Progress

High pt D=>Kpi, need

- rates
- S/B vs DCA cut and S/ B vs DCA cut
strategy reminder
- $B=0$
- Fit Si hits with a line, calculate DCA to collision
- use fast filter to see if π, K in PHENIX acceptance

Progress

- pythia 100k p+p => D + x
- 5.5 k D with $\mathrm{pt}>2 \mathrm{GeV} / \mathrm{c}$
- decayed, filter (tof || aerogel for K) \&\& (dch for pi)
> no pairs both in acceptance?, bug, or opening angle

backups

Work Plan (done $=\sqrt{ }$)

\checkmark <ncoll> * D from pythia, π, K from min.bias Au+Au EXODUS
$\checkmark \mathrm{pt}>1 \mathrm{GeV} / \mathrm{c}$ on π, K (primary and daughters)

- selects > $2 \mathrm{GeV} / \mathrm{c}$ D's
\checkmark Kaon into acceptance of TOF or aerogel
- goal of PID cut is to reduce S/B
- S/B vs DCA cut
- Use Tony's \#events collected in a Au+Au run
- significance of signal over fluctuating background

$$
\text { significance }=\frac{S}{\sqrt{\left(\sigma_{S}\right)^{2}+\left(\sigma_{B}\right)^{2}}}=\frac{S}{\sqrt{B}}
$$

- increases with sqrt(nevents)
- plot significance vs DCA cut

aerogel

Bz

Fitting

A review of fast circle and helix fitting

R. Fruhwirth
http://acat02.sinp.msu.ru/presentations/fruehwirth/talk.pdf

High-pt: Flavor Dependence Energy-loss

- @ higher pt, e and μ decay channels dominated by beauty
- hadronic decay for high-pt charm spectra
» multiple-scattering, small acceptance less problematic

$$
\mathrm{D}^{+}=>\mathrm{K}^{-} \pi^{+} \pi^{+}(\mathrm{BR} 9 \%)
$$

$$
\mathrm{pt}>4 \mathrm{GeV} / \mathrm{c} \mathrm{D}^{0}=>\mathrm{K} \pi
$$

p+p 30k/year
Au+Au 10K/year

Au+Au 4 blue-book luminosity, 50 full days/year, yield $A u+A u=A A^{*}(y i e l d p+p)$

PHENIX QM02

Electron pt Spectra from D

Signal/background of invariant mass peak (2002 plots)

DCA of K/Pion from DO comparing with DCA of primary K/Pion (no pt cut)

