Users Meeting, May 12th 2004

The quest for gluon saturation effects @ RHIC ...

David d'Enterria (Columbia Univ.)

d+Au @ 200 GeV (η = 3.2): forward suppression !

AGS&RHIC Users Meeting, May 12th 2004

Is this "standard" nuclear shadowing ?

Maximum gluon shadowing at x~10⁻⁴ (indirectly) constrained by leading-twist approaches fitted to available DIS data on nuclear targets is ~0.8

NLO DGLAP global analysis of nuclear PDFs

D. de Florian & R.Sassot hep-ph/0311227

Is this "Color Glass Condensate" ?

GC + quantum evolution seem to reproduce data:

Possible hint of extra higher-twist effects at small-x (breakdown of QCD factorization). But, soft physics effects can still be playing a role here ...

AGS&RHIC Users Meeting, May 12th 2004

Summary

High p_{τ} <u>central Au+Au</u> vs p+p at midrapidity at RHIC:

(1) Inclusive spectra suppressed by a factor of 4-5 at 200 GeV and by a factor of ~3 at 62.4 GeV

(2): Intermediate p_T hadron composition inconsistent with known fragmentation functions in free space.

(3) Disappearance of away-side jet correlations. Enhanced mono-jet pattern following line of longest path.

High p_{τ} <u>d+Au</u> vs p+p at midrapidity at RHIC:

(4) Spectra enhanced by a factor ~1.3

"Explanation" (1,2 via 4): pQCD hard scattering + final-state parton energy loss + quark recombination in dense thermal QCD medium. <u>QGP ?</u>: thermal γ ?, J/Ψ suppression ? (Run-4 AuAU @ 200 GeV)

High p_{τ} in d+Au at forward rapidities at RHIC:

(5) Spectra suppressed by a factor \sim 2.

"Explanation" : possible evidence of higher twist effects at small-x.

AGS&RHIC Users Meeting, May 12th 2004

backup slides ...

AGS&RHIC Users Meeting, May 12th 2004

High p_T @ CERN-SPS: "Cronin" or "quenching" ?

• New nuclear modification factor (better p+p $\rightarrow \pi^0$ ref. @ $\sqrt{s_{NN}}$ = 17.3 GeV)

- No "Cronin" effect in central collisions ($R_{AA} \sim 1$).
- Cronin" enhancement in peripheral ... and suppression in top central ?
- Look for onset of suppression at RHIC Au+Au, p+p @ $\sqrt{s_{NN}} \approx 20$ GeV ?

d+Au nuclear modification factor (at y=0)

- High p_T production in d+Au not suppressed but enhanced ! R_{dAu} > 1 as in p+A "Cronin enhancement": p_T broadening due to initial-state soft & semihard scattering.
- "pQCD" cross-sections ($R_{AA} \sim 1$) recovered at $p_T > 8$ GeV/c
- No Au shadowing effects in kinematic region probed (y = 0).

AGS&RHIC Users Meeting, May 12th 2004

d+Au @ 200 GeV : rapitidy dependence of suppression

- Suppression at low x_{Au} (shadowing, saturation,...)
- Enhancement at high x_{Au} (Cronin, anti-shadowing,...)
- J/ψ behaves like other mesons

QCD factorization in A+B collisions

pQCD (factorization theorem) expectation for inclusive A+B hard cross-sections: Independent scattering of "free" partons: $f_{a/A}(x,Q^2) = A f_{a/p}(x,Q^2)$ At imp. param. b: $dN_{AB \rightarrow hard}(b) = T_{AB}(b) \cdot d\sigma_{pp \rightarrow hard}$ $d\sigma_{AB \rightarrow hard} = A \cdot B \cdot d\sigma_{pp \rightarrow hard}$ geom. nuclear overlap at b **Nuclear** $R_{AB}(p_T) = \frac{d^2 N_{AB}/dy dp_T}{\langle T_{AB}(b) \rangle \cdot d^2 \sigma_{nn}/dy dp_T}$ **Modification Factor:** $_{AB}$ R $T_{AB} \sim \# NN \text{ colls.} ("N_{coll} \text{ scaling"})$ 1.2 **-** R_{AA} = 1 1.0 0.8 "hard" A+A = "simple superposition of p+p 0.6 collisions" at high- p_{T} where hard 0.4 scattering dominates 0.2 production is "shadowed" 0.0 5 3 6 Tranverse Momentum (GeV/c)

AGS&RHIC Users Meeting, May 12th 2004

David d'Enterria (Columbia Univ.)

Confirmation... unsuppressed hard colorless production in Au+Au central

Control observable: direct photons (clean, penetrating = directly coupled to partonic vertex, no fragmentation) non-hadronic hard probes.

Photons (insensitive to final-state effects) show <u>collision scaling</u> at high p_τ:
 pQCD parton scattering holds for hard processes in central Au+Au !