Physics 2C (Seto)

LECTURE: 08:10-09:00 AM, MWF, Physics 2000
INSTRUCTOR: Richard Seto

E-mail: Richard.Seto@ucr.edu

Work phone: 909-767-5623

Office Location: Physics 3029A

Office hours: M 9-10 W 11-12 and by appt.

TEACHING ASSISTANT:

E-mail:

Office Hours:
TEXTBOOK: Principles of Physics, 4th Edition, by R.A. Serway and J.W. Jewett Jr
PROBLEM SETS: Webassign — get an access code
CLASS PARTICIPATION: You will need clickers by Friday. Don’t
forget to register them. clickers.ucr.edu

CLASS WEB SITE: Look at http://iLearn.ucr.edu and

select
look under Course material for general info(this stuff)




» Grading _
+ to be determined but willemething like
* ~13% Homework ' ot s 1
» ~12% Clickers in class

* ~20% midterm
* ~55% Final




HOMEWORK

» \Webassign

* From ilearn — go to “STUDENT TOOLS” then
“WEBASSIGN”

* due: Monday by 8:00 AM).
e Multiple submissions (up to 5) are allowed
* No late work. No exceptions.




Laboratory — separate class

Laboratory sessions begin the week of Monday, April 10th.

Personnel: The faculty person in charge of the lower division
undergraduate labs 1s Prof. Lau ( )

Web site: The lab write-ups and other pertinent information,
including grades, will be available on the Blackboard web site
at /. Make sure you can access the web
site early, so that you can download the write-ups when
needed.

Lab notebooks: Get one. See infor on 1dearn.
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. My general attitude to Iear_n;ing:
» a way of thinking, not form#las
* notation

» “cheat sheet” on 1learn
* use for exams and HW

wil

 Read book BEFORE Lecture . ™

 The purpose of the lectures Is to %elp
you understand the material

* not to regurgitate the book




Waves and Modern Physics

Topics
* Oscillations and mechanical waves
* Your heart, day and night, walking
Electromagnetic waves
» Light
Geometric optics (lenses and mirrors)
* your eye
Wave optics (Interference and diffraction)
* How you measure stuff, imaging, hearing
Relativity
* Moving fast
Quantum Mechanics
* How the chemistry in your body runs
Atomics and Nuclear Physics
* How to treat diseases




Slides courtesy -
modified by R. Seto




Examples of oscillating ss’rems The Sun

Many things move

Back and fort

Craze Begins 1945

A spring



Examples of oscillating systems demo: keys on string

keys on rubber band

Many things move

Back and forth
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A pendulum

A spring



Quantities describing oscillating systems

Some oscillating systems are irregular...

... for example, ocean waves.

But other are quite regular...

... for example, a pendulum.
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For regular motion we can define:

period T of oscillation

frequency f=2zw of oscillation

amplitude A of oscillation

amplitude

.. how long it takes to make a full trip

.. how many full trips per second

.. how far does the oscillating thing move.

This takes (about) 4 seconds per full trip
T=4 s (period)

It makes 1/4 trips per second
f=1/4=0.25 Hz (frequency)
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Why does it oscillate?

Look at a pendulum:

i it
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displacement




x=displacement

>

For x negative

F is positive

Since F tends to return x to its
previous value it is called a
RESTORING FORCE
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Water oscillations propagate...
what about oscillations on other
things like a spring?

BN =

The restoring force is generated
by pressure and gravity

 30ma00) X03

If a bit of water goes down the pressure increases and pushes it up
If a bit of water goes up gravity pulls it down

So the bit of water moves up and down, up and down...




Description of the oscillations.

For x=0 the
force vanishes

If the pendulum is set
at x=0 with zero
velocity it will stay
there forever

x=displacement

>

We say that x=0is an
EQUILIBRIUM POINT

At x=0 the restoring force vanishes

But the total force does not

17




What does the restoring force look like? (A spring)

So, for small

x=displacement

displacements...

The minus sign
Insures F’s sign is opposite x's
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... since if x is positive the force
will make it larger. This is not a

restoring force!!
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With solution...

Amplitude

veer
For A slinger
F(X) =- kX
Newton’s equations give ~

ma=-kx

x=Acos( @i+ |

Whegs A_:aqd\¢ ar}‘( Jor

Note also that
*When |x| is largest |a| is also largest, but v=0.
*When x=0, a=0 also, but |v| is largest

20



L ets start here can we solve this to get a
nice formula for the
position of the mass, x(t)?

first let’s rewrite the egn

Lets guess and answer for x(t)
What gives negative itself on taking a 2nd derivative?

X(t) = Acos(at + @)

Now let's check it Plug it back in
% Acos(at + ¢) = —Awsin(at + @) —MA® * cos(at + @) + kAcos(at + @) = 0
k
k=mow®> = ==
%[—Aa) sin(at +@)] = —Aw * cos(at + @) @ “ m )

I'T WORKS!




L ets start here can we solve this to get a

o nice formula for the
mMa-= 'kX position of the mass, x(t)?

Incidentally we just
Al calculated the velocity and
acceleration

ax d .
V=—=—Acos(at+¢)=—Awsin(ot + ¢) |
at  dt
dv.d
a= = [— Awsin(at + @)] = —Aw * cos(wt + ¢)I
C
Now lets cneck 1t Plug it back in
% Acos(wt + ¢) = —Awsin(wt + @) ~MA® * cos(@t + ¢) + kAcos(wt + @) =0
) [k
4 pwsin(ot+ @) = Ao cos(at+g) MO T @y
dt 22

I'T WORKS!




announcements

« TA's
— Myra Tovar
— Victor Chen
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vy

| am taking this class

So | can become a doctor

. S0 | can become a dentist or pharmacist
. S0 | can go into the medical profession

(other than doctor, dentist, pharmacist)

. S0 | can go into the life sciences (other

than the medical profession)

. Other

24



Lecture 2
Ok so where are we?

* We were looking at oscillating systems.

— To get an oscillating system we needed a
restoring force F=-kx (def of SHM)

— Using F=ma we found that

K
X(t)=Acos(wt+@) where w=,—
m
« SPRING
— Definition of spring constant! F=-kx
— So for a spring k

w=,|—
m 25



small

time

X measures the
displacement form
the equilibrium
pOSition

=1 £ Gog(y) <
cos(y) 2 cos(ir2T ) 2




S p ri n g applet veer.htm

K
x(t)=Acos(wtt+¢) where w=,|—
m
« whatare A, ® and ¢ ?
(remember we want 2nf= o and f=1/T where T is the period)

— max of cos=1 A= amplitude

— full period of cos=2rn = olT=2xn
2> T=21/0=1/f

=>so fis a frequency (since ~1/T) 4 .‘
In the applet k=20N/m, m=5kg, A=.05m
= ®= 2nf

2 -1
Y 20N/m: 20kg-m/s /mZZS_1 fZZS |
5kg 5kg 21 T

|l
w




W,

X(t)=Acos(wtte)
X (|)=0

1ii
p

* ¢ Is a measure of how much we push up the
oscillation, in units of wt. Its called a phase

» usually set by initial condition .




applet- shm

angular frequency

* In fact we can think of ot as just an angle
since it is inside the cosine! Often w is
called an angular frequency

« Got it!?7??
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applet-slinger.htm

w=,|—= == o dependson L and g
® independent of m!




Lecture 3

We were looking at oscillating systems
There had a period T=1/f where f=frequency

We used the angular frequency w=2nf so T=27/ w
— To get an oscillating system we needed a restoring force F=-kx (def of SHM)

— Using F=ma we found that X(t)=Acos(wtt+g)
V= % = i Acos(at + @) = —Awsin(wt + @)
SPRING dv  d | )
— Definition of spring constant! F=-kx azazg[_Aa’sm(a)H(ﬁ)] =—Aw " cos(wt +¢)
— for a spring K
a) — N |
m I
)
Pendulum F=-mgsinf~-mgé fli \T
x=L0 = F ———L9:> K _Tg N L

mg sin 0

|\ mgcos O

31
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C1) | am taking this class

So | can become a doctor

. S0 | can become a dentist or pharmacist
. S0 | can go into the medical profession

(other than doctor, dentist, pharmacist)

. S0 | can go into the life sciences (other

than the medical profession)

. Other

32



c2) Assuming x(t)=Acos(wt+¢) for a
simple harmonic oscillator, which
of the following is true?

A. v(it)=-A sin(wt+e)
B. v(t)= A w sin(wt+¢)
C. v(t)=- A w sin(wt+¢)
D. a(t)=- A w cos(wt+¢)
E. a(t)= - A w?sin(wt+¢)

33



c3)In terms of the angular
frequency w, the period T is

2
a. —.
()

()
b,

2
C. 2ma.
d. Tm.

s
e. —.
(i

34



Example 2

* A 0.5 kg object attached to a spring with a
force constant of 8N/m vibrates in simple
harmonic motion with an amplitude of 10
cm. Calculate (a) the maximum value of its
speed and acceleration (b) the speed and
acceleration when the object is 6cm from
equilibrium and (c) the time it takes the
object to move from x=0 to x=8 cm.

35



Example g *There is no friction
*The only force is produced by the spring

*Acceleration is determined by Newton’s 2nd

0.5 kg

\ 8 N/m

*Here the displacement is largest
*Then the force is largest
*Then the acceleration is largest

*Here the displacement is smallest
*The speed is smaller before and after

*Then here the velocity is largest

36
10 cm=0.1 m



Example 2
* m=0.5kg k=8N/m A=0.1m
— calculate max speed, accel
— calculate speed, accel when x=6cm
—time for x=0 to x=8 cm  x(t) = Acos(wt + ¢)
o 52\/8kg-m-sz/m 4 V(O =—Awsin(et+4)
m 0.5kg a(t) = —Aw’ cos(wt + @)

* set ¢=0
« max speed =An=.4 m/s max accel=A®n?=1.6 m/s?

 when x=.06m we have .06m=0.1m cos(4t)
t(x=0.6m) =%2 cos1(.06/.1)=0.23 s
v=-Awsin(ot)=-0.1m 4s-7sin((4)(0.23))=-.32 m/s

etc
37



The flow of energy

As the pendulum oscillates t

Kinetic — Potential — Kineti

i

here energy flows:
c — Potential ...

38



Flow of energy & \

I
* Potential energy L i
U =5 kx? |
U enduum=mgh=mgL(1-cos0) ““‘g;z'gsin"g A\
» Kinetic energy 6\
Y5 mv?
» Total energy E must be conserved so

E
E

spring

demo: bowling ball

=1 2 41 2
spring = /2 Mv* 2 kx* is constant

— 1 24— _ '
pendulum > mv> +=mgL(1-cosO) 1s constant veer slinger

applet

39



A pendulum and a spring have similar behaviors




Example 3

* A 50 g block connected to a spring with a
force constant of 35 N/m oscillates on a
horizontal, frictionless surface with an
amplitude of 4 cm. find a) the total energy
of the system and b) the speed of the
block when the displacement is 1 cm. Find
c) the kinetic energy and d) the potential
energy when the displacement is 3 cm

41



Example 3 *There is no friction
*The only force is produced by the spring
*Acceleration is determined by Newton’s 2nd

50 g=0.05 kg

35 N/m

—> 42
4 cm=0.04m



Review- flow of energy L
Potential energy

Lecture 4 ;

> LcosH

Uspring= 72 kX2
[J.pendu.lum:mgh:mgL( 1 'COSG)
Kinetic energy
15 mv?2

Total energy E must be conserved so
E = Y, mv? +% kx? is constant
E = % mv? +=mgL(1-cos0) is constant

spring

pendulum

applet

43



vy

m O O

L4 C1) For a simple harmonic
oscillator without friction the total

energy
remains constant

. Goes up and down depending on the

speed

. IS zero
. slowly decreases
. other

44



Example 3

* A 50 g block connected to a spring with a
force constant of 35 N/m oscillates on a
horizontal, frictionless surface with an
amplitude of 4 cm. find a) the total energy
of the system and b) the speed of the
block when the displacement is 1 cm. Find
c) the kinetic energy and d) the potential
energy when the displacement is 3 cm

45



Ex 3

m=0.05kg k=35N/m A=0.04m a):\/K=26.SS
m

a) E :%kA2 = %(35)(0.04)2
b) Two ways : we are given x'=0.01m, and we want v'

i) easy way — Energy Conservation: E = % kA® = % kx "+ % mv "

v'zzkAz—ﬁx'2 V'=m A —x" =1.02m/s

m m
Actually we getthatv'==+1.02m/s

i)harder way :use x'= Acos(wt") v'=—-Awsin(wt') where we have set ¢ =0

t'= lcos_1 (ij
10, A

V'=—Awsin a)icos_l XV | = —Awsin| cos | = =—(0.04)(26.5)sin cosl(wj =-1.02m/s
10, A A 0.04

In reality here too the answer can be + because of the cos™
c) X'=0.03m

PEzékx'2 K:E—PE:%kAz—%kx'2 plug it in 46



Example 4

* A “seconds pendulum is one that moves
through its equilibrium point once each
second. (i.e. T=2s) The length of the
seconds pendulum is 0.9927 m in Tokyo
and 0.9942 m in Cambridge, England.
What is the ratio of free fall accelerations
(g) at these two locations?

47



Example 4

*We are told both pendulums have T=1s
*We are told the lengths are different
*The frequency depends only on L and g

*Then gCambridge 7 gTokyo

|
|
| Tokyo wr = , / £&
|
i .
L \ Cambridge we =
! _
| ¢ | we want wr =wc
|

— I gr _ Lrp _ 0.9927

gc Lo 0.9924

48




* L4 c2) A simple pendulum is moving with
simple harmonic motion and is at its
maximum displacement from equilibrium.
Which of the following is also at its
maximum? (absolute value)

a. Jpeed

b. Acceleration

c. Penod

d. Frequency

e. Kinetic energy

49



Example 5 — spring with gravity

* F=mg-kx
d’x
dt’

guess X(t) = Acos(wt + @) + X,

we will get that kx, =mg

L)
k

* This is nice — its just

the static solution,

l.e. when a=0
But the oscillation frequency
remains the same!

m +kx—mg =0

Xo

+X

<

<
s
%
%

Equilibrium

~ point

50



Damping

Initially we have only
potential energy

As the ball falls
its kinetic energy
|____ increases

o

/\ Then it reaches a lower

height after the bounce
since it has less energy

When the ball
bounces heat is 51
generated



What does friction do?

L

In other cases friction is important

Friction:
» Opposes motion
* For a moving object it increases when the speed increases

So an approximate expression is

The frictional force R Is proportional to
the velocity v

And the minus sign
tells us R tends to
decrease v

The proportionality
constant is b.
We assume b>0 52



The acceleration is
the time derivative of
the velocity

So in realistic cases oscillators experience two forces:
 The restoring force F = - k x
* The frictional force R=-b v

Newton’s 2" law implies

The velocity is the
time derivative of the
position



When friction is present energy is not conserved

E—K+V =omv® + k¢
2 2

The total energy

ma =—-kx—-D

If there is no friction 6

I b=0 and E remains
constant.

— The larger the

velocity v the faster
friction “eats up” E

The minus sign tells
us that E decreases



Solutions of

. are of two types d 2 X d)(
v~ (only one of which

must know) dt 2 dt

Fo b small t1e damping is small
So we capect ue thing to oscillate
... but will slowly losx2> energy

So it will eventually stop

The solution is A

x=Ae """ cos(at +¢) ©

k (bY
W=,——| —
m 2m this is the case | will test you on




We can use this
solution and
E="kA?to see how
the energy changes
with time

x = Ae"®?™ cos(awt + @)

Think of this as a SHO with it amplitude changing like AMP = Ae~(C72mt

b

— t
E = %kAmp2 :%kpfe (m) _ Eoe—t/r

where EozlkA2 and =1
2 b

56



Fo Db large t'ie damping will eat energy

betu, & uie tiny <an oscillate and the
amplitude simply de2ays to zero.
This is an overdamped cvzcillator

The solution is

X — Ae—(b/2m+u)t 4 Be—(b/2m—u)t

Bk

U= | will not test you on this case

2m m 57

dampled.shm




L

OO0 w»

L4 c3) For a simple harmonic
oscillator with friction, which

statement is NOT true
"he amplitude decreases

the kinetic energy decreases
'he energy Is turned into heat

he energy — (potential + kinetic) is
conserved

. The frequency is decreased

58



What do ex’rer'nl forces do?

-4 | In some cases the oscillators are
| pushed/pulled by external forces

F

external

= F, sin(at)

-
-,

1)
¥
"a " awmTas "




Things can get
pretty rough...

film:tacoma narrows

SUSPEN

60



Pu’r’rmg |‘r all Toge’rher'

- | In more realistic cases there are external forces and friction

ma=F__. =—kx—bv+F, sin(at)

total ~

vK/m = o,
w can be equal to, or different from w,

x(t) = Asin(at + ¢)
Interesting FO / Mm

case: when A —

the driving \/(ba)/ m)z 4 (a)z B wg)z

frequency is

tan g = bw/Mm

a) a)o 61



On resonance w = w,:

X(t) = Asin(wt + @)
A=F,/(bw)
tang =100 > @p=x7/2

So if b is small, A
can get very large

62



Fixed by
’ ( b jz Same asl the external

when Fy= force

Same as
before

63
driven_damp.shm



Example 6

* A 2kg object attached to a spring is driven
by an external force given by
F=(3N)cos(2xt). If the force constant of the
spring is 20N/m, determine a) the period
and b) the amplitude of the motion.
Assume there is no damping.

64



Example 6

*There is no damping
*This looks lika “plug & chug” problem

Yep, plug & chug

F =3cos(27t) then w=27x

27T
w:=k/m=10/s* then T === =1.99s
’ J10
F,/m 3/2

Forb=0, A= =0.05m

‘o, —4x%| |10—47%)

65



Example 7

* You are a doctor on call and you take your
emergency pager to a fine restaurant. You switch
the pager, whose battery is low, to vibrate,
iInstead of beep and you put it in the side pocket
of your suit coat. The arm of your chair presses

the light cloth against your body at one spot.

Fabric with a length of 8.2 cm hangs freely below

the spot with the pager at the bottom. You get a

call. The motion of the pager makes the hanging

part of your coat swing back and forth with a

remarkably large amplitude. The pager weighs

2%09. Find the frequency at which your pager

vibrates.

66



Example 7

The problem is cute, but the bare facts are

*The pager vibrates, so it generates a driving force

/'l assume this is a harmonic force

*The hanging cloth is like a pendulum

*The reason the amplitude is so large is that its resonating
*The pager’s frequency must be the same as the pendulum’s

Pendulum @ =+/g/L =+/9.8/0.0821 =10.93/s

f =% —1.74/s
27T

67



The heart — a special oscillator

 Damp
* driven_damp

68



Discovering (predicting) new cardiac
physiology/function from cardiac i1maging,
mathematical modeling and first principles

69



To go from correlation to causality devise a
kinematic model of suction initiated filling:

C m k

I
|
- — x(t), F(t)

Newton's Law: md?x/dt? + cdx/dt + k x =0
Initial conditions: x(0) =x, =
vi0)=0 =

Recall SHO has 3 regimes of motion, underdamped ¢?-4mk<0, critically
damped c2=4mk, overdamped c? - 4mk>0.

I

NN\

VALIDATION: Compare model-predicted velocity of oscillator

to velocity of blood entering the ventricle through mitral valve. 0



beginning of “cheat sheet”

ma=F_., =—-kx—bv+F, sin(wt)
1

w=2rf f= ? A _ FO / m
2 2 252
SHO F=kx x=Acos(ottg@) a):\/% \/(ba)/ m)” +(@” C()O)
g tan ¢ = bay /m
Pendulum o = \E W0° — wg

L
PE i = Ekx Energy = PE + KE

X = Ae""?™ cos(wt + @)

71



