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We calculate the single transverse-spin asymmetry for open charm production in pp collisions within

the QCD collinear factorization approach. We include contributions from both twist-three quark-gluon

and trigluon correlation functions. We find that the quark-gluon correlation functions alone generate only

a very small asymmetry for open charm production in the kinematic region of current interest at RHIC, so

that the observation of any significant single-spin asymmetry would be a clear indication of the presence

of trigluon correlations inside a polarized proton. We furthermore demonstrate that the trigluon

contribution could be very different for the production of D and �D mesons. These features make the

single-spin asymmetry in open charm production in polarized pp collisions at RHIC an excellent probe of

trigluon correlation functions.
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I. INTRODUCTION

Large single transverse-spin asymmetries (SSAs) have
been consistently observed in various experiments at dif-
ferent collision energies [1–3]. These experimental data
have triggered much theoretical activity aiming at identi-
fying the fundamental mechanism behind the measured
asymmetries as well as the relevant components of hadron
structure. Among the proposed theoretical mechanisms,
the transverse-momentum dependent (TMD) parton distri-
bution approach [4–10] and the twist-3 quark-gluon corre-
lation approach [11–14] have been the ones most widely
discussed in the literature in recent years. The two ap-
proaches each have their kinematic domain of validity.
For semi-inclusive deep inelastic scattering (SIDIS) and
for the Drell-Yan process, they were shown to be consistent
with each other in the kinematic regime where they both
apply [9]. Both approaches have been applied extensively
in phenomenological studies [12,15–22].

For single hadron inclusive production in hadronic col-
lisions, the large transverse-momentum Ph? of the pro-
duced hadron is the only hard momentum scale. For the
SSAs in such single-scale hard processes, one expects the
QCD collinear factorization approach to be valid [23]. It
attributes the observed phenomenon of SSAs to three-
parton correlations inside a polarized proton, commensu-
rate with the twist-3 nature of the overall observable. At the
leading power in the hard scale, such partonic correlations
are represented by the twist-3 quark-gluon correlation
function [11,12],

Tq;Fðx; xÞ ¼
Z dy�1 dy

�
2

4�
eixP

þy�
1 hP; sTj �c qð0Þ�þ

� ½�sT�n �nF�
þðy�2 Þ�c qðy�1 ÞjP; sTi; (1)

and by a twist-3 trigluon correlation function [24,25],

TGðx; xÞ ¼
Z dy�1 dy

�
2

2�
eixP

þy�1
1

xPþ hP; sTjFþ
�ð0Þ

� ½�sT�n �nF�
þðy�2 Þ�F�þðy�1 ÞjP; sTi; (2)

where the proper gauge links have been suppressed. There
is a quark-gluon correlation function, Tq;F, for each quark

(antiquark) flavor q ( �q), and there are two independent

trigluon correlation functions, TðfÞ
G ðx; xÞ and TðdÞ

G ðx; xÞ, be-
cause of the fact that the color of the three gluon field
strengths in Eq. (2) can be neutralized by contracting with
either the antisymmetric ifABC or the symmetric dABC

tensors with color indices, A, B, and C [24,25].
Most phenomenological studies of SSAs in the twist-3

formalism performed so far have concentrated on the con-
tribution by the quark-gluon correlation functions
[12,15,22]. The role of the trigluon correlation function
in SSAs was first studied by Ji in the context of direct-
photon production in hadronic collisions [24]. Recently,
two of us investigated the contribution of this correlation
function to the SSA for open charm production in SIDIS
[25]. The twist-3 trigluon correlation functions have also
been discussed in the context of spin asymmetries for di-
jets (or di-hadrons) in hadronic scattering, calculated in the
TMD framework [26]. Here they appear after weighting
with the transverse-momentum imbalance of the two jets.
In this paper, we study the role of the trigluon correlation

function in the SSA for open charm production in hadron-
hadron collisions. We calculate both the quark-gluon and
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the trigluon contributions to the SSA, at leading order. We
find that the quark-gluon correlation function, extracted
from data on SSAs in pion production, leads to a very small
SSA for open charm production in pp collisions at RHIC
energy in almost all the accessible kinematic region. That
is, any sizable SSAs observed for open charm production at
RHIC will be direct evidence of a nonvanishing trigluon
correlation inside a polarized proton. Within a simple

model for the TðfÞ
G ðx; xÞ and TðdÞ

G ðx; xÞ, we find a fairly large
SSA for open charm production at RHIC energies. The
SSA tends to be maximal in the forward region of the
polarized proton and becomes small or changes sign in
the backward region. In addition, we find that our calcu-
lated SSAs forD and �Dmesons are the same if the trigluon

correlation function TðdÞ
G vanishes. If TðdÞ

G is finite, the SSAs

for D and �D meson production could be very different and
could in fact be used to disentangle the contributions from
the two different trigluon correlation functions. With data
on SSAs for open-charm production becoming available
from RHIC [27], we will be able to extract the trigluon
correlation functions and to learn about the dynamics of
quantum correlations of gluons inside a polarized proton.
With additional data on the SSAs for other pp processes
[3] and perhaps in the future for SSAs for D and �D meson
production in SIDIS, a global analysis of QCD dynamics
beyond leading twist may become possible in the not too
distant future.

We note that predictions for the SSA in D meson pro-
duction at RHIC have also been obtained within the TMD
approach [28], assuming that a TMD factorization holds
for the single-inclusive observable pp ! DX. The asym-
metry was considered as a means to learn about the gluon
Sivers function. In our opinion, however, the twist-3 ap-
proach provides the relevant and more appropriate frame-
work here, as we described above. On the other hand, the
transverse-momentum dependent gluon Sivers function is
related to the trigluon correlation functions. In a process
with suitable kinematic regime where both approaches
apply, such as Drell-Yan lepton pair production through
the gluonic channel at intermediate pair transverse momen-
tum, we expect that the two approaches will provide a
consistent description, following the example of the quark
Sivers function and the quark-gluon correlation TFðx; xÞ
[9]. We will present a detailed study of this in a separate
publication. We emphasize again that our approach natu-
rally involves two separate trigluon correlation functions

TðfÞ
G ðx; xÞ and TðdÞ

G ðx; xÞ, whereas only one Sivers function

occurs in the study of [28] (see also [29]). This is expected
in general to lead to discernible differences also in phe-
nomenological applications. To give one example, using a
single gluon Sivers function, one will find the SSAs for D
and �D meson production to be equal, whereas in our
approach they could potentially be very different, as we
shall see below. We will return to these issues in our
concluding remarks.

We also note that the recent work [30] considers the SSA
in charm and anticharm production at RHIC, through the
twist-3 mechanism. In this paper, only the contribution by
the quark-gluon correlation function was considered, and
the fragmentation of the charm quark into a charmed
meson was neglected.
The rest of our paper is organized as follows. In Sec. II,

we present our calculation of the SSAs for open charm
production in hadronic collisions in terms of the QCD
collinear factorization approach. In Sec. III, we propose
simple models for the trigluon correlation functions and
present our numerical estimates for the SSAs for open
charm production in pp collisions at RHIC. Finally, we
summarize our results in Sec. IV.

II. CALCULATION OF SINGLE TRANSVERSE-
SPIN ASYMMETRY

We consider inclusive single charm meson production in
a scattering process between a polarized proton A of mo-
mentum P and transverse-spin vector sT and an unpolar-
ized proton B of momentum P0,

AðP; sTÞ þ BðP0Þ ! hðPhÞ þ X; (3)

where h represents the observed open charm (D or �D)
meson with momentum Ph and mass mh.
The spin-averaged and spin-dependent cross sections

�ðPhÞ, ��ðPh; sTÞ are defined as

�ðPhÞ � 1
2½�ðPh; sTÞ þ �ðPh;�sTÞ�;

��ðPh; sTÞ � 1
2½�ðPh; sTÞ � �ðPh;�sTÞ�:

(4)

The single transverse-spin asymmetry AN is defined as the
ratio of ��ðPh; sTÞ and �ðPhÞ,

AN ¼ EPh

d��ðPh; sTÞ
d3Ph

�
EPh

d�ðPhÞ
d3Ph

; (5)

for the single hadron differential cross sections.
The spin-averaged differential cross section forDmeson

production at large transverse momentum, Ph? >mh, can
be written in the following factorized form [31,32]:

EPh

d�

d3Ph

¼ �2
s

S

X
a;b

Z dz

z2
Dc!hðzÞ

Z dx0

x0
�b=Bðx0Þ

�
Z dx

x
�a=AðxÞ�ð~sþ ~tþ ~uÞHU

ab!cð~s;~t; ~uÞ;
(6)

where
P

a;b represents the sum over all parton flavors and

S ¼ ðPþ P0Þ2 is the total collision energy squared.
�a=AðxÞ and �b=Bðx0Þ are the standard parton distribution

functions, and Dc!hðzÞ is the fragmentation function for a
charm quark c fragmenting into a D meson. We have
neglected all dependence on the factorization and renor-
malization scales in (6). When Ph? � mh, a sizable
amount of charm mesons could be produced from the
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fragmentation of a gluon or a light quark or antiquark.
Then, the sum

P
a;b in Eq. (6) would need to be comple-

mented by an additional sum over the fragmenting parton,
running over all possible light parton flavors as well as the
charm. However, we do not expect a large fragmentation
contribution from light partons to charm meson production
at the current RHIC energies, and we will limit our calcu-
lations to the fragmentation of charm and anticharm quarks
in this paper.

In Eq. (6), HU
ab!c is a short-distance hard part for two

partons of flavor a and b to produce a charm quark c. At the
lowest order, it gets contributions from the light quark-
antiquark annihilation and gluon-gluon fusion subpro-
cesses, as sketched in Fig. 1, and is given by

HU
q �q!c ¼

CF

NC

�~t2 þ ~u2 þ 2m2
c~s

~s2

�
;

HU
gg!c ¼ 1

2NC

�
1

~t ~u
� NC

CF

1

~s2

��
~t2 þ ~u2 þ 4m2

c~s� 4m4
c~s

2

~t ~u

�
;

(7)

where ~s, ~t, ~u are defined at the partonic level as

~s ¼ ðxPþ x0P0Þ2; ~t ¼ ðxP� pcÞ2 �m2
c;

~u ¼ ðx0P0 � pcÞ2 �m2
c;

(8)

with pc and mc the momentum and mass of the charm
quark that fragments into the D meson, respectively.

The transverse spin-dependent cross section also gets
contributions from both the q �q annihilation and gg fusion
channels. Following the generalized factorization theorem
[23], the cross section in the q �q annihilation channel can be
expressed in terms of a general twist-3 quark-gluon corre-
lation function [22],

d��ðsTÞ/ 1

2S

X
q

Z
dzDc!hðzÞ

Z dx0

x0
� �q=Bðx0Þ

Z
dx1dx2

�Tq;Fðx1;x2Þi��sTn �n lim
k?!0

@

@k�?
Hq �q!cðx1;x2;k?Þ;

(9)

with the quark-gluon correlation function Tq;Fðx1; x2Þ
given by

Tq;Fðx1; x2Þ ¼
Z dy�1 dy

�
2

4�
eix1P

þy�1 þiðx2�x1ÞPþy�2

� hP; sTj �c qð0Þ�þ½�sT�n �nF�
þðy�2 Þ�

� c qðy�1 ÞjP; sTi; (10)

whose diagonal term, at x1 ¼ x2, is equal to the correlation
function in Eq. (1). In order to generate a nonvanishing
SSA, a strong interaction phase is necessary, which comes
from the interference between a real part of the scattering
amplitude and an imaginary part of the partonic scattering
amplitude with an extra gluon, as shown in Fig. 2.
Technically, the imaginary part arises when the virtual
momentum integral of the extra gluon is evaluated by the
residue of an unpinched pole from a propagator in the
amplitude with an extra gluon. Such a propagator is in-
dicated by the short bars in the diagrams in Fig. 2. The
phase can arise from the attachment of the extra gluon to
either the initial-state parton, or the final-state charm
quark, which we will refer to as initial-state and final-state
interactions, respectively.
At lowest order, there are four diagrams contributing to

the twist-3 polarized cross section in the quark-antiquark
annihilation channel, as sketched in Fig. 2, where the blob
is given by the diagram in Fig. 1(a). Using the techniques
well established in literature (see, for example, [22]), we
have

(a) (b)

FIG. 1. Lowest order Feynman diagram for light quark-antiquark annihilation (a) and for gluon-gluon fusion to a pair of heavy
quarks.

(a) (b) (c) (d)

FIG. 2 (color online). Feynman diagrams that give the twist-3 contribution to the spin-dependent cross section in the quark-antiquark
annihilation channel: initial-state interaction (a), (b), and final-state interaction (c), (d). The short bar indicates the propagator that
produces the unpinched pole.
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EPh

d��

d3Ph

��������q �q!c �c
¼ �2

s

S

X
q

Z dz

z2
Dc!hðzÞ

Z dx0

x0
� �q=Bðx0Þ

�
Z dx

x

ffiffiffiffiffiffiffiffiffiffiffiffi
4��s

p �
�PhsTn �n

z~u

�
�ð~sþ ~tþ ~uÞ

�
��

Tq;Fðx; xÞ � x
d

dx
Tq;Fðx; xÞ

�

�Hq �q!cð~s;~t; ~uÞ þ Tq;Fðx; xÞ
�H q �q!cð~s;~t; ~uÞ

�
; (11)

where Hq �q!c can be written as

Hq �q!c ¼ HI
q �q!c þHF

q �q!c

�
1þ ~u

~t

�
; (12)

and likewise for H q �q!c, and where the corresponding

hard parts are given by

HI
q �q!c ¼

1

2N2
C

�~t2 þ ~u2 þ 2m2
c~s

~s2

�
;

HF
q �q!c ¼

N2
C � 2

2N2
C

�~t2 þ ~u2 þ 2m2
c~s

~s2

�
;

(13)

H I
q �q!c ¼

1

2N2
C

�
2m2

c

~s

�
; H F

q �q!c ¼
N2

C � 2

2N2
C

�
2m2

c

~s

�
:

(14)

Note that H I
q �q!c and H F

q �q!c are proportional to the

charm quark mass. As a check of our results, when m2
c !

0 the spin-dependent cross section in Eq. (11) becomes
identical to the one for pion production through the q �q !
q0 �q0 channel [22] (if one replaces the D meson fragmenta-
tion function by the pion fragmentation function).

The spin-dependent cross section for �D meson produc-
tion can be calculated in the same way. The Feynman
diagrams are the same as those for D meson production
in Fig. 2, except that the extra gluon should be attached to
the anticharm �c quark for the final-state interaction. The
cross section for �D meson production has the same factor-
ized form as that in Eq. (11), with the fragmentation
function Dc!DðzÞ replaced by D �c! �DðzÞ, and the hard parts
given by

HI
q �q! �c ¼

1

2N2
C

�~t2 þ ~u2 þ 2m2
c~s

~s2

�
;

HF
q �q! �c ¼

1

N2
C

�~t2 þ ~u2 þ 2m2
c~s

~s2

�
;

(15)

H I
q �q! �c ¼

1

2N2
C

�
2m2

c

~s

�
; H F

q �q! �c ¼
1

N2
C

�
2m2

c

~s

�
:

(16)

These short-distance hard parts are consistent with those
presented in the calculation of the SSAs for heavy quark
and antiquark production in hadronic collisions [30]. We
note that the hard parts for �qq scattering are obtained from

those for q �q by HI;F
�qq!c ¼ �HI;F

q �q! �c and HI;F
�qq! �c ¼ �HI;F

q �q!c,

and likewise for the H I;F.
Similar to Eq. (9), the spin-dependent cross section for

the gg fusion channel has the following factorized form:

d��ðsTÞ / 1

2S

Z
dzDc!hðzÞ

Z dx0

x0
�g=Bðx0Þ

Z
dx1dx2

� ~TGðx1; x2Þi��sTn �n lim
k?!0

@

@k
�
?
Hgg!cðx1; x2; k?Þ;

(17)

where ~TGðx1; x2Þ is defined as

~TGðx1; x2Þ ¼
Z Pþdy�1 dy

�
2

2�
eix1P

þy�
1
þiðx2�x1ÞPþy�

2 d�	

� hP; sTjA�ð0Þ½�sT�n �nF�
þðy�2 Þ�

� A	ðy�1 ÞjP; sTi; (18)

with d�	 ¼ �g�	 þ �n�n	 þ �n	n�. ~TGðx1; x2Þ is related

to the trigluon correlation function through TGðx; xÞ ¼
x ~TGðx; xÞ.
To calculate the partonic hard part, Hgg!c, in Eq. (17),

we need to consider Feynman diagrams with either initial-
state or final-state interactions, as sketched in Fig. 3, where
the blob is given by the sum of the three diagrams in Fig. 1
(b). Hence, each diagram in Fig. 3 corresponds to nine
diagrams. Instead of four diagrams in Fig. 2 for the quark-
antiquark annihilation subprocess, we have a total of 36
diagrams for gluon-gluon fusion. By evaluating these dia-
grams, we obtain the contribution to the spin-dependent
cross section,

(a) (b) (c) (d)

FIG. 3 (color online). Feynman diagrams that give the twist-3 contribution to the spin-dependent cross section in the gluon-gluon
fusion channel: initial-state interaction (a), (b), and final-state interaction (c), (d). The short bar indicates the propagator that produces
the pole.
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EPh

d��

d3Ph

��������gg!c �c
¼ �2

s

S

X
i¼f;d

Z dz

z2
Dc!hðzÞ

Z dx0

x0
�g=Bðx0Þ

�
Z dx

x

ffiffiffiffiffiffiffiffiffiffiffiffi
4��s

p �
�PhsTn �n

z~u

�
�ð~sþ ~tþ ~uÞ

�
��

TðiÞ
G ðx; xÞ � x

d

dx
TðiÞ
G ðx; xÞ

�

�HðiÞ
gg!cð~s;~t; ~uÞ þ TðiÞ

G ðx; xÞ
�H ðiÞ

gg!cð~s;~t; ~uÞ
�
; (19)

where the sum,
P

i¼f;d, is over the two correlation func-

tions TðfÞ
G ðx; xÞ and TðdÞ

G ðx; xÞ. The partonic hard partHðiÞ
gg!c

can be written as

HðiÞ
gg!c ¼ HIðiÞ

gg!c þHFðiÞ
gg!c

�
1þ ~u

~t

�
; (20)

and likewise for H ðiÞ
gg!c, and we find

HIðfÞ
gg!c ¼ � 1

8CF

~t2 þ ~u2

~t ~u ~s2

�
~t2 þ ~u2 þ 4m2

c~s� 4m4
c~s

2

~t ~u

�
;

HIðdÞ
gg!c ¼ � 1

8CF

~u� ~t

~t ~u ~s

�
~t2 þ ~u2 þ 4m2

c~s� 4m4
c~s

2

~t ~u

�
;

(21)

HFðfÞ
gg!c ¼ HFðdÞ

gg!c

¼
�

NC

4ðN2
C � 1Þ

~u

~t~s2
� 1

4NCðN2
C � 1Þ

1

~t ~u

�

�
�
~t2 þ ~u2 þ 4m2

c~s� 4m4
c~s

2

~t ~u

�
; (22)

and

H IðfÞ
gg!c ¼ � 1

2CF

m2
cð~t2 þ ~u2Þð~t ~u�2m2

c~sÞ
~s~t2~u2

;

H IðdÞ
gg!c ¼ � 1

2CF

m2
cð~u� ~tÞð~t ~u�2m2

c~sÞ
~t2~u2

;

H FðfÞ
gg!c ¼ H FðdÞ

gg!c

¼ �
�

1

NCðN2
C � 1Þ

1

~u2
� NC

N2
C � 1

1

~s2

�

�m2
c~sð~t ~u�2m2

c~sÞ
~t2

: (23)

The gluon-gluon subprocess of course also contributes
to the cross section for �D meson production. The corre-
sponding partonic hard parts for producing an anticharm
quark are given by

HðfÞ
gg! �c ¼ HðfÞ

gg!c; HðdÞ
gg! �c ¼ �HðdÞ

gg!c;

H ðfÞ
gg! �c ¼ H ðfÞ

gg!c; H ðdÞ
gg! �c ¼ �H ðdÞ

gg!c;
(24)

where the sign difference of the partonic hard parts for the

TðdÞ
G contribution will be responsible for the difference of

the SSAs for D and �D meson production that will be
discussed in the next section. We note that this sign differ-
ence can also be observed in the expressions for the
‘‘gluonic pole matrix elements’’ given in [26].
We point out that the compact dependence of the spin-

dependent cross section on the combinations Tðx; xÞ �
xT0ðx; xÞ of the twist-3 correlation functions found in
Ref. [22] for the ‘‘massless’’ case of pion production in
hadronic collisions, is violated for the production of D (or
�D) mesons by the additional nonderivative terms in Eqs.
(11) and (19). The violation is caused by the heavy quark
mass since the additional terms vanish when mc ! 0. In
fact, we observe that the hard parts we have derived satisfy
the following relation:

H I;F
ab!c ¼ m2

c

dHI;F
ab!c

dm2
c

; (25)

separately for any of the various contributions considered
above (and likewise for �c production). This connection is
likely a consequence of the ‘‘master formula’’ for twist-3
soft-gluon-pole contributions derived in [14].
We also note that ‘‘soft-fermion pole’’ contributions

[12], for which the pole in the hard-scattering function is
taken in such a way that the initial quark, rather than the
initial gluon, becomes soft, are absent for the q �q process at
the leading order. This is because q �q annihilation proceeds
through an s-channel diagram, whereas soft-fermion poles
would only appear in t-channel diagrams. If they were
present, such contributions would involve the function
Tq;Fð0; xÞ. For the trigluon correlation contribution, terms

proportional to TðfÞ
G ð0; xÞ and TðdÞ

G ð0; xÞ are automatically

included in our calculations. This is due to the symmetry of
the partonic hard part under the interchange of two gluon
lines, and to the fact that field operators commute on the
light cone [23]. This leads to the symmetry properties
TGðx; xÞ ¼ TGð0; xÞ ¼ TGðx; 0Þ [24].
Combining the factorized cross sections in Eqs. (11) and

(19) with the corresponding partonic hard parts, we have

EPh

d��

d3Ph

¼ EPh

d��

d3Ph

��������q �q!c �c
þEPh

d��

d3Ph

��������gg!c �c
(26)

for the leading-order contribution to the transverse-spin-
dependent cross section for D (or �D) meson production in
hadronic collisions. The corresponding single transverse-
spin asymmetry is obtained by substituting Eqs. (6) and
(26) into Eq. (5).

III. PHENOMENOLOGY

We now use the expressions we have derived in the
previous section to obtain phenomenological results suit-
able for RHIC. We will propose simple models for the

trigluon correlation functions TðfÞ
G ðx; xÞ and TðdÞ

G ðx; xÞ, and
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then estimate the size of the SSA for D and �D meson
production in p"p collisions at RHIC at

ffiffiffi
s

p ¼ 200 GeV.
In our studies, we adopt the CTEQ6L parton distribution

functions [33] for the unpolarized proton. We use the
charm-to-D meson fragmentation function of Ref. [34].
In order to treat the kinematic charm mass effects in the
fragmentation process, we adopt one of the choices intro-
duced in Ref. [35], which corresponds to setting Ph? ¼
zpc? and yD ¼ yc � y, where Ph? (pc?) and yD (yc) are
the transverse momentum and rapidity of the D meson
(charm quark), respectively. With this choice, we then
have for ~s, ~t, ~u, and the Feynman variable xF:

~s ¼ x0xS; ~t ¼ �xmc?
ffiffiffi
S

p
e�y;

~u ¼ �x0mc?
ffiffiffi
S

p
ey; xF ¼ mh?ffiffiffi

S
p ðey � e�yÞ; (27)

where mc? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ p2
c?

q
and mh? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ P2
h?

q
. We

further assume that D �c! �DðzÞ ¼ Dc!DðzÞ for the �D meson
fragmentation functions. We choose the factorization scale
to be equal to the renormalization scale throughout, and set


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c þ P2
h?

q
with mc ¼ 1:3 GeV.

In order to calculate numerical values for the SSAs for
the production of D or �D mesons, we need the unknown,

but universal, trigluon correlation functions Tðf;dÞ
G ðx; xÞ.

Because of their nonperturbative nature, both the quark-
gluon correlation functions Tq;Fðx; xÞ and the trigluon cor-

relation functions Tðf;dÞ
G ðx; xÞ should, in principle, be ex-

tracted from experimental data on SSAs. For the Tq;Fðx; xÞ,
this was done in Ref. [22] by fits to the experimental data
[1,3] for the SSA in pp ! �X. We adopt in the following
the set referred to as ‘‘Fit II’’ in [22]. We note that the
trigluon correlations were not taken into account in [22], so
that no direct information on these is available so far. For
the purpose of estimating the SSAs and motivating future
experimental measurements, we therefore follow the argu-
ments given in Sec. IV of Ref. [12] and model the

Tðf;dÞ
G ðx; xÞ as

TðfÞ
G ðx; xÞ ¼ �fGðxÞ; TðdÞ

G ðx; xÞ ¼ �dGðxÞ; (28)

withGðxÞ the ordinary unpolarized gluon distribution func-
tion. We emphasize that the above parametrizations are
only guidelines and rough estimates. If the trigluon corre-
lations have higher power in (1� x) compared to the
unpolarized gluon distribution, the asymmetry could be
reduced in the forward region as discussed below. As stated
earlier, we hope that the experimental study of heavy flavor
SSAs at RHIC will provide more information on these
correlation functions. In order to cover a range of possi-
bilities for the nonperturbative correlation functions, we
introduce three sets of values for the parameters �f and �d:

(1) �f ¼ �d ¼ 0:07 GeV, (2) �f ¼ �d ¼ 0, and

(3) �f ¼ ��d ¼ 0:07 GeV, corresponding to the assump-

tions: TðfÞ
G ¼ TðdÞ

G , TðfÞ
G ¼ TðdÞ

G ¼ 0, and TðfÞ
G ¼ �TðdÞ

G , re-

spectively. In principle, the signs and the values of �f and

�d, as well as the functional form of the correlation func-
tions should be fixed by future data. Comparing SSAs for
physical cross sections involving the same nonperturbative
twist-three correlation functions but different partonic hard
subprocesses will provide stringent tests of QCD dynamics
and the twist-3 factorization we use.
In Figs. 4 and 5 we plot the SSAs, AN , for the production

ofD and �Dmesons as functions of rapidity y and Feynman
xF, respectively. We count positive rapidity in the forward
direction of the polarized proton. The solid, dashed, and
dotted curves correspond to the three sets of parameters:
�f ¼ �d ¼ 0:07 GeV, �f ¼ �d ¼ 0, and �f ¼ ��d ¼
0:07 GeV, respectively. From the dashed curves in
Figs. 4 and 5, it is clear that the quark-gluon correlation
function Tq;F alone generates a very small single

transverse-spin asymmetry at RHIC energy. This is be-
cause of the dominance of the gg fusion contribution
over the q �q one in the spin-averaged cross section in the
denominator of AN . In other words, any significant size of
the SSA in open charm production signals the discovery of
trigluon correlations inside a polarized proton.
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FIG. 4. The SSA as a function of rapidity y for D0 meson (left) and �D0 meson production (right) at
ffiffiffi
s

p ¼ 200 GeV and Ph? ¼
2 GeV. The curves are: solid (�f ¼ �d ¼ 0:07 GeV), dashed (�f ¼ �d ¼ 0), and dotted (�f ¼ ��d ¼ 0:07 GeV).
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The difference between the solid and dotted curves in
Figs. 4 and 5 indicates that the two trigluon correlation

functions, TðfÞ
G and TðdÞ

G , may both play very important, but

different, roles for the SSA in D and �D meson production.
In the case of D mesons, a large AN (see the solid curve) is

obtained when �f ¼ �d ¼ 0:07 GeV, i.e., when TðfÞ
G and

TðdÞ
G have the same sign. However, when their signs are

opposite, their contributions to the SSA tend to cancel,
leading to a much smaller SSA (dotted curve). On the
contrary, for �D meson production, the largest AN is found

when TðfÞ
G and TðdÞ

G have opposite signs. This is due to the

fact that, as shown in Eq. (24), the partonic hard parts

associated with TðdÞ
G change sign when going from charm

to anticharm production, while the hard parts for TðfÞ
G

remain the same. As a result, the SSA for �D mesons is

much smaller if TðfÞ
G and TðdÞ

G have the same sign. In

addition, as seen from Figs. 4 and 5, scans of the SSA
from the forward to the backward region may provide good
sources of information on the x dependence or the func-
tional form of the trigluon correlation functions, in par-
ticular, if a sign change occurs. It is also striking to see that
the asymmetry for either D or �Dmesons may become very
large at forward rapidities at RHIC (but not for both
simultaneously).

We stress that the numerical asymmetries shown in
Figs. 4 and 5 depend on our model of trigluon correlation
functions. If we parametrize the trigluon correlation func-
tions with the same normalization constants �f;d but with

an extra power (1� x) compared to the unpolarized gluon
distribution, the asymmetry could be reduced by �30% at
the highest y value in Fig. 4 or�20%ð40%Þ forDð �DÞ at the
highest xF value in Fig. 5. We conclude that the asymmetry
is still very significant with much softer trigluon correla-
tion functions when x ! 1.
In Figs. 6 and 7, we show AN for D0 and �D0 meson

production as a function of Ph?, at midrapidity (y ¼ 0) and
forward-rapidity (y ¼ 1:8), respectively. The absolute val-
ues of the SSAs decrease as a function of Ph?, which is a
natural behavior of the twist-3 effect in QCD collinear
factorization. As before, while the contribution by the
quark-gluon correlation functions is very small, the two
trigluon correlation functions can make sizable, and very
different, contributions to the SSA, thanks to the difference
in the partonic hard parts in Eq. (24).
We finally note that first experimental data on the SSAs

for open charm production are now emerging from RHIC
[27]. The uncertainties are currently too large to allow
distinction of the various models we have proposed, but
the measurements are certainly very encouraging.
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IV. SUMMARYAND CONCLUSIONS

We have studied the single transverse-spin asymmetries
for D and �D meson production in hadronic collisions.
Within the QCD collinear factorization approach, we
have calculated both the derivative and the nonderivative
contributions to the SSAs. We have included the contribu-
tions by the twist-3 quark-gluon correlation functions,
shown in Eq. (11), as well as by the twist-3 trigluon
correlation functions, given in Eq. (19). We have found
that the quark-gluon correlation functions alone generate a
negligible SSA for open charm production in almost all the
kinematic region of interest at RHIC. We thus conclude
that any sizable SSAs observed in D or �D production will
be a discovery of trigluon correlations inside a polarized
proton.

We have proposed several simple models for the two
unknown trigluon correlation functions and used these to
make predictions for the SSAs in D meson and �D meson
production in polarized proton-proton collisions at RHIC.
We have found that within our models, the asymmetries
could be sizable and provide an important source of infor-
mation on the two unknown trigluon correlation functions.
We also found that the two correlation functions play a
very different role in generating SSAs forD and �Dmesons,
due to the sign difference between the partonic hard parts
for charm and anticharm production [see Eq. (24)].
Comparison of the SSAs for D and �D mesons could thus
provide an excellent tool for separating the two trigluon
correlation functions. With data for the SSAs in open
charm production arriving from RHIC [27], we will be
able to learn for the first time about the dynamics of
multigluon correlations inside a polarized proton.

We close this paper with a theoretical observation. As
we mentioned in the introduction, two approaches are
commonly used for the study of SSAs in high energy
collisions: the collinear factorization we have used in this
paper, and the TMD factorization approach. The two are
known to be closely connected and complementary to each
other [9]. As was shown in Ref. [7], the twist-3 quark-
gluon correlation function, Tq;Fðx; xÞ, is related to a mo-

ment in transverse momentum of the corresponding quark

Sivers function, qTðx; k?Þ:
Tq;Fðx; xÞ ¼ 1

Mp

Z
d2 ~k? ~k2?qTðx; k?Þ; (29)

up to ultraviolet renormalization. Here Mp is a hadronic

mass scale. Applying the same method used to derive the
above relation to the TMD gluon distribution, we would
obtain an identical relation between the trigluon correla-

tion function TðfÞ
G ðx; xÞ and the moment of the gluon Sivers

function. The occurrence of the antisymmetric color con-
traction of the three gluonic field strengths in the trigluon
correlation function is a natural consequence of the expan-
sion of the gauge link in the adjoint representation when
taking the transverse-momentum moment of the gluon
Sivers function. It is interesting to note that the other

trigluon correlation function, TðdÞ
G ðx; xÞ, does not appear

to have a simple relation connecting it to the operator
definition of the gluonic Sivers function. That said, in the
TMD approach one can define trigluon correlators with
both the f and d color structures [26] when considering
general QCD hard-scattering processes, which correspond

to our TðdÞ
G and TðfÞ

G after transverse-momentum weighting.

In any case, both TðdÞ
G ðx; xÞ and TðfÞ

G ðx; xÞ are allowed and in
general present in the collinear factorization approach. It is
therefore very important to measure the difference of SSAs
in D and �D meson production, in order to identify the role

of TðdÞ
G ðx; xÞ.
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