Use of CORBA in the PHENIX Distributed Online Computing System
Edmond Desmond a, Steven Adler a, Lars Ewell a,John Haggerty a, Hyon Joo Kehayias a, Steve Pate b , Martin Purschke a,Ryan Roth a ,Chris Witzig a
a Physics Department, Brookhaven National Laboratory, Upton, NY, 11973

b Department of Physics, New Mexico State University, Las Cruces NM 88003

Abstract

The PHENIX online control system is responsible for the configuration, control and monitoring of the PHENIX detector data acquisition system and ancillary control hardware, and the collection and archiving of the event data. The detector consists of 11 distinct subsystems, which are distributed physically and partitioned logically while ultimately being combined into a single operating unit. The online system consists of a large number of embedded commercial and custom processors as well as custom software processes which are involved in the collection, monitoring and control of the detector and the event data. These processing elements are distributed over a diverse set of computing platforms including VME based Power PC controllers, Pentium based NT systems, and SUN Solaris SPARC processors. CORBA has been adopted as the standard communication mechanism for PHENIX online system. This paper will describe the design, implementation and use of CORBA to achieve a uniform and platform independent control environment while providing for the access, control and monitoring of the online detector elements over the distributed and diverse control environment. Synchronous and asynchronous communication issues will be discussed as well as the development of CORBA compliant components which were developed to achieve client / server isolation and deterministic system behavior. The use and interaction between JAVA based clients and C++ based CORBA servers to further achieve a platform neutral environment will be presented

.

I. Introduction

The PHENIX online system is responsible for the configuration, monitoring and control of the PHENIX detector. [1] The detector consists of up to 411,172 detector elements which are distributed over 11 sub-detectors and 4 physical arms. These detector elements are read out through a data acquisition system which includes some 440 DSP processors which occupy 110 VME based boards in over 10 VME crates each of which are controlled by a Motorola Power PC processor running VxWorks. [2] The data events are collected from these DSPs into an event builder which will be composed of up to a 32 by 32 array of Pentium processors running the NT operating system[3]. Operator control, monitoring and archiving applications will execute on Sun Solaris, and Linux based computers. With such a diverse computing environment, it was imperative that the control code that was developed be reusable over the different platforms. In order to develop an online system which could be developed independent of and operate transparently over these diverse platforms, CORBA was chosen as the mechanism for distributed object communication. The PHENIX online system components were developed primarily in C++ to take advantage of object oriented design techniques. Code was developed with the native Sun C++ compiler on Solaris, GNU g++ for VxWorks development, and Microsoft's C++ v6.0 for NT. Client applications are written in C++ and Java.

IONA Technologies Orbix [4] was chosen for the implementation of CORBA. IONA provides a CORBA implementation for all the above platforms including the Motorola Power PC which was essential for the PHENIX online system. IONA's OrbixWeb was chosen for the Java IDL compiler

.
II.

Architecture Description
A. Design Goals and Pattern

A major design consideration in the development of the online system was to decouple the client application software from the knowledge of the location and implementation of the software components. A second design goal of the online system to develop software components which would be reusable over the different platforms and which would provide the mechanism for distributed client applications to locate, obtain object references, and invoke methods on those objects. Reusability requires that the same code and thus the same API be useable on the different platforms. Such a software framework of components should also provide a common mechanism by which remote objects are created, managed and deleted. Clearly one of the issues of such a distributed system is to hide the differences in network and processor architecture from the applications. The different APIs which are prevalent between NT and Solaris for network access must also be hidden from the application program. In order to meet these requirements, CORBA was selected as the communication standard to achieve these objectives.
B. Using CORBA for platform independence

CORBA provides a platform independent and transparent mechanism for communication between distributed objects through the use of an Interface Description Language (IDL), and through the use of proxy objects. Objects are described to a client application through the IDL description. This language defines the interface only of and object. It describes the objects attributes, methods, method arguments and exceptions. This description is independent of the language in which the object being described is implemented. Compilation of this IDL object description results in the creation of client stub code which is implemented in the language for which the IDL compiler is bound. When a client application binds to a CORBA object, this stub code is used to create a proxy object for the remote object. Invocations of methods to the remote object are implemented as calls to the local proxy object. It is the proxy object which does the communication with the remote object, taking care of communication details such as byte code marshalling and socket connections. To the client application then, remote object method invocation looks exactly like an invocation on a local object, which, in fact it is. The result has been that client applications have been built without knowledge of the platform of the remote target object.

C. Portability
By using CORBA for remote communication, the server application where built with a high degree of portability. Since no application code has to deal with low level communication protocols or platform dependent network APIs, the server applications where almost entirely ported between the Solaris, NT and IRIX platforms. Some code modification were required however, when porting application components between the Solaris and VxWorks environments. This is due to the current lack of support in Orbix for the CORBA 2.0 IDL to C++ mapping in the VxWorks environment. This difference in C++ mapping is expected to be eliminated with the release of CORBA 3.0 for VxWorks from IONA.
The CORBA communication protocol used throughout the online system is the Orbix proprietary protocol. This is due to the above mentioned lack of support for the CORBA 2.0 standard. The CORBA 2.0 standard currently supports the Internet InterOrb Protocol (IIOP). The online system will migrate to the IIOP protocol when it becomes available for VxWorks.
D. Remote Object communication mechanisms

Client applications may access server component objects through either synchronous or asynchronous communication mechanisms. Clients issue synchronous communication calls to obtain state information about a particular object. State information is typically contained in the attributes of an object. Clients access attributes through through accessor methods of an object. Accessor methods execute synchronously and thus block the caller until the method completes. All CORA IDL methods, which return a value, execute synchronously.

Attributes of objects are identified by an attribute identifier in the IDL file which describes the CORBA interface of an object. When the IDL file is compiled with the IDL compiler, each attribute causes the generation of an accessor function. Each accessor function signature defines a return parameter through which the attribute is returned. The object attributes may be a basic IDL data type or a complex user defined type.

While synchronous method invocation is used to return state information, all communication to cause an object to take some action takes place through asynchronous communication. The use of asynchronous communication provides for a further decoupling between client and server applications and provides for a more robust system. With asynchronous communication client applications do not need to have direct connections to every object they need to interact with. In addition, operations can take place in parallel in that invocations via asynchronous calls do not block while the call is being completed. This communication is carried out through a service called the Event Notifier which is described later in this paper.

E. Component Access and CORBA Services

The decoupling of servers from client application goes beyond how the object is invoked, and includes how a object is located and how the object reference is obtained. Three main components were developed to provide for these functions. These components are a naming service, an event or message delivery server and an object manager component
1) Naming Service
Before an invocation can be made on a remote object, the client application must obtain a reference to that object. Client applications obtain references to servers through a CORBA naming service. In the PHENIX online system, all objects are known by an ASCII name string. This string is defined according to an agreed upon convention which identifies the type of component being addressed and the detector system of which it is a member. This convention will be described later. The naming service provides a mapping between these ASCII names and a reference to an object. When a CORBA server starts up, it registers its name with the nameserver. Client applications gain access to online services by requesting a reference for a named service. The nameserver itself is addressed by an ASCII name, known as its marker, which is known by all servers. The nameservice has methods for registering objects with the service as well as for resolving or obtaining the reference to objects. These methods are defined in the IDL description of the nameserver below:

interface nameserver {

exception Reject { string reason ; };

exception NotFound { string reason;};

void BindName (in string objectname,

in Object objectReference)

raises (Reject);

long ResolveName(in string name, out Object reference)
raises (NotFound);

};

Only components which perform a service are registered with the nameserver. Component objects which perform specific tasks, are accessed indirectly through a component called an object manager which will be described later.

The nameserver is automatically notified when a registered server is no longer available through the use of the CORBA IO Callback mechanism. This mechanism provides a means for a registered function to be called when a client disconnects from a server. In Orbix, each connection to a client takes place through a file descriptor. This file descriptor is assigned when the connection is made and freed when the connection is broken. The callback mechanism is passed the file descriptor when connections are made or broken. The register function is then used to remove from the nameserver the name and object reference to the object that was associated with this connection. Thus the nameserver maintains up to date lists of servers. This same mechanism can be used to restart servers that have gone down. Anticipated use of this mechanism is to notify operators of the loss of critical servers.

3) Event Notifier Component
The event notifier provides routing of messages from a client to one or more remote objects. In addition, this service provides the mechanism for the decoupling of clients from servers. The event notifier provides an implementation of the Observer design pattern. [5]
Objects that have an interest in receiving an asynchronous message or event subscribe to receive those events with the Event Notifier. Registering an object to receive an event results in the creation of a mapping between a character string representation of the object name and the CORBA reference for that object. This mapping is maintained by the Event Notifier. When a client application wishes to send a message or command to a remote object it constructs an event message. This message is a CORBA structure which contains a name of the target object, the name of the sending client, an event number and any data which is to be sent to the destination object. When the Event Notifier receives the request to send the message, the Event Notifier looks for the name and if found invokes a takeevent method on the target object. When an object is registered with the Event Notifier, an event list is submitted with the request for registration. The Event Notifier will use this event list to filter events, and to only pass along those events for which the object wishes to be notified of. Applications use the Event Notifier by first obtaining a reference to it from the Name Service.
The Event Notifier has public methods to register, and remove an object as well as to send events to any registered objects. These public methods are defined in the Interface Definition Language (IDL) file for the Event Notifier and is given below.
interface EventNotifier {

typedef sequence<unsigned long> eventIdlist;

// subscribe an object to receive events in the eventidlist

oneway void subscribe(in eventIdlist eventidlist, in string destobjname,

 in Object eventreceiver);

// remove an object from receiving events

oneway void unsubscribe(in Object eventreceiver);

// send an event to a registered object

oneway void sendevent (in Event event);

};

The Event Notifier is modeled after the OMG CORBAservices Event Services [6]. This is a service which is defined by the OMG to provide indirect communication between event producers and consumers. This service employs a construct called an event channel. The event channel appears to be an object which implements either a push or pull model of events. That is, event generators can push events into the event channel and events are pushed on to the event receiver. Alternatively, an event receiver can request or pull events from the event channel and the event channel will in turn pull any pending events from the event supplier. The Event Notifier is patterned after the push model.

4) Object Manager

Before a client application can invoke a method on a remote object, it must obtain a reference to that object. References to remote objects are obtained from an object manager, an instance of which resides in each CORBA server. The object manager is a component which is responsible for the creation, deletion, and management of all component objects for the server in which it resides. The object manager stores an ASCII object name string, and the CORBA object reference for each object which it creates and manages. The object manager has methods to create and return references to objects, and to return a list of all managed objects.
The object manager provides a uniform mechanism to create an obtain references to remote objects. In addition, it distributes the load and responsibility of obtaining object references for clients from the Nameserver.
F. Exception Handling

Exception handling and error reporting is handled in two different ways in the PHENIX online system according to whether the method which generates the exception has been called synchronously or asynchronously. All synchronous CORBA methods are defined, in the online system, to generate exceptions. For each exception defined in the IDL file, the IDL compiler generates a class which is of the same name as the exception. The constructor for this class takes a parameter for each member of the exception. All method exceptions are defined in the online system as having at least one member which is a string value. This string value is used to return a string representation of the reason for the exception.

Operations which are invoked on remote objects via asynchronous CORBA calls cannot return information to the caller either through return parameters and cannot return exceptions. These asynchronous method calls are defined in the IDL file as oneway operations. Clients do not block on these calls. The function calls themselves are not guaranteed to complete. In order to return operation completion status on these functions, a return event message is generated in the server side object whose method is being invoked. The message is returned to the source object whose name is a source Object field of the message that was sent.

III. Use of Java clients to interact with C++ based servers.

Client applications which require run-time access to the online system have been written in both C++ and Java. However Java is becoming the language of choice for the PHENIX online system monitoring and control applications. The well known portability and expanding libraries of support classes are strong incentives to use Java for client applications. Java applications, and applets are limited in their access to remote objects. Java applications may access remote objects either through the Java Remote Method Invocation (RMI) package or through native methods. However RMI limits access to servers written in Java, while native methods limits the portability of the application to the language and machine for which the native language interface was written.By using CORBA as the standard for interprocess communication, these strengths are extended by providing language and platform independent access to remote objects.
CORBA based Java applications access remote objects through a local proxy object, just as with CORBA application which are written in C++. These proxy objects are implemented in stud code which are generated as a result of the compilation of the IDL files which define the interface to the target objects.
A. Security

Java client programs can be developed to run as applications or as applets. When developing Java programs as applets, the normal Java security restraints apply. The Java security model limits an applet to access to the server from which the applet was launched. [8] This limitation applies whether the application uses CORBA or not. In order for applets to use CORBA from a browser , such as Netscape, to access remote objects which are on different platforms, each invocation of a CORBA method must be given permission through the brower security manager. Applets must also be cognizant of the browser for which it is being developed as the archiving file format is different between Internet Explorer and Netscape. The browser in which the applet is running must also be known as the security API is also different between these two browsers. The Java security model places other restrictions on what resources an applet may have access to. While some online Java programs have been written to run as applets, all Java programs are currently being written as applications. This provides the platform independence which is of primary importance at this time.
Security of access to online components will be enhanced with the use of the CORBA smart proxy mechanism. This mechanism allows a method to be invoked on either the pre or post marshalling stage of a remote method invocation. Each object in the online system inherits from a Component base class. Each component class has an owner and access attributes. The structure of each command from a client contains a field for the name of the client. By implementing a smart proxy in the server each command from a client can be compared against the owner and its permission fields.
B. Development Environment
Inprise's JBuilder [7] is being used as the development environment for many of the Java applications. This product provides a visual drag and drop integrated development environment for rapid interface development. The graphical interface of the Java applications are being built using the Java Swing class library. This library is not tied to the graphical environment such as Windows or Motif on which the application runs and thus provides a level of independence from the runtime platform.[8]

C. Performance
When Java applications execute, each class that is accessed is downloaded from the server at runtime. This can result in slow execution time as the application classes are downloaded. In order to improve application performance, Java client application classes are collected, in the online system into Jar files. The Jar file, which is a compressed archive format file, is downloaded once when the application is started. Our experience that Java control applications take approximately 5 seconds to download and start up.

IV. Conclusions
The use of CORBA has succeeded in the goal of providing a platform independent development and operating environment. Client application code is independent of the target server platform while server development is highly portable. The migration to the use of IIOP protocol will allow enhanced functionality with the use of CORBA 2 and 3 services, such as the naming service and Event Notification Service. Work on improving the robustness of the system with the implementation of serialization of objects through the use of the CORBA loader service will continue.

V. Acknowledgments

Work supported by the U.S. Department of Energy, under Contract No. DE-AC02-76CH00016.

VI. References
[1]
C. Witzig,"Overview of the PHENIX Online System", Xth IEEE Real Time Conference 1997, Beaune France, Proceedings, pp. 541- 543.

[2]
VxWorks 5.3; Wind River Systems Inc., 1010 Atlantic Avenue Alameda, CA 94501
[3]
Microsoft Corp, Redmond, Wa.

[4]
Orbix 2.0; IONA Technologies Ltd., The IONA Building, 8-10 Lower Pembroke Street, Dublin 2, Ireland (http://www-usa.iona.com//index.html)
[5]
E. Gamma, R. Helm, R. Johnson, J.Vlissides, Design Patterns, New York: Addison-Wesley,Reading MA. 1995, pp 293-303.
[6]
Object Management Group, CORBA Event Service specification; (http://www.omg.org/library/schedule/Technology_Adoptation.htm)
[7]
JBuilder, Inprise Corp, 100 Enterprise Way, P.O. Box 66001, Scotts Valley, CA 95066 (http://www.inprise.com//index.html)
[8]
Swing 1.1 API Specification, (http://java.sun.com/products/jfc/swingdoc-api-1.1/overview_summary.html)

C.

.

