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The question
One statement one hears is that hydro evolves a continuous fluid

(correct) and then uses the Cooper-frye formula to turn it into 
massive particles

So, how then is the essentially fluid of essentially massless particles 
(quarks and gluons to make a concrete picture – but hydro doesn’t 
care – it could be water, or liquid helium..) turned into massive 
particles (e.g. via chiral symmetry restoration) How is the kinetic 
energy turned into momentum or mass. How can you conserve both 
momentum and energy.

The misunderstanding I have had comes from the fact that I thought of 
particles – gaining mass – In reality I think this is what happens 
through a complicated set of interactions with the vacuum, as the 
vacuum evolves. But this is not how hydro/Cooper Frye thinks about 
it. 

Cooper frye takes this continuous liquid and then breaks it into massive 
particles – the number of particles formed depends on the mass.

This little note will not explain WHY Cooper Frye works, but simply how 
it conserves energy



if we assume (wrong)

respectively, the energy and 
temperature in the comoving or local rest frame, v is the velocity

This comes from the assumption that the momentum 
distribution in the CM frame is given by the probability of 
finding a particle with a collective velocity v times the 
Lorentz-boosted thermal distribution normalized to the 
total number of particles

Seemingly a reasonable assumption



we get

• This eqn yields the correct number of particles but is 
inconsistent with energy conservation
– They prove this in the paper – they figure out the total energy of 

the gas (fluid) and compare it to just adding up all of the 
momentum assuming a relativistic gas of mass m under the 
assumption that it is in local thermodynamic equilibrium which 
will be shown on the next slide

– σµ is the freezeout hypersurface
– This eqn has some additional assumptions (that dN/d3v ∝

entropy density) – but I think that is beside the point. One sees 
the same problem of energy conservation



Correct (cooper frye)
for a relativistic gas, the invariant single particle distribution  of the particles on a
hypersurface σ is

now we take this distribution and assume that the gas is in local thermodynamic
equilibrium so the function f is 

So we get

E dN
d3p =

R
σ
g(E(v(x), T (x))pµdσµ

which is the same as before with one Euµ replaced by pµ This correctly
conserves energy but does not necessarily conserve particle number and since
it is a 4 momentum, depends on the energy AND momentum, hence the mass.
See note on last page



How to use it

• Euµ replaced by pµ

• How to use it
– so start with fluid (zero mass) 
– let it expand
– Turn it into masses using C-F formula
– Number of particles changes depending on 

mass



Note on number conservation 
from Cooper and Frye
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