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Abstract

A formula for the single transverse spin asymmetry in the large-p; pion production in the nucleon-nucleon collision is
derived. We focus on the chiral-odd contribution where the transversity distribution and the chiral-odd spin-independent
twist-3 distribution contributes. This contribution is expected to give rise to a large effect at Xz — —1. © 2000 Elsevier

Science B.V. All rights reserved.

PACS 12.38.-t; 12.38.Bx; 13.85.Ni; 13.88.+ e

Keywords: Single transverse spin asymmetry; Twist three; Chiral-odd

Perturbative Quantum Chromodynamics (p-QCD)
has been successful in describing numerous spin-
averaged hard inclusive processes. In particular, con-
sistent description of accumulated data on the high-p;
production of direct photons, jets and hadrons in the
nucleon-nucleon collisions constitutes an important
test of p-QCD. (See [1] for a review.) A minimal
spin-dependent extension of the high-p; production
is the single transverse spin asymmetry:

N'(P,S,)+N(P)—=w(P,) +X, (1)

where 7 (P_) is a pion with momentum P_ which
has a large transverse momentum P_; with respect
to the beam axis. (One can similarly consider the
asymmetry for the production of a direct photon and
a baryon, etc.) Note that the spin vector (S ) of the
polarized nucleon has to be orthogonal to the scatter-
ing plane. The asymmetry (1) is twist-3 and receives

no contribution from the naive parton model. * It
probes particular quark-gluon correlations in the nu-
cleons and/or the effect of transverse momentum of
partons participating the process [2—8]. 2 Although
the asymmetry is suppressed by an inverse power of
the hard momentum, a large asymmetry has been
experimentally observed for the pion and A produc-
tion, in particular, at large xg [9,10].

In this letter, we derive a QCD formula for the
polarized cross section (1). Qiu and Sterman identi-
fied a chiral-even contribution which brings a domi-
nant effect at large positive xg, i.e. forward direction

' The asymmetries for the polarized baryon productions, N +
N'>B+X or NT+N - B" + X, are twist-2 and are de-
scribed by the polarized parton distributions [11].

ZAt low P.t, an approach based on hadronic degrees of
freedom may be appropriate [12].
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with respect to the polarized nucleon beam, and their
parametrization for the twist-3 distribution explained
the E704 data at x > 0 [9] reasonably well. Here we
intend to present another source of the asymmetry,
chiral-odd contribution, which is expected to give a
large effect at xz — —1. This kinematic region is
accessible by the ongoing experiment at RHIC.

For later convenience, we recall kinematic vari-
ables relevant to the process (1). The differential
cross section is a function of the three invariants
defined by

S=(P+P)=2P P,
T=(P -P,)’=-2P-P,,

U=(P-P,)*=—2P-P,. (2)
The variables

2P, T-U
X = =—1
F \/§ S

2P77T
Xy = ‘/§ (3)
are dso used, and are related to T and U as

S

T= —E[\/X,%-f-X% —XF],

S

U=—§[‘/x§+x$+xF]. (4

According to the QCD factorization theorem, the
twist-3 cross section for the pion production (1) can
be factorized as [13]

ON'"+ N> 7+X

= Z [Ga( X,l’XIZ)

ab.c

®Qy(X) ® Gy, ® D, - (2)

+80,(X) ® Ey(X1,X%;)

®7,, . ®D, ,(2) +80,(X) ®Gy(X)
®&aiij—>c®Df:3—)>7(Zl’ZZ)]’ (%)

where the functions G,(x},x,), E,(x;,X,) and
D® (z,,z,) are the twist-3 quantities representing,

C—>a

respectively, the transversely polarized distribution,
the unpolarized distribution, and the fragmentation

function for the pion, and a, b and c stand for the
parton’s species. 3

Other functionsin (5) are twist-2; q,( x) the unpo-
larized distribution and 8q,(x) the transversity dis-
tribution, etc. The symbol ® denotes convolution.
O, EtC. represents the partonic cross section for
the process a + b — ¢ + anything which yields large
transverse momentum of the parton c.

A systematic QCD analysis for the first term in
(5) has been performed in [8]. We shall andyze
contribution from the second term in (5) following
the method of [8]. * To this end we first summerise
the twist-2 and twist-3 distributions for complete-
ness. The quark distribution (for flavor a) can be
defined by the lightcone Fourier transform of the
quark correlation function in the nucleon [14,15]:

da -
ze‘“( PSIy;%(0) #2( An)|PS)

=3(P)ii9.(X) + 3(vsP)i;(S-n) Agy( x)
+%(V5$¢¢)ij5%(x)+ T (6)

where the spin vector S is normalized as S>= —M?
and the two lightlike vectors p and n are introduced
by the relation P=p+M?n/2 and p-n=1. For
the nucleon moving in the positive zdirection, the
only nonzero components of p and n are p*=P",
n~=1/P*. Here and below we suppress the
gaugelink operators between (0) and ¢(An) which
ensures gauge invariance. We write S=S,=p —
M?n/2 for the longitudinally polarized nucleon and
S=MS, for the transversely polarized one. In (6),
q(x), Ag(x) and 8q(x) denote, respectively, the
unpolarized, longitudinally polarized and transversity
distribution, and + - -- stands for the higher twist
distributions.

The twist-3 distributions are characterized by the
participation of the explicit gluon fields in the light-
cone correlation functions. The complete set of the

®We use the primed symbols like X, X, X,, P’ for the
polarized nucleon, and unprimed ones X, Xx;, X,, P for the
unpolarized nucleon. This convention is opposite to [8].

“ The third term of (5) is also chiral-odd. Analysis of this term
is left for future study.
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twist-3 distributions with two quark fields is classi-
fied as [4,16,17]

/%fg_’;emxlem(xle)
X (PS§(0)y*gF *#( wn)ngy(An)|PS)
=Mp* e *p,n S, ,Ge( Xy, %)+« (7
fdA du RTApr—
><<PS|t!f(0)v“75gF“B( mn) ng iy (AN)|PS)
=iMp“Si‘(§F(X1,X2)+ T (8)

f%fg_’;ei).xlem(xz—xl)
X (PS¢ (0) o iy gF “# ( wn)ngy(An)|PS)
=iM(S-n){(g"**p"~g"p*)
—p(n*p” = n"pH)FHe (X, X;)
+ M( preabt — prenabhy
XpAnﬁEF(Xl!X2)+ S (9

where the flavor indices are suppressed for simplic-
ity, and we use the convention for the anti-symmetric
tensor as €y ,3 = 1. The four functions Gg(x,,X,),
Ge(Xy,%,), Ec(Xy,%,) and Hq(x,,X,) are real and
have the following symmetry properties due to the
time reversal invariance:

Ge(Xq,%Xp) = Gp( X2, %),

G~F(X11X2) = _G~F(X27X1)’
Er (X1, %) = B ( Xy, Xy),
He (X1, %) = —He (X3, %) (10)

Replacement of the gluon field strength gF “#( wn)n,
in the left hand side of (7) -(9) by the covariant
derivative D*( un) = 4% —igA*( wn) alows similar
decomposition in the right hand side, which defines
another complete set of the twist-3 distributions,
Gp(X1, %), Gp(Xy,Xp),  Ep(Xy, %), Hp(X, Xp).
These four have the symmetry property opposite to
those shown in (10). We note that {G,G¢, Er, He}
and {G,,Gp,Ep,Hp) are not independent of each
other, but are related by the QCD eguation of mo-

tion. In deriving the formulas for various cross sec-
tions, however, it is convenient to keep both expres-
sions.

In addition to the distribution functions, we need
fragmentation functions to describe hadron produc-
tions. The quark fragmentation functions for a pion
is defined as [14]

dr
A iA/zZ
§f27Te
X0l e(0) | (P, ) X)<mr (P,) XIg°(An,)I0)

1
=;( ¢7T)iJDC—>7T(Z)+ T (11)

where p, and n_ are the light-like vector defined
from P_ similarly to p and n, and + --- denotes
higher twist contributions.

With these definitions, one can proceed to calcu-
late the asymmetry (1) for the pion production. The
calculation is done in Feynman gauge following
[4,8]. Fig. 1 shows typical Feynman diagrams con-
tributing to the asymmetry at twist-3. Usual proce-
dure to analyze the diagrams is the collinear expan-
sion of the parton momenta k;, k, etc connecting the
hard scattering part and the nonperturbative hadron
matrix elements. (See Fig. 1.) After the collinear
expansion, combination of the diagrams gives rise to
the gauge invariant twist-3 contributions of the form
(5) [8], where the momentum of each parton is
expressed by the fractions of the collinear momen-
tum x, and x, etc with k; = x; p and k, = x, p etc.
In the chiral-odd contribution (second line of (5)),
E-(x,,X%,) and Hp(Xx,,X,) appear with the propaga-
tor factor

1 1
— =P Fimd( X, —X,), 12
i —xtie Txowm T (X1 =%), (12)

as was the case for the chiral-even contribution
analysed in [8]. The redlity of the cross section forces
to take 8(x; — X,) in (12), which keeps only contri-
bution from E.(x, = X, X, = x) (‘*soft gluon contri-
bution’”) due to the symmetry property in (10).
Some of the contributions from E-(x, x) accom-
pany with derivatives of the delta functions like
8'(x,—%,) and &'((XpP +x,p— p,,/z)z). (The
latter &-function comes from the on-shell condition
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Fig. 1. Schematic representation of the diagrams contributing to
the twist-3 cross section (5).

of the spectator parton and p' is the light-like vector
defined from P’ similarly to p.) These terms lead to
x—E-(x,x) after integration by parts. At x; > —1,
the process (1) probes the kinematic region with
large x and small x'. In this region, the valence
component of E-(x,x) is expected to dominate.
Since the valence component of E(x,X) is consid-
ered to behave as ~(1—x)? (B> 0) at large x,
one has the relation

d
Xa_xEF(X'X) > E (X,X), asx—1. (13)

| a I a |

a ¢ a c: a c a

b b:%+b b T
| b I b I

Fig. 2. 2 — 2 scattering diagrams contributing to the chiral-odd
part of the cross section, i.e. second line of (5).

We thus keep only the terms with -=E.(x, x) for the
valence quark with flavor a (‘‘valence quark-soft
gluon” approximation [8]). On the other hand,
Ep(X4,%,) and Hp(xy,X,) appear with the propaga-
tor factor 1/(x; +ie) (i =1,2) which gives ‘‘soft
fermion’’ contribution. This contribution, however,
does not show up with the derivatives of the delta
function. We thus do not include this term in this
anaysis.

The hard scattering part a,,_, . which appears
with x5 E-(x,%) is obtained from

d
—9(k,,k —x
aki‘l S( 1 2)|k. iP

where S(k,,k,) is the hard part of Fig. 1(b) and
(c). The effect of the gluon line entering
e Ky, Kl =xp s replaced by 8'(x, —x,) or
5(X, — X,) which occurs from the propagator next to
the quark-gluon vertex in S(k,,k,), leaving the 2 — 2
(quark-quark) scattering diagram. Therefore the cal-
culation of &,,_, . is reduced to the calculation of
2 — 2 scattering diagrams. For the chiral-odd contri-
bution, the lowest order contribution to this 2 — 2
cross section is shown in Fig. 2. Owing to the
chiral-odd nature of §q(x) and E-(x,,X,), the con-
tribution from the diagrams shown in Fig. 3 van-
ishes.

b b b b
c

Fig. 3. 2 — 2 scattering diagrams not contributing to the chiral-odd
part of the cross section.
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With the above described procedure, the final
result for the differential cross section for (1) is
obtained as

dAo(S,))
T dp}
7TMC¥32 1 dz 1 dX
- S a,zb:,c j;mln C‘) W( Z) f Xmin
1 dx xU/z
xS+T/zf 7 xS+T/z

1 d
X €00 PLS pAn”(Tf) [_Xa_x Erp( X,x)}

X 5qa( X/) S&abﬁ c

mMa? 1 dz
S | 2B
a,c Zmin
1 dax’ 1 1dX
— | —§&
C—)W(Z)'/’mm X X,S+U/Z'/;) X
XT/z 1
X{ X+ oo | €ume PESL PN —
XS+U/z| * -0
! a ! !
X _Xa_x’GFa(X’X)

<600 83 o+ Ta(x 4|
b (14)
where the invariants in the parton level are defined
as
(pa+pb) ~(xP’+xP) =xX'S,
f=(pa—p)’=(XP -P,/2)°=xT/z,
U=(p,—p.) = (XP—P,/2)°=xU/z,  (15)

and the lower limits for the integration variables are

—(T+U)
o= ——— =
-T/z -U/z
Xmin:—/! Xmin = / . (16)
S+U/z S+T/z

The first term in (14) is the chiral-odd contribution
derived here. The partonic cross section 64, _, . in
this term is obtained from the diagrams in Fig. 2 as

R 10 1 t

8= TR 1+a Bap Ope

R 1 7 t))

80—5b—>c:_ 54‘5 1+a ?5&),

R 1 2 t)) i

00 = — 5 + 5 1+ a 528513 (17)

In this contribution, the summation of b is over u-
and d- valence quarks in the unpolarized proton, a
and c over u, d, T, d, s, § etc. The second term in
(14) is the chiral-even contribution derived in [8]
with the unpolarized gluon distribution G(x) and the
partonic cross section Ag,,_, . and Ad,,_, . shown
in the same reference. We have included this term in
our notation for completeness.

The chiral-odd contribution derived here yet in-
clude unknown function 8q,(x) and Eg,(x,x). The
information on the former is expected to be obtained
from other twist-2 processes like semi-inclusive DIS
(/+N" 57" +B" + X) [18], polarized baryon
production (N’ +N' — B" + X) [11], and the po-
larized Drell-Yan (N" + N —>/%/~ + X) [15,19]
etc. To get a crude estimate for the latter, we recall
those two functions are given from (6) and (9) as

[
6Qa( X) ES apn[ 277_
X (PSH(0) iy { 43(An)IPS),  (18)
- A -
Era(X,X) = o [ € CPIA(0) iy

x{[:—igF"ﬁ( ,un)nﬁ}dfa()m)lm,
(19)

where € ,pn = €,,,,S1 P” n*. One notices the simi-
larity between (18) and (19) except that (19) contains
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the gluon field whose momentum is zero. This moti-
vates us to introduce a model for Eg(x,x) as

EFa( X'X) = Kaéqa( X) (20)

with K, some dimensionless parameter. This proce-
dure was actually taken by [8]: Qiu and Sterman set

Gra( X, %) = Ki0a( X) (21)
inspired by the forms of the two functions

dar -
0(X) = 3 [ € (Pl (0 (An)IP), (22)

1 da i AX a
GFa( X’X) = Mesio‘pn 2_7Te <PS|¢ (O)Iﬁ

d
X { %gF"B( wn) n3}¢a(An)|PS>.
(23)

The second term of (14) with the assumption (21) for
Gr(X,x) gives reasonably good fit to the E704 data
at xg > 0. Comparison of (18), (19), (22) and (23)
would suggest to set the parameter K, in (20) as
K, =K. The direct measurement of 6q and E;
would, of course, be prefered.

At large negative xg, the twist-3 three-gluon dis-
tribution coupled with the unpolarized valence quark
distribution may bring large effect in the first term of
(5) [20]. This contribution, however, does not receive
enhancement by the derivative (cf. Eq. (13)). For
comparison with experiment, more complete analysis
including this term would be necessary.

To summerise, we have derived a chiral-odd con-
tribution to the single transverse spin asymmetry in
the pion production, using ‘‘valence quark-soft
gluon’’ approximation. This term may give rise to a
sizable effect at large negative X, as was the case

for the chiral-even contribution which gives domi-
nant effect at large positive Xg.
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