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Drift Chamber for PHENIX
(basic information)

AP TNl PHENIX Detector - Second Year Physics Run
m Precise measurement of the

charged particle’s
momentum

m Gives initial information for
the global tracking in
PHENIX

m Acceptance:
m 2arms 90° in ¢ each
m 90 cmin Z
m 0.7 units of n
m Location:
m Radial :2.02<R<2.48 m

= Angular:
e West: -340 < ¢ <560

e East: 1250 < ¢<215° West Beam ViE: East



Drift Chamber design

m Multiwire jet-type drift Keystone
chamber (~12800 readout

channels)

m 6x80 (r - ¢) wire nets per
arm

m Titanium alloy support
frame with 20 C-shell
openings (Keystones)

DCH Frame

m Independent signal
readout from both sides
(North, South)



Wire net configuration
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Wire net configuration (II)

m Group of 4 anode-cathode
nets makes a keystone

V1 - plane

U2 - plane

X1 - plane

V1 - plane

U1 - plane

X1 - plane

Stereo nets starts in one keystone (n)
and ends in the neighbouring keystone
e.g. (n+1) for U, (n-1) for V

The tilt of UV nets along ¢ allows
measurement of Z component of the
track



Construction and assembling

m Mechanical design and
production — PNPI (Russia)

m Front Electronics - SUNYSB

m Wire net production,
assembling - PNPI,SUNYSB




DCH Operation Principles

m Drift chamber measure the drift time of the electron
clusters ionized by the charged particle in an active
area of the detector

m Drift time from the ionization point to the anode wire
(t) can be translated into distance to the ionization
point (x) for known xt relation x = x(t)

m Working gas is chosen to have an uniform drift
velocity in the active region = linear xt relation can
beused x =V, -t

m Gas amplification effect is used to gain the initial
ionized charge signal



Gas mixture

m 50% Ar - 50% C,Hg
mixture is chosen for
operation based on:

m uniform drift velocity at
E~1 kV/cm

s High Gas Gain
m Low diffusion coefficient

m In Year2 ~1.5% Ethanol
was added to the
mixture to improve HV
holding of the nets
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Drift field configuration

Specific field configuration
around anode wire called
drift region is created by
“field forming” wires:

m Cathode Wires -

Create uniform drift fielc
between anode and
cathode

Field Wires -

Create high electric field
strength near the anode
wire

Back Wires -

Stop drift from one side
of the anode wire

Gate Wires -

Also create high field
near the anode wire,
Localize the drift region
width
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Drift Field Configuration (II)

Electron drift lines from a track

Cell: New wire configuration Particle: 300 equally spaced points
Gas: C_H, 50%, Ar 50%, T=300 K, p=1 atm
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DCH Performance (Run02)

m Single wire efficiency ~ 95-98%

m Back efficiency (probability to get
hit from the back closed side) < 7%

m Spatial Resolution ~ 100-120 mkm
m Angular resolution do/a ~ 1 mrad



Calibration aspects

m DCH main calibration parameters:

m t, - effective time at which the
ionization occurred exactly on the anode
wire (we measure the relative time with
respect the RHIC clock, t, is our absolute
scale reference)

m \/ . — effective drift velocity in the drift
region

m Once we know those parameters:
X(t) = Vg, - (t-t;) = we know everything!



Global calibration

Timing distribution for
each arm have a
characteristic shape

By fitting the leading and
trailing edge of the
distribution with Fermi
function we obtain time
at 2 height. t, and t;

t, is assumed to be
global t, for the arm

V4 = <dist.>/(t;-ty) is
global drift velocity
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Other calibration effects
taken into account

Slewing corrections - dependence of arrival time
as a function of the signal width

Shape of the drift region - the wires close to the
mylar window experience distortion of the electric
field

Wire-by-wire t, corrections - includes geometrical
shifts of the wires within the net, electronics
channel-by-channel variations e.t.c

Plane-by-plane V,. corrections -V, is electric
field dependant, thus it changes significantly on the
side-standing wires where edge effects distorts the
field strength

Global alignment to the vertex - center of the
arm can be shifted from the vertex location.
Translation of the arm center can be found by
centering a distribution around zero in field-off data



Residual distributions

m Pick hits of the track on 3 neighboring
wires (i.e. 0,2,4)
m Residualis: dt, = (t;, + t,)/2 - ¢,

m Basic idea of local calibrations is to center
all residuals at zero for all the parameters
(i.e. align ever three neighboring wires)

m This is a strong handle on local calibration
corrections



Slewing corrections

m Look at residuals vs. width
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Wire-by-wire t, corrections

m Study residuals shifts within one net
m We can deduce t, shifts that zero the mean

of residuals distri

dt vs. plane
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Shape of the drift region

m The shape of the drift region was simulated in GARFIELD
and parameterized in the offline software
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Tracking principles
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Main assumptions:

e Track is straight in the
detector region

1 ¢ and a variables
defined on the figure

eUse hough transform -
calculate ¢ and o for all
possible combinations of
hits and bin those values
into hough array - 2D
histogram on ¢ and «o

e Look for local maxima in
hough array that surpass
the threshold



m The results of =

Track Candidates

the hough
transform are \__ \\
track candidates \ \
N\
m Several stages of
hit association .
and track purging ™ \ |
follows \
v\\
_ 2\ .
m Finally we left | '\ X
with the \ \\\“

A i

following tracks



X1X2 and X-only tracking

m First we look for tracks with X1 and
X2 hits

m Remaining unassociated hits goes
into X1 only and X2 only tracking

m All the track candidates are being
liked after this and Z information is
being applied to them by PC1-UV-
vertex tracking



Final results
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Future goals

m Calibration of the detector is a main
contributor to the momentum resolution
= need to improve the absolute
calibration methods
s Use outer detector’s matching
m Online Calibration

m Improve HV stability over the run

m Control gas mixture properties during the
run

m Improve UV reconstruction for better
ghost rejection



