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LECTURE: 08:10-09:00 AM, MWF, Physics 2000
INSTRUCTOR: Richard Seto

E-mail: Richard.Seto@ucr.edu 
Work phone: 909-767-5623 
Office Location: Physics 3029A 
Office hours: M 9-10   W 11-12  and by appt.

TEACHING ASSISTANT: 
E-mail: 
Office Hours:

TEXTBOOK: Principles of Physics, 4th Edition, by R.A. Serway and J.W. Jewett Jr
PROBLEM SETS: Webassign – get an access code 
CLASS PARTICIPATION: You will need clickers by Friday. Don’t 
forget to register them. clickers.ucr.edu

CLASS WEB SITE: Look at http://iLearn.ucr.edu and 
select GENERAL PHYSICS 002C (001) (SPRING 2006)
look under Course material for general info(this stuff)

Physics 2C (Seto)
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• Grading
• to be determined but will something like

• ~13% Homework
• ~12% Clickers in class
• ~20% midterm 
• ~55% Final
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HOMEWORK 

•• WebassignWebassign
• From ilearn – go to “STUDENT TOOLS” then 

“WEBASSIGN”
• due: Monday by 8:00 AM). 

• Multiple submissions (up to 5) are allowed
• No late work. No exceptions. 
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Laboratory – separate class

• Laboratory sessions begin the week of Monday, April 10th.
• Personnel: The faculty person in charge of the lower division 

undergraduate labs is Prof. Lau (jeanie.lau@ucr.edu)
• Web site: The lab write-ups and other pertinent information, 

including grades, will be available on the Blackboard web site 
at http://ilearn.ucr.edu/. Make sure you can access the web 
site early, so that you can download the write-ups when 
needed.

• Lab notebooks: Get one. See infor on idearn.
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• My general attitude to learning:
• a way of thinking, not formulas

• notation
• “cheat sheet” on ilearn

• use  for exams and HW
• Read book BEFORE Lecture

• The purpose of the lectures is to help 
you understand the material 
• not to regurgitate the book



6

Waves and Modern Physics

• Topics
• Oscillations and mechanical waves

• Your heart, day and night, walking
• Electromagnetic waves

• Light
• Geometric optics (lenses and mirrors)

• your eye
• Wave optics (Interference and diffraction)

• How you measure stuff, imaging, hearing
• Relativity

• Moving fast
• Quantum Mechanics

• How the chemistry in your body runs
• Atomics and Nuclear Physics

• How to treat diseases_
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Slides courtesy of Prof. Wudka
modified by R. Seto
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Many things move

Back and forth

Examples of oscillating systems

guitar strings

Ocean waves

Drums

The Sun

A pendulum

A spring
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Many things move

Back and forth

Examples of oscillating systems

guitar strings

Ocean waves

Drums

A pendulum

A spring

demo: keys on string
keys on rubber band
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Quantities describing oscillating systems

Some oscillating systems are irregular…

… for example, ocean waves.

But other are quite regular…

… for example, a pendulum.
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ECG

http://mcdb.colorado.edu/courses/2115/units/Other/heartbeat%20animation.html

Patent with a pacemaker
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For regular motion we can define:

frequency  f=2πω of oscillation
… how many full trips per second

period T of oscillation
… how long it takes to make a full trip

amplitude A of oscillation
… how far does the oscillating thing move.

amplitude It makes 1/4 trips per second
f=1/4=0.25 Hz  (frequency)

T=4 s  (period)
This takes (about) 4 seconds per full trip
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Why does it oscillate?

Look at a pendulum:

Not moving at constant 
speed in a straight line: 
there’s a force at work!

For the pendulum this force is gravity

Force of gravity points 
straight down…
Force of gravity points 
straight down…
… but can be written 
as a sum of two terms

One is perpendicular to 
the string

The other is along the 
string

The one perpendicular to 
the string makes the bob 
move

The one along the string 
keeps the string straight

When the bob is to the 
right, the perpendicular 
force points left

When the bob is to the 
left, the perpendicular 
force points to the right
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x1

x2

x3

x4

x1 x2x3x4

FORCE

displacement
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F=FORCE

x=displacement

For x positive
F is negative

For x negative
F is positive

Since F tends to return x to its 
previous value it is called a

RESTORING FORCE
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By the way, water 
also show oscillations

The restoring force is generated 
by pressure and gravity

Water oscillations propagate…
what about oscillations on other 

things like a spring?

If a bit of water goes down the pressure increases and pushes it up
If a bit of water goes up gravity pulls it down
So the bit of water moves up and down, up and down…
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F=FORCE

x=displacement

For x=0 the 
force vanishes

If the pendulum is set 
at x=0 with zero 

velocity it will stay 
there forever

We say that x=0 is an 
EQUILIBRIUM POINT

At x=0 the restoring force vanishes
But the total force does not

Description of the oscillations.
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F=FORCE

x=displacement

Near x=0 the force 
graph looks like a 

straight line

So, for small 
displacements…

The minus sign
Insures F’s sign is opposite x’s

What does the restoring force look like?  (A spring)
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By the way, if the 
sign is different…

The motion is 
completely different..

… since if x is positive the force 
will make it larger. This is not a 

restoring force!!
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F

x

For
F(x) = - k x

Newton’s equations give

With solution…

Where A and φ are constants and

Amplitude

Frequency

Note also that 
•When |x| is largest |a| is also largest, but v=0.
•When  x=0, a=0 also, but |v| is largest

veer
slinger
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can we solve this to get a 
nice formula for the 

position of the mass, x(t)? 

first let’s rewrite the egn

Lets guess and answer for x(t)
What gives negative itself on taking a 2nd derivative?

2

2 0d xm kx
dt

+ =

2

 Now let's check it
d cos( ) sin( )
dt
d [ sin( )] cos( )
dt

A t A t

A t A t

ω φ ω ω φ

ω ω φ ω ω φ

+ = − +

− + = − +

2

2

Plug it back in
cos( ) cos( ) 0

k                    
m

mA t kA t

k m

ω ω φ ω φ

ω ω

− + + + =

= ⇒ =

  ( ) cos( )so g x t tuess A ω φ= +The COSINE!

So How in the world did 
you get x(t)=Acos(ωt+φ)

Lets start here

ma= -kx

IT WORKS!
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can we solve this to get a 
nice formula for the 

position of the mass, x(t)? 

first let’s rewrite the egn

Lets guess and answer for x(t)
What gives negative itself on taking a 2nd derivative?

2

2 0d xm kx
dt

+ =

2

2

Plug it back in
cos( ) cos( ) 0

k                    
m

mA t kA t

k m

ω ω φ ω φ

ω ω

− + + + =

= ⇒ =

  ( ) cos( )so g x t tuess A ω φ= +The COSINE!

So How in the world did 
you get x(t)=Acos(ωt+φ)

Lets start here

ma= -kx

IT WORKS!

Incidentally we just 
calculated the velocity and 

acceleration

2

 Now let's check it
d cos( ) sin( )
dt
d [ sin( )] cos( )
dt

A t A t

A t A t

ω φ ω ω φ

ω ω φ ω ω φ

+ = − +

− + = − +

2

d cos( ) sin( )
dt
d [ sin( )] cos( )
dt

dxv A t A t
dt
dva A t A t
dt

ω φ ω ω φ

ω ω φ ω ω φ

= = + = − +

= = − + = − +
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announcements

• TA’s
– Myra Tovar
– Victor Chen
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I am taking this class

A. So I can become a doctor
B. So I can become a dentist or pharmacist
C. So I can go into the medical profession 

(other than doctor, dentist, pharmacist)
D. So I can go into the life sciences (other 

than the medical profession)
E. Other
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Lecture 2
Ok so where are we?

• We were looking at oscillating systems. 
– To get an oscillating system we needed a 

restoring force F=-kx (def of SHM)
– Using F=ma we found that

•• SPRINGSPRING
– Definition of spring constant! F=-kx
– So for a spring 

x(t)=Acos( t+ )     where    k
m

ω φ ω =

k
m

ω =
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The frequency determines how 
often  oscillations are  repeated

Large ω

small ω

time

x

x measures the 
displacement form 

the equilibrium 
position

Let us look at what 
ω=2πf  means

x=A cos(ω t + φ)
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Spring

• what are A, ω and φ ?
(remember we want  2πf= ω and f=1/T  where T is the period)

– max of cos=1 A= amplitude
– full period of cos=2π ωT=2π

T=2π/ω=1/f   
so f is a frequency (since ~1/T)

In the applet k=20N/m, m=5kg, A=.05m
ω= 2πf

x(t)=Acos( t+ )     where    k
m

ω φ ω =

applet veer.htm

2 1
1 120 / 20 / / 2 12       f=    T=

5 5 2  
N m kg m s m ss s s
kg kg

ω π
π π

−
− −⋅

= = = =

gravity?
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φ ??
x(t)=Acos( t+ )  ω φ

x φ=0
-2π-π-π/2

time

• φ is a measure of how much we push up the 
oscillation, in units of ωt. Its called a phase

• usually set by initial condition
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angular frequency

• In fact we can think of ωt as just an angle 
since it is inside the cosine! Often ω is 
called an angular frequency

• Got it!???

applet- shm
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sin

      

               

/

F mg mg
mgx L F L
L

mgk
L

k mg L g
m m L

θ θ

θ θ

ω

= − ≈ −

= ⇒ = −

⇒ =

= = = ω depends on L and g
ω independent of m! 

Pendulum
applet-slinger.htm
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Lecture 3
• We were looking at oscillating systems
• There had a period T=1/f   where f=frequency
• We used the angular frequency ω=2πf      so T=2π/ ω

– To get an oscillating system we needed a restoring force F=-kx (def of SHM)
– Using F=ma we found that

•• SPRINGSPRING
– Definition of spring constant! F=-kx
– for a spring 

•• PendulumPendulum

2

d cos( ) sin( )
dt
d [ sin( )] cos( )
dt

dxv A t A t
dt
dva A t A t
dt

ω φ ω ω φ

ω ω φ ω ω φ

= = + = − +

= = − + = − +

x(t)=Acos( t+ )    ω φ

k
m

ω =

sin

       

/

F mg mg
mg mgx L F L k
L L

k mg L g
m m L

θ θ

θ θ

ω

= − ≈ −

= ⇒ = − ⇒ =

= = =
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C1) I am taking this class

A. So I can become a doctor
B. So I can become a dentist or pharmacist
C. So I can go into the medical profession 

(other than doctor, dentist, pharmacist)
D. So I can go into the life sciences (other 

than the medical profession)
E. Other
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c2) Assuming x(t)=Acos(ωt+φ) for a 
simple harmonic oscillator,  which 

of the following is true?
A. v(t)= - A    sin(ωt+φ) 
B. v(t)=   A ω sin(ωt+φ) 
C. v(t)= - A ω sin(ωt+φ)
D. a(t)= - A ω cos(ωt+φ) 
E. a(t)= - A ω2 sin(ωt+φ)



34

c3)In terms of the angular 
frequency ω, the period T is
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• A 0.5 kg object attached to a spring with a 
force constant of 8N/m vibrates in simple 
harmonic motion with an amplitude of 10 
cm. Calculate (a) the maximum value of its 
speed and acceleration (b) the speed and 
acceleration when the object is 6cm from 
equilibrium and (c) the time it takes the 
object to move from x=0 to x=8 cm.

Example 2 
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Example 2 

10 cm=0.1 m

•There is no friction
•The only force is produced by the spring
•Acceleration is determined by Newton’s 2nd

0.5 kg

8 N/m

•Here the displacement is largest
•Then the force is largest
•Then the acceleration is largest

•Here the displacement is smallest
•The speed is smaller before and after
•Then here the velocity is largest
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• m=0.5 kg    k=8N/m   A=0.1m
– calculate max speed, accel
– calculate speed, accel when x=6cm
– time for x=0 to x=8 cm

• set φ=0 
• max speed =Aω=.4  m/s max accel=Aω2=1.6 m/s2

• when x=.06m  we have .06m=0.1m cos(4t)
t(x=0.6m) =¼ cos-1(.06/.1)=0.23 s

v= -Aωsin(ωt)=-0.1m 4s-1 sin((4)(0.23))=-.32 m/s

etc

2
18 / 4

0.5
k kg m s m s
m kg

ω
−

−⋅ ⋅
= = =

2

( ) cos( )
( ) sin( )
( ) cos( )

x t A t
v t A t
a t A t

ω φ
ω ω φ

ω ω φ

= +
= − +

= − +

Example 2 



38

Here the bob stops
(soon to turn back)

No kinetic energy

Energy=potential energy

Here the bob reaches its 
highest speed

Energy=kinetic energy

No potential energy

As the pendulum oscillates there energy flows:

Kinetic → Potential → Kinetic → Potential …

The flow of energy
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Flow of energy

• Potential energy
Uspring=½ kx2              

Upendulum=mgh=mgL(1-cosθ)
• Kinetic energy 

½ mv2

• Total energy E must be conserved so
Espring = ½ mv2 +½ kx2    is constant
Ependulum = ½ mv2 +=mgL(1-cosθ)   is constant

applet

Lcosθ

demo: bowling ball

veer slinger
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A pendulum and a spring have similar behaviors
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Example 3 

• A 50 g block connected to a spring with a 
force constant of 35 N/m oscillates on a 
horizontal, frictionless surface with an 
amplitude of 4 cm. find a) the total energy 
of the system and b) the speed of the 
block when the displacement is 1 cm. Find 
c) the kinetic energy and d) the potential 
energy when the displacement is 3 cm
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Example 3  

4 cm=0.04m

•There is no friction
•The only force is produced by the spring
•Acceleration is determined by Newton’s 2nd

50 g=0.05 kg

35 N/m
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Lecture 4
• Review- flow of energy
• Potential energy

Uspring=½ kx2              

Upendulum=mgh=mgL(1-cosθ)
• Kinetic energy 

½ mv2

• Total energy E must be conserved so
Espring = ½ mv2 +½ kx2    is constant
Ependulum = ½ mv2 +=mgL(1-cosθ)   is constant

applet

Lcosθ
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L4 C1) For a simple harmonic 
oscillator without friction the total 

energy
A. remains constant
B. Goes up and down depending on the 

speed
C. is zero
D. slowly decreases
E. other
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Example 3 

• A 50 g block connected to a spring with a 
force constant of 35 N/m oscillates on a 
horizontal, frictionless surface with an 
amplitude of 4 cm. find a) the total energy 
of the system and b) the speed of the 
block when the displacement is 1 cm. Find 
c) the kinetic energy and d) the potential 
energy when the displacement is 3 cm
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Ex 3 

2 2

2 2 2

2 2 2 2 2

0.05 35 / 0.04 26.5

1 1) (35)(0.04)
2 2

) : ' 0.01 , '
1 1 1) : ' '
2 2 2

' ' ' ' 1.02 /

' 1.

km kg k N m A m s
m

a E kA

b Two ways we are given x m and we want v

i easy way Energy Conservation E kA kx mv

k kv A x v A x m s
m m

Actually we get that v

ω

ω

= = = = =

= =

=

− = = +

= − = − =

= ±

1

1 1 1

02 /
) : ' cos( ') ' sin( ') 0

1 '' cos

1 ' ' 0.01' sin cos sin cos (0.04)(26.5)sin cos 1.02 /
0.04

m s
ii harder way use x A t v A t where we have set

xt
A

x xv A A m s
A A

In reali

ω ω ω φ

ω

ω ω ω
ω

−

− − −

= = − =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

2 2 2

cos
) ' 0.03

1 1 1' '
2 2 2

ty here too the answer can be because of the
c x m

PE kx K E PE kA kx plug it in

−±
=

= = − = −
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Example 4 

• A “seconds pendulum is one that moves 
through its equilibrium point once each 
second. (i.e. T=2s) The length of the 
seconds pendulum is 0.9927 m in Tokyo 
and 0.9942 m in Cambridge, England. 
What is the ratio of free fall accelerations 
(g) at these two locations?
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Example 4 
•We are told both pendulums have T=1 s
•We are told the lengths are different
•The frequency depends only on L and g
•Then gCambridge ≠ gTokyo
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• L4 c2) A simple pendulum is moving with 
simple harmonic motion and is at its 
maximum displacement from equilibrium. 
Which of the following is also at its 
maximum? (absolute value)
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Example 5 – spring with gravity
• F=mg-kx

• This is nice – its just 
the  static solution, 
i.e. when a=0

But the oscillation frequency
remains the same! +x

Equilibrium
point

2

2 0d xm kx mg
dt

+ − =

0

0

0

 g  ( ) cos( )
we will get that 

 
kx

uess x t A t x
mg

mgx
k

ω φ= + +
=

=
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Damping
When objects come into 

contact - in almost all 
cases – some energy is 
transformed into heat

Initially we have only 
potential energy

As the ball falls 
its kinetic energy 

increases

When the ball 
bounces heat is 

generated

Then it reaches a lower 
height after the bounce 
since it has less energy
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In other cases friction is important

Friction:
• Opposes motion
• For a moving object it increases when the speed increases

So an approximate expression is

What does friction do?

= −R vb
The frictional force R Is proportional to 

the velocity v

The proportionality 
constant is b.

We assume b>0

And the minus sign 
tells us R tends to 

decrease v
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So in realistic cases oscillators experience two forces:
• The restoring force F = - k x
• The frictional force R = - b v

Newton’s 2nd law implies

dt
dxbkx

dt
xdm

bvkx
dt
dvm

RFma

−−=

−−=

+=

2

2

The acceleration is 
the time derivative of 

the velocity

The velocity is the 
time derivative of the 

position
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ma kx bv
ma kx bv

= − −
+ = −

When friction is present energy is not conserved

2

22

)(
)(

2
1

2
1

bv
bvv

kxmav
kxvmva

dt
dxkx

dt
dvmv

dt
dE

kxmvVKE

−=

−=
+=
+=

+=

+=+=

If there is no friction 
b=0 and E remains 

constant.

The total energy

The larger the 
velocity v the faster 
friction “eats up” EThe minus sign tells 

us that E decreases



55

dt
dxbkx

dt
xdm −−=2

2Solutions of
are of two types

(only one of which 
must know)

For b small the damping is small
So we expect the thing to oscillate
… but will slowly lose energy
So it will eventually stop

2

)2/(

2

)cos(

⎟
⎠
⎞

⎜
⎝
⎛−=

+= −

m
b

m
k

tAex tmb

ω

φω

The solution is

2

2
⎟
⎠
⎞

⎜
⎝
⎛>

m
b

m
k

this is the case I will test you on
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( / 2 ) cos( )b m tx Ae tω φ−= +

We can use this 
solution and 

E=½kA2 to see how 
the energy changes 

with time 

Think of this as a SHO with it amplitude changing like

2 2 /
0

2
0

1 1
2 2

1
2

b t
tmE kAmp kA e E e

mwhere E kA and
b

τ

τ

⎛ ⎞−⎜ ⎟ −⎝ ⎠= = =

= =

( / 2 )b m tAmp Ae−=
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dt
dxbkx

dt
xdm −−=2

2

For b large the damping will eat energy 
before the thing can oscillate and the 
amplitude simply decays to zero.
This is an overdamped oscillator

m
k

m
bu

BeAex tumbtumb

−⎟
⎠
⎞

⎜
⎝
⎛=

+= −−+−

2

)2/()2/(

2

The solution is

m
k

m
b

>⎟
⎠
⎞

⎜
⎝
⎛

2

2

x

t

dampled.shm

I will not test you on this case
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L4 c3) For a simple harmonic 
oscillator with friction, which 

statement is NOT true
A. The amplitude decreases
B. the kinetic energy decreases
C. The energy is turned into heat
D. The energy – (potential + kinetic) is 

conserved
E. The frequency is decreased
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In some cases the oscillators are 
pushed/pulled by external forces

A simple case is

If w is the same frequency as that of the oscillator 
then F external will push and pull so as to increase 
the amplitude. The system resonates.

What do external forces do?

)sin(0external tFF ω=

mk /=ω
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Things can get 
pretty rough…

Really rough…

film:tacoma narrows
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In more realistic cases there are external forces and friction

Interesting 
case: when 
the driving 
frequency is 
w0.

Putting it all together

0

0total

/

)sin(

ω

ω

=

+−−==

mk

tFbvkxFma

2
0

2

22
0

22
0

/tan

)()/(
/

)sin()(

ωω
ωφ

ωωω

φω

−
=

−+
=

+=

mb
mb

mFA

tAtx

w can be equal to, or different from w0



62

2/tan
)/(

)sin()(

0

πφφ
ω

φω

±=→±∞=
=

+=
bFA

tAtx

On resonance w = w0 :

So if b is small, A
can get very large
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2
2
0

2
1

2
0

2
0

2

22
0

22
0

1
)2/(

2

/

/tan

)()/(
/

)cos()sin()(

⎟
⎠
⎞

⎜
⎝
⎛−=

=

−
=

−+
=

+++= −

m
b

mk

mb
mb

mFA

tCetAtx tmb

ωω

ω

ωω
ωφ

ωωω

αωφω

The complete solution to the equations is more complicated

Same as 
when F0=0

Same as 
before

Determined 
by the initial 
conditions Fixed by 

the external 
force

driven_damp.shm
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Example 6 

• A 2kg object attached to a spring is driven 
by an external force given by 
F=(3N)cos(2πt). If the force constant of the 
spring is 20N/m, determine a) the period 
and b) the amplitude of the motion. 
Assume there is no damping.
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Example 6 
•There is no damping
•This looks lika “plug & chug” problem

πωπ 2    then  )2cos(3 == tF

m05.0
|410|

2/3
|4|

/  ,0For 222
0

0 =
−

=
−

==
ππω

mFAb

s99.1
10

2   then   s/10/ 22
0 ====

πω Tmk

Yep, plug & chug
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Example 7 
• You are a doctor on call and you take your 

emergency pager to a fine restaurant. You switch 
the pager, whose battery is low, to vibrate, 
instead of beep and you put it in the side pocket 
of your suit coat. The arm of your chair presses 
the light cloth against your body at one spot. 
Fabric with a length of 8.2 cm hangs freely below 
the spot with the pager at the bottom. You get a 
call. The motion of the pager makes the hanging 
part of your coat swing back and forth with a 
remarkably large amplitude. The pager weighs 
200g. Find the frequency at which your pager 
vibrates. 
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The problem is cute, but the bare facts are

•The pager vibrates, so it generates a driving force
•I’ll assume this is a harmonic force
•The hanging cloth is like a pendulum
•The reason the amplitude is so large is that its resonating
•The pager’s frequency must be the same as the pendulum’s

s/93.100821.0/8.9  Pendulum === g/Lω

s/74.1
2

==
π
ωf

Example 7



68

The heart – a special oscillator

• Damp
• driven_damp
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Sándor J Kovács PhD MD
Washington University, St. Louis

UCLA/IPAM  2/6/06

Discovering (predicting) new cardiac Discovering (predicting) new cardiac 
physiology/function from cardiac imaging, physiology/function from cardiac imaging, 
mathematical modeling and first principlesmathematical modeling and first principles
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c m k

x(t), F(t)

Recall SHO has 3 regimes of motionRecall SHO has 3 regimes of motion,, underdampedunderdamped cc22--4mk<04mk<0, , critically critically 
dampeddamped cc22=4mk=4mk, , overdampedoverdamped cc2 2 -- 4mk>04mk>0..

To go from To go from correlationcorrelation to to causality causality devise adevise a
kinematickinematic model of suction initiated fillingmodel of suction initiated filling:
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NewtonNewton’’s Law:s Law: mm dd22x/dtx/dt22 + + c c dx/dtdx/dt ++ kk x = 0x = 0
Initial conditions:  x(0) = xInitial conditions:  x(0) = xo  o  ⇒⇒ stored elastic strain to power suctionstored elastic strain to power suction

v(0) = 0  v(0) = 0  ⇒⇒ no flow prior to valve openingno flow prior to valve opening

VALIDATION:VALIDATION: Compare modelCompare model--predicted velocity of oscillator predicted velocity of oscillator 
to velocity of blood entering  the ventricle through to velocity of blood entering  the ventricle through mitralmitral valve.valve.
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beginning of “cheat sheet”
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