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I. REVIEW OF PROBABILITY DISTRIBUTIONS

A review of some familiar distributions from probability and statistics is presented here,

taken from the original discussion in “Multiplicity distributions from central collisions of

16O+Cu at 14.6A GeV/c and intermittency,” T. Abbott, et al., Phys. Rev. C52, 2663

(1995), which was deleted by the referee who said that it belonged in a textbook.

A. Binomial Distribution

The binomial distribution is the result of repeated independent trials, each with the same

two possible outcomes: success, with probability p, and failure, with probability q = 1 − p.

The probabilities must remain the same for all the independent trials. The probability for

m successes on n trials is:

P (m)|n =
n!

m!(n−m)!
pm(1 − p)n−m (1)

and the mean, standard deviation and F2 − 1 of the distribution are

µ ≡< m >= np σ =
√

np(1 − p)
σ2

µ2
=

1

µ
− 1

n
F2 − 1 = − 1

n
. (2)

A distinguishing feature of the Binomial Distribution is that F2 − 1 is negative.

B. Poisson Distribution

The Poisson Distribution is the limit of the Binomial Distribution for a large number of

independent trials, n, with small probability of success, p, such that the expectation value

of the number of successes per trial, µ = np, remains fixed:

P (m)|µ =
µme−µ

m!
(3)

<m>= µ σ =
√
µ

σ2

µ2
=

1

µ
. (4)

For the Poisson distribution, F2 − 1 = 0, and, indeed, for all orders of normalized factorial

moments: Fq−1 = 0. The Poisson distribution is intimately linked to the exponential law of

Radioactive Decay of Nucleii[72, 73], the time distribution of nuclear disintegration counts,
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giving rise to the common usage of the term[72] “statistical fluctuations” to describe the

Poisson statistics of such counts. The only assumptions required are the independence and

constant probability of all trials—in other words, for a sample of radioactive material[72],

the decay probability is the same for all atoms, is proportional to the time interval (for small

intervals), is independent of time and is independent of the decay of other atoms.

C. Negative Binomial Distribution

The Negative Binomial Distribution of an integer m is defined as

P (m) =
(m+ k − 1)!

m!(k − 1)!

(µ
k
)m

(1 + µ

k
)m+k

(5)

where P (m) is normalized for 0 ≤ m ≤ ∞, µ ≡< m >, and some higher moments are:

σ =

√

µ(1 +
µ

k
)

σ2

µ2
=

1

µ
+

1

k
F2 = 1 +

1

k
(6)

The normalized factorial moments (Fq) and normalized factorial Cumulants (Kq)[33, 34] of

the NBD are particularly simple:

Fq = F(q−1)(1 +
q − 1

k
) Kq =

(q − 1)!

kq−1
. (7)

The Binomial Distribution gives the probability of m successes on n repeated independent

trials, each with the same probability p of success and 1 − p of failure, while the Negative

Binomial Distribution gives the probability that the k’th success occurs on the n’th trial,

where m = n− k represents the number of trials more than the desired number of successes.

Alternatively, the NBD is the distribution of the number of trials more than the number of

successes, m = n− k, for a fixed number of successes, k:

P (n)|k = P (m)|k =
(m+ k − 1)!

m!(k − 1)!
pk (1 − p)m (8)

and P (m) is normalized for 0 ≤ m ≤ ∞. This goes to the standard form (Eq. 5) with the

substitution

<m>= µ p =
1

1 + µ
k

1 − p =
µ
k

1 + µ
k

(9)

The NBD, with an additional parameter k compared to a Poisson distribution, becomes

Poisson in the limit k → ∞ and Binomial for k equal to a negative integer (hence the
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name). The extra parameter has made the NBD useful to mathematical statisticians as a

test for whether a distribution is Poisson—more precisely as a “test for independence in rare

events.”[35] The test for a Poisson distribution consists of determining whether the NBD

parameter 1/k is consistent with zero to within its error s 1

k

, which is given[35] as:

s 1

k

=
sk

k2
=

1

µ

√

2

N
(10)

where N is the total number of events. For statisticians, the NBD represents the first

departure from a Poisson Law. Physicists are more likely to describe the NBD as Bose-

Einstein (k = 1) or Generalized Bose Einstein k 6= 1 distributions[6].

D. Gamma Distribution

In distinction to the previous distributions which are defined for integers, the Gamma dis-

tribution represents the probability density for a continuous variable x and has a parameter

p (which is not to be confused with the symbol for probability used above):

f(x) =
b

Γ(p)
(bx)p−1e−bx (11)

where

p > 0, b > 0, 0 ≤ x ≤ ∞

Γ(p) = (p − 1)! if p is an integer, and f(x) is normalized. The first few moments of the

distribution are

µ ≡< x >=
p

b
σ =

√
p

b

σ2

µ2
=

1

p
F2 − 1 =

(1 − b)

p
. (12)

The Gamma distribution has an important property under convolution. Define the n-fold

convolution of a distribution with itself as :

fn(x) =
∫ x

0
dy f(y) fn−1(x− y) ; (13)

then for a Gamma distribution (Eq. 11), the n-fold convolution is simply given by the function

fn(x) =
b

Γ(np)
(bx)np−1e−bx (14)

i.e. p → np and b remains unchanged. Notice that the mean µn and standard deviation σn

of the n-fold convolution obey the familiar rule

µn = nµ σn = σ
√
n . (15)
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II. SUMS OF INDEPENDENT AND CORRELATED RANDOM VARIABLES

In mathematical statistics[74], the probability distribution of a random variable Sn, which

is itself the sum of n independent random variables with a common distribution f(x):

Sn = x1 + x2 + · · ·+ xn (16)

is just fn(x), the n-fold convolution of the distribution f(x). This explains why convolutions,

and the Gamma Distribution with its simple behavior, are so useful for ET and multipicity,

which are variables of the form of Eq. 16. There is a particularly interesting and direct appli-

cation of the Gamma distribution to the time interval between every nth count of radioactive

decay, where the probability is exponential for the time interval between counts[72, 73, 75].

Since an exponential is just a Gamma distribution (Eq. 11) with p = 1, the distribution for

the time x between n counts is just given by Eq. 14, with p = 1, and b = λ, the normalized

probability of decay per unit time.

Another complementary case is that of a random variable Zn, which is the sum of n ran-

dom variables with distribution f(x)—which are themselves 100% correlated—for example:

Zn = x + x+ · · · + x = nx . (17)

This is just a scale transformation. The behavior of the mean and the standard deviation

for a scale transformation is µ → nµ, σ → nσ , which is quite different than the more

familiar behavior of the standard deviation under convolution (Eq. 15). The result of the

scale transformation x → nx for a Gamma distribution (Eq. 11) is simply b → b/n, with p

remaining unchanged. The most interesting example of a scale transformation for a Gamma

distribution is scaling by the mean value, µ =<x>, or x → x/µ, p → p, b → µb = p, with

the result:

ψ(z) =<x> f(x) =
p

Γ(p)
(pz)p−1e−pz where z =

x

<x>
(18)

and ψ(z) is normalized for 0 ≤ z ≤ ∞. Thus the Gamma distribution has the property of

“scaling in the mean”, which means that the shape of the distribution Eq. 18 is determined

only by the parameter p, independently of the mean value µ. This property does not hold

in general and is not satisfied for Poisson or Negative Binomial distributions. In particle

physics, “scaling in the mean” is usually called KNO scaling[76].
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A. Further properties of the Negative Binomial Distribution

The Negative Binomial Distribution bears a strong relationship to the Gamma distribu-

tion, and becomes a Gamma distribution in the limit µ � k > 1. In fact, many times,

Gamma distributions are substituted for NBD to prove various theorems[77]. The convolu-

tion property of the Gamma distribution also holds for the NBD. The probability distribution

of the sum of n independent variables, each distributed as an NBD with mean µ and pa-

rameter k, is the n-fold convolution of the distribution, which is an NBD with mean nµ and

parameter nk, so that the ratio µ/k remains constant for the convolutions exactly like the

Gamma distribution. Furthermore, the familiar rule for the mean and standard deviation

(Eq. 15) is satisfied. It is convenient, in analogy to the Gamma distribution, to introduce

the parameter

b ≡ k

µ
so that < m >≡ µ =

k

b
, (19)

and then to write the NBD, particularly for large k, as:

P (m) =
1

(1 + 1
b
)k

k(k + 1) · · · (k +m− 1)

1 · 2 · · ·m (b + 1)m
. (20)

The only important difference between between NBD and Gamma distributions is in the

limit m or x → 0: for p > 1 the limit is always zero for a Gamma distribution, whereas for

the NBD it is always finite.

B. Relationship of the Binomial, Poisson, Gamma and Negative Binomial distri-

butions

The history of the use of the Poisson distribution by statisticians includes the study of

the number of accidental deaths by horse kicks in the Prussian army[35]. However, the

Poisson distribution did not work for the case of factory accidents because different workers

had different chances of having an accident. If the mean probability of an accident per

worker for different workers is distributed according to a Gamma distribution (also known

as Pearson Type III), then the NBD rather than the Poisson is the resultant distribution for

all workers[35, 41, 78, 79].

In addition to the variation of a Poisson mean value leading to a NBD, any tendency

of events to occur in groups instead of independently, spreads the variance and makes the
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distribution more like a NBD. For instance, in repeated binomial trials, there could be some

correlation such that some of the outcomes represent more than one success. If the relative

probabilities p1 for one success, p2 for 2 successes, pn for n successes on a trial form the

series, pn = p1a
n−1/n, then the overall distribution is again Negative Binomial[35]. Thus it

has been stated that[35] “the agreement of the data about deaths from kicks of a horse in the

Prussian army may be taken to mean both (1) that nobody can be killed twice by the kick of

a horse, (2) that the fact that one man has been so killed does not indicate an extra liability

for others in the same unit to be. The agreement in the radioactivity law would mean that

(1) the chances of disintegration of different atoms of the same radioactive substance are

approximately equal, (2) the disintegration of one atom does not lead immediately to to the

disintegration of another.”

C. Compound distributions

A compound distribution results from the sum Sn (Eq. 16) of n independent random

variables with a common distribution f(x), when n is itself a random variable, independent

of x. The two interesting examples for the present discussion concern the case where n

is either Poisson or Negative Binomial and f(x) is binomial (x = 1 for a success, with

probability p; and x = 0 for a failure, with probability q = 1 − p). Thus, the probability

P (Sn = m) for a fixed n is given by Eq. 1, and n varies randomly according to a distribution.

This compound distribution is easier to visualize if one defines A ≡ Sn as the number of

successes on n trials, and B as the number of failures on n trials, so that the random variable

n is the sum: n = A+B. The random variable n is composed of two distinct sub-populations:

A, on the interval p; and B, on the interval 1 − p.

If the random variable n (the number of trials) is Poisson distributed with mean µ,

then the distribution of A, the number of successes, is also Poisson with mean < A >=

pµ, where p is the Binomial probability for success on a single trial. More importantly,

the distributions of the two sub-populations A and B on the sub-intervals p and 1 − p

are statistically independent. Again the Poisson distribution forms the “intuition” that

the Binomial division of a population gives two statistically independent (Poisson) sub-

populations which can be summed to obtain the original population.
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For the case where n is Negative Binomial with mean µ and parameter k, the compound

distribution A is also NBD[41, 63] with mean pµ and the same parameter k[81]. However, for

the NBD, the distributions on the two sub-intervals are not statistically independent—the

distribution on one sub-interval depends explicitly on the result on the other sub-interval. In

other words, if z = A+B, where the probability for z is NBD, and at fixed z the probability

for A and B is Binomial, then “the average of A is a linear function of B and vice-versa.”[7]

A corollary of this result is that if A and B are independent random variables with a common

NBD, and z = A+B, then the probability of A and B for fixed z is not Binomial[82].

This characteristic property of a compound Negative Binomial Distribution has im-

portant physical consequences—forward-backward (long-range) correlations[5, 6, 80, 83].

Conversely, the search for a functional form for multiplicity distributions that supported

the observed[5, 80] forward-backward correlations (where the mean backward multiplic-

ity is linearly proportional to the forward multiplicity) led to the Negative Binomial

Distribution[7, 84].

III. FORMALISM OF MULTIPARTICLE CORRELATIONS

The “inclusive probability density” per interaction of observing a particle at rapidity y

is:

ρ1(y) =
1

σ

dσ

dy
=
dn

dy
(21)

where σ is the interaction cross section. The joint probability density for a particle at y1

and another at y2 is:

ρ2(y1, y2) =
1

σ

d2σ

dy1dy2

(22)

and for q particles at y1, y2 . . . yq

ρq(y1, . . . yq) =
1

σ

dqσ

dy1 · · ·dyq

. (23)

If there is no correlation, then the emission of the particles is statistically independent, and

ρ2(y1, y2) = ρ1(y1)ρ1(y2) (24)

ρq(y1, . . . yq) = ρ1(y1)ρ1(y2) · · ·ρ1(yq) . (25)

Mueller[33] introduced a series of moments and correlation functions to describe multipar-

ticle correlations. The Mueller correlation functions, Cq, are the q-particle rapidity densities,
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ρq, with all combination of lower order q-particle correlations subtracted out, so that Cq = 0

for statistically independent emission. The most straightforward Mueller correlation function

is

C2(y1, y2) = ρ2(y1, y2) − ρ1(y1)ρ1(y2) , (26)

which obviously vanishes for the case of no correlation.

The integrals of the inclusive q-particle densities, ρq(y1, . . . yq), on any interval are the

unnormalized factorial moments on that interval,

∫

dy1

∫

dy2 ρ2(y1, y2) =< n(n− 1) >=<n>2 F2 (27)

∫

dy1 · · ·dyq ρq(y1, . . . yq) =< n(n− 1) . . . (n− q + 1) >=<n>q Fq ; (28)

while the integrals of the Mueller correlation functions are the Mueller moments, or unnor-

malized factorial Cumulants[33, 34, 41], fq ≡<n>q Kq,

∫

dy1 · · ·
∫

dyq Cq(y1, . . . yq) = fq =<n>q Kq . (29)

The Muller moments are just the unnormalized factorial moments with all q-particle combi-

nations of lower order moments subtracted:

f2 = <n>2 F2 − f 2
1

f3 = <n>3 F3 − (f 3
1 + 3f1f2)

f4 = <n>4 F4 − (f 4
1 + 6f 2

1 f2 + 3f 2
2 + 4f1f3)

· · · (30)

where f1 =< n >. The Mueller correlation functions Cq can be read from Eqs. 28–30.

The Mueller moments, fq, and the normalized factorial Cumulants, Kq = fq/ < n >q, are

zero if there is no direct q-particle correlation. However, as the Mueller moments (which are

unnormalized) go to zero trivially, in the limit <n>→ 0, the normalized factorial Cumulants

must be used to test for direct q-particle correlations in this limit[71].
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