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1 Introduction

The existence of magnetic monopoles would add symmetry to the Maxwell
equations without breaking any known physical law. More dramatically, it
would make charge quantization a consequence of angular momentum quanti-
zation, as first shown by Dirac [1]. With such appeal, monopoles continue to

excite interest and new searches despite their elusiveness to date.

Grand unified theories predict monopole masses of about 10'7 TeV, so there
have been extensive searches for high mass monopoles produced by cosmic
rays [2a—c|. Indirect searches for low mass monopoles have looked for the effects
of virtual monopole loops added to QED Feynman diagrams [3a—d]. Detector
materials exposed to radiation from pp collisions at the Tevatron have been

examined for trapped monopoles [4]. All results have been negative [5].

In this article we consider the possible production and detection of Dirac
monopoles with mass less than 1 TeV in a present day collider experiment.
By a Dirac monopole, we mean a particle bearing no electric charge, having
no hadronic interactions, and whose magnetic charge g satisfies the Dirac

quantization condition ' :

ge n g n
ol s = 1
he 2 e (1)

If produced inside a particle detector, a monopole would be revealed by its

unique characteristics. Because a magnetic charge is accelerated along an ex-
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1 From here on we use Gaussian units with the additional convention of setting ¢

to unity.



ternal magnetic field, the trajectories of monopoles and ordinary charged par-
ticles differ dramatically. From the Dirac quantization condition, the smallest
magnetic charge would have a magnitude about 68.5 times greater than that
of an electron or proton. For monopoles passing through matter, this causes

high ionization and rapid energy loss.

2 Theory

The new symmetry lent to the Maxwell equations by the existence of mag-
netic monopoles can be exploited to obtain monopole versions of the Lorentz
force, Bethe-Bloch equation, and other relations governing electromagnetic in-
teractions with matter. These are the only theoretical results needed for the

GEANT treatment of monopoles.

For those of us searching for monopoles at particle accelerators, there remains
the vexing question of production cross sections. Refs. [6a—c| describe scatter-
ing cross sections for the general case of particles with arbitrary EM charge,
but explains that the monopole’s large coupling to the EM field renders per-
turbative techniques useless. Any attempt to puzzle out an answer based on
Feynman diagrams and considerations of duality and Lorentz invariance is
doomed to failure. There is presently no reliable field theoretical calculation
of monopole production cross sections. As a benchmark for testing, we adopt
a Drell-Yan like monopole pair production mechanism motivated by the new

symmetry, as in Ref. [4].



2.1 The Duality Transformation

The Maxwell equations extended to include magnetic charge take the following

form:
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where p,, is the magnetic charge density and jm is the corresponding current.

The form of these equations is invariant under a general duality transformation

(£ eR):

E=FE'cos¢+ H'sin¢ D=D'cosé+ B'siné (3)
H=—FE'siné+ H'cos¢ B=—D'sinf+ B cos¢

Pe = p,cos€ + pl siné Je=jlcosE+ ] sin€

pm = —p,sin& + pl, cos& Jm = —J'sin€ +j' cos€ .

The original Maxwell equations are recovered if all particles have the same
ratio of magnetic charge to electric charge, which can be set to zero by the
right choice of the angle £. A useful special case of the duality transformation

is when ¢ = 7/2; the extended Maxwell equations are invariant under the

replacements
Pm — —Pe jm%_;e B'_>_D_' ﬁ—)—E_:,



which can be used to derive monopole versions of formulas familiar from stan-
dard classical electrodynamics. This is the transformation meant by “duality”

or the “dual” of an EM quantity.

2.2  Motion in a Magnetic Field

Duality implies a generalized Lorentz force law for particles carrying arbitrary

electric charge e and magnetic charge g¢:
ﬁ:e(ﬁ+5x§)+g(§—ﬁxﬁ). (5)

Setting e and E to zero provides the differential equation describing the motion
of a Dirac monopole in a magnetic field. It can be solved analytically for the
case of a uniform field, but the general case requires a numerical integration.
We have implemented both solutions in GEANT for efficiency and to provide

an additional cross check (see Section 4.2).

The most distinctive features of the monopole kinematics are that the trajec-
tory does not curve in the plane perpendicular to the magnetic field, and the

field does work on the monopole.

2.3 Ionization and Delta Rays

The energy loss, dE/dx, due to ionization for an electrically charged particle

is given by the Bethe-Bloch formula [7],
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where K/A = 4nNrim.c?/A = 0.000307 GeV c¢m?/g and I is the mean

excitation energy of the scattering material, roughly Z - 10 eV.

This formula is derived by considering the impulse imparted to an electron
in the material by the passage of the charged particle [8]. Replacing the EM
field tensor for a moving electric charge by its dual shows that the only field
component that delivers a net impulse to the electron is an electric field pro-
portional to both the monopole charge ng and its speed 5. The net effect is

to replace ze by ngf:

_E e [1 In <M> - /32] . (7)

The same conclusion is reached by considering the generalized non-relativistic
scattering cross section for small scattering angles [9a—c|. The familiar result

for electric-electric scattering (Rutherford scattering),

do 1 (ze)* 1 g
aQ " 2mp B2 (0/2)* ®)

becomes for magnetic-electric scattering

do 1
dQ "~ 2mp

5 1
(n9)* 7y ©)

where m is the mass of the light particle.

The ionization energy loss for a magnetic monopole in air is compared to an
ordinary charged particle in Figure 3. There are two differences: the monopole
curve is flatter due to canceling of the 1/3? factor and higher due to the large
value of g/e = 68.5. The large ionization energy loss means that the range of

monopoles in most solid materials is quite short.

To an electron in matter, a passing monopole is effectively a passing nuclei of



charge z ~ n - 68.5 - 5. The mean energy loss, energy loss fluctuations, and
delta ray production are all different aspects of this interaction. The equations
describing these phenomena are valid for a wide range of nuclei, up to z ~ 200.

So for small values of n, the replacement ze — ngf is justified.

2.4 Multiple Scattering

The formula for multiple scattering of monopoles from the nuclei of atoms is
similarly deduced. By exactly the same exercise as before—replacing the EM
tensor for an electron with its dual-—the monopole multiple scattering formula
is seen to have a factor ngf in place of ze. One can use any of the models for

multiple scattering by making this replacement.

2.5 Cerenkov Radiation

Starting with the far fields of a moving charge (see Ref. [8]) and applying the
duality transformation, one obtains the far fields for a moving monopole. The
Poynting vector, (E x B) /4, in the two cases differs only by a substitution of
electric with magnetic charge. There is no § factor because both the electric
and magnetic fields are involved, not just the electric field as in the interactions
considered above. For Cerenkov radiation, one merely replaces electric charge

with magnetic charge (ze — ng).



3 Modifications to GEANT

GEANT simulates particles passing through a detector, calculating each tra-
jectory step by step, handling the motion in an arbitrary magnetic field, in-

teractions with material in the detector, and decays of unstable particles.

Each step size is chosen small enough to accurately treat all processes indepen-
dently. For instance, the energy loss continuously effects the trajectory, but
for a small enough step size it can be calculated after the particle has been
transported. GEANT uses path length, not time, as the independent variable
in its integrations, a simplification mainly because material interactions have

characteristic lengths.

The step size is taken from many constraints. For example, a large field gradi-
ent, strong trajectory curvature, or rapid energy loss reduces the size. When
a step size cannot be estimated ahead of time, it is done iteratively; if a cal-

culated effect is too large, the step is recalculated with a reduced size.

Discreet processes are handled differently. For an unstable particle, the proper
lifetime is chosen at the start by drawing an exponentially distributed random
number using the particle’s mean lifetime as the parameter. At each step, the
remaining proper lifetime and the particle’s momentum are used to calculate a
decay distance. If the step size eventually chosen is smaller than this distance,
the elapsed proper time of the step is subtracted from the particle’s remaining
lifetime. Otherwise the step size is shortened to the decay distance and the

decay process is performed at the end of the step.

Material interactions are handled in a similar fashion, with a random distance



drawn using the interaction length as a parameter. Because this is meaningful
only if the interaction length of the material is constant, GEANT does not
allow a step to cross a volume boundary. It handles this internally by treating
boundary crossing as if it were another kind of interaction guaranteed to occur

at the boundary.

3.1 Code Layout

GEANT uses a modular design which allows different particles to share ap-
propriate code. User entry points are provided using names beginning with GU
(e.g. GUTRACK); the default behavior is to merely call GEANT code, but users

can add there own special purpose code as needed.

Figure 1 shows a partial calling graph for GEANT tracking. Our additions,
covered in detail below, are in the dashed box. There are three important

divisions in this graph:

(1) At the highest level, GEANT performs bookkeeping tasks and decides
the appropriate code to call for each particle. Code for the entire event,
GUTREV and GTREVE, calls generic code to step through one track, GUTRAK
and GTRACK.

(2) At the next level, the appropriate particle specific code—GTGAMA, GTELEC,
GTMUON, GTHADR, GTNEUT, or GTMONP—is chosen by “tracking type” based
on charge, mass, equations of motion, and the types of interactions con-
sidered. This code performs a single step, deciding the appropriate step
size and handling interactions.

(3) At the lowest level, the actual numerical integration of the equations of



motion is performed. A user routine—GUSWIM or GUSWMP— chooses which
numerical integration—GRKUTA, GHELIX, GHELX3, GPARMP, or GRKTMP—
to use based on the uniformity and strength of the magnetic field as

calculated by the user supplied routine GUFLD.

Additional GEANT code, not shown in the calling graph, calculates physics
processes such as energy loss fluctuations and multiple scattering. The particle

specific tracking code selects appropriate physics processes to apply.

We add Dirac monopoles in a manner consistent with GEANT’s organiza-
tion. Because the equations of motion for magnetic monopoles and stan-
dard GEANT particles are completely different, we use a new tracking type,

ITRTYP= 9, corresponding to routine GTMONP and alter GTRACK accordingly.

Normally in GEANT, the particle specific code calls GUSWIM to transport the
particle. But the magnetic field does work on a magnetic charge, which is
not true for electric charge, and the arguments given to GUSWIM do not allow
the integration routines to alter the total energy. Rather than change GUSWIM
and all code that calls it, we have GTMONP call a new similar routine GUSWMP.
GUSWMP calls an appropriate numerical integration of the equations of motion:

GPARMP for an analytic solution and GRKTMP for Runge-Kutta integration.

3.2 Monopole Tracking

The main monopole tracking routine, GTMONP, is derived from the charged
hadron tracking routine, GTHADR, but with decays, hadronic interactions, and
stopping calculations omitted. The relevant kinematic parameters are the same

for monopoles and hadrons, so no additional parameters are needed. New
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energy loss and range tables are not needed; the already defined proton tables

are adapted, as described in Section 3.3.

Figure 2 illustrates the monopole tracking algorithm. A step size is chosen
based on the particle’s position in the volume and material interactions. It
is transported by the numerical integration, and the effects of interactions
are calculated. If the effects are too large, the step size is reduced and the

calculations are repeated.

In order to transport a monopole according to the kinematics of Section 2.2,
a suitable numerical routine is chosen. For a constant magnetic field in the
z direction, an analytic solution to the equations of motion, GPARMP, is used.
A simple numerical integration is still needed to obtain the step size from
the time based analytic solution. For non-uniform magnetic fields, a fourth
order Runge-Kutta integration of the equations of motion, GRKTMP, is used.
There are more efficient integration methods available but they are unreliable
if the integrand is not guaranteed to be smooth [10]. That is usually the case
for HEP applications, where the magnetic field map is often based on table
lookups and split into several pieces, each covering a different region of the

detector.

The step size is limited to ensure that the relative error in the total momentum
at each step is less than one part in 10° (at the moment, this is hard coded).

The safe step size estimate, Asgqf, for a maximum relative error ¢ is given by

2
ASyape = 7388 - —L_ §1/5. (10)
9E|B|

Here F is the total energy, p the total momentum, and B the magnetic field.

The formula is obtained using the step doubling procedure outlined in Ref.

11



[10].

An independent limit on the error of each momentum component is not im-
plemented because a component may reverse sign, due to the magnetic force,
leading to a step size of zero at the turning point. The step size is already
limited to keep the particle in the same volume and by material interactions;
additional limits are unnecessary because the position is simply related to the
momentum. If we take care of the momentum the position will take care of

itself.

The path length parametrization of the equations of motion has a singularity
at zero total momentum, but we have disregarded it. It is beyond the scope
of the GEANT simulation to model the trapping of monopoles in matter.
In a solenoidal field with the magnetic field parallel to the beam line it is
possible for a monopole to come to a momentary complete stop, only to be
accelerated by the magnetic field. But these events are irrelevant; the monopole
is swept out inside the beam-pipe without reaching the detector. If a proper
treatment of the singularity is needed, it can be stepped around using the time

parameterization.

3.3 Energy loss

After transporting the particle according to the equations of motion, the en-
ergy loss due to ionization is calculated. As shown in Section 2.3, a mag-
netic monopole does not obey the standard Bethe-Bloch formula. Since the
monopole loss formula is related to the standard formula by a simple substi-

tution and both depend only on § and not m when m > m,, one can adapt

12



the proton loss tables and need not calculate new ones.

The energy loss for a monopole of kinetic energy T, is calculated according

to the following algorithm:

(1) Calculate the kinetic energy T of a proton with the same (3 as the

monopole:

Mp

TO = : Tmon .

mmon

(2) Determine the index i in the energy loss table corresponding to 7j using

a table T of thresholds so that?:
T <1y < Ty -

(3) Compute the “proton” energy loss through linear interpolation:

dE dE To —T; dE dE
iy =m0 () -1y .
) = @)+ g (F ) - S @)

(4) Scale the result to make it correct for monopoles:

) =" (M) (ng 57

The first two steps and the calculation of the interpolation coefficient are
already done in GEANT for charged hadrons and heavy ions in subroutine
GEKBIN; we modified it to do exactly the same thing for monopoles. GTMONP

performs the interpolation and the final scaling.

Figure 4 compares the energy loss curve from the GEANT table with the
Bethe-Bloch formula, for both monopoles and protons. The energy loss for a
monopole in GEANT agrees well with Equation 7. The curves only diverge

significantly for 8y < 2 - 1072, where the Bethe-Bloch formula is invalid and

2 T is the array ELOW in GEANT.
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GEANT uses a fit to measurements?® .

The energy loss fluctuations are calculated using the standard GEANT meth-
ods [11], with the replacement of ze with ngf in the significance parameter

K, as discussed in Section 2.3.

3.4 Multiple Scattering

For multiple scattering, GEANT provides a Moliere model, a plural scattering
model, and a Gaussian model. Because the monopoles we are considering
are much heavier than ordinary hadrons (m > 100 GeV), they have very
small scattering angles, and we do not need the non-Gaussian tails of the
full Moliere model. We modified the main multiple scattering routine, GMULTS
to use the Gaussian model, GMGAUS, for monopoles. For electric charges this

routine calculates the RMS scattering angle:

Vd
0y = 2.557chzeE—IB2 , (11)

where Y. is a characteristic of the material and d is the integration step
size. The scattering angle defines a cone around the particles momentum. For
isotropic materials any direction within the cone is equally likely, and so one
is chosen at random. We substitute ngg for ze in two steps: in GTMONP by

setting CHCMOL to x..ng instead of x.. and in GMULTS by calling GMGAUS with

3 After version 3.15 GEANT does not use direct linear interpolation of the energy
loss tables for standard particles but uses stopping range tables instead. This is
done in order to avoid overestimating energy losses near the S = 0 singularity of the
Bethe-Bloch equation. Monopoles do not have this singularity so the older method

is still applicable.

14



{3 instead of 3%. These substitutions are made only for monopoles (ITRTYP=9).

4 Code Validation

One cannot—at least yet—compare the GEANT simulation with real data,
meaning that cross checks are the only available tool for validating the code.
We compare the GEANT code with a simpler monopole simulation and com-
pare the Runge-Kutta integration with the analytic solution. None of these
checks validate the assumptions and models discussed in the previous sections;

they merely check for mistakes in the implementation.

4.1 Comparison with a Simple Stmulation

We created a simple monopole simulation using ROOT [12], called MonSim,
which is completely independent from GEANT. MonSim uses a simplified
detector geometry with most regions modeled as uniform cylinders. It treats
the energy loss using the monopole Bethe-Bloch formula (Equation 7) and
multiple scattering using the Gaussian model (Section 2.4). It also assumes
the magnetic field is uniform and in the 4z direction. In this case, the equation

of motion has an analytic solution:

. Eto 9B 2 9B ? -
== 1 Z A — 4|1 Z_A P
7(t) JB J + (Eto (t+ t)) + By, t e,+

to : gB . gB )) —
— - | arsinh [ = (¢ + At) | — arsinh [ =— At | ) e}, (12
9B < (Eto ( )> <Et0 ' ( )

where E}, is the initial transverse energy and p,, is the initial value of the

monopole’s z component of momentum. The time it takes the magnetic field
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to change p, from zero to p,, is At = p,,/gB. The special solution with p,, = 0
is easily calculated; the general solution is obtained by advancing the special

solution by the time At.

As a test case we use the CDF detector, which has been described in detail
elsewhere [13a-b]. CDF’s new Time-of-Flight (TOF) detector, built to en-
hance particle identification, is of particular interest, as it has been used for
a magnetic monopole trigger [14]. The TOF consists of 216 bars of fast scin-
tillator, 3.0 m in length, forming a cylinder between the COT chamber and
the solenoid. A slightly trapezoidal cross sections reduces the size of cracks
between bars. Photomultiplier tubes (PMTs) are mounted on both ends of
each bar along with signal boosting preamplifiers. Because PMT gains are
substantially reduced in magnetic fields, the PMT’s are of a special high gain
design. The highly ionizing nature of magnetic monopoles leads to large light

production in scintillators, providing an excellent trigger opportunity.

For the comparison, we used a simplified model of the CDF detector, consisting
of the beam-pipe, central tracker, TOF detector, and solenoid. This geometry
was implemented in MonSim, and all additional components were omitted
from the GEANT geometry. We take the proton direction along the beam-

pipe as +z, upward as +y, and the usual azimuthal angle as ¢.

Monopole pair events with identical initial conditions were simulated in both
programs. The acceptance of the TOF system across a range of monopole
masses is shown in Figure 6 as measured by both programs; they are in good
agreement as to whether or not a monopole hits the TOF scintillators. The
difference between GEANT and MonSim calculations of the E, z, and ¢ of the

monopole at the radius of the TOF scintillator are shown in Figure 7, Figure

16



8, and Figure 9 for a monopole with 500 GeV mass. The trajectory and energy
dependence of single typical event is shown in Figure 10 and Figure 11. The

agreement between the two programs is excellent.

There are some tails in the distributions, however. One tail event is shown
in Figure 12 and Figure 13. At the turning point, the monopole has very
little energy, and the discrepancy between the Bethe-Bloch formula and the
GEANT tables becomes noticeable (Figure 4). The later rapid acceleration of
the monopole has the effect of magnifying this small difference. Even for tail

events, the discrepancy is less than 1% of the total energy of the particle.

4.2 Comparison between analytic and Runge-Kutta solutions

As an additional cross check, we compare both GEANT implementations:
the analytic solution GPARMP and the Runge-Kutta integration GRKTMP. As
in the previous section, we compare the Energy (Figure 14), z (Figure 15),
and ¢ (Figure 16) difference at the TOF radius. The results are in excellent
agreement, with slightly asymmetric tails due to the assumption, in GPARMP,

that the magnetic field is in the z direction only.

5 Conclusions

The extension of classical electromagnetism to include magnetic charge leads
to a symmetry between electric and magnetic quantities. This symmetry can
be exploited to deduce magnetic interactions from electric ones in a straight-
forward way. Using this model, GEANT has been extended in a consistent

fashion to handle magnetic monopoles. We have tested our GEANT imple-

17



mentation against a much simpler monopole dedicated simulation. The two

independent programs are in excellent agreement.

The magnetic monopole extension to GEANT is available for download from
http://fcdfhome.fnal.gov/usr/mulhearn/geant-monopoles/. We have made
this extension to assist in a direct search for magnetic monopoles at CDF, from

which we will publish results shortly.
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6 Figure Captions

1) The structure of the GEANT tracking package.

2) The algorithm for the monopole tracking routine GTMONP.
3) The energy loss of electric and magnetic charges in air.

4) A comparison of the Bethe-Bloch formula with GEANT tables for the

(1)

(2)

(3)

(4)

energy loss of monopoles and protons in air.

(5) A sectional view of CDF, including the integrated tracking system.

(6) A comparison of the TOF acceptance for GEANT and MonSim.

(7) The total energy difference at the TOF radius for GEANT and MonSim.

(8) The z difference at the TOF radius for GEANT and MonSim.

(9) The ¢ difference at the TOF radius for GEANT and MonSim.

(10) The monopole trajectories in r-z for a typical event.

(11) The monopole energy versus radial distance for Figure 10. The large
kinks are due to rapid energy loss at the COT inner cylinder and TOF
scintillator bars.

(12) The monopole trajectories in r-z for an event with a large z-displacement
of 12.0 cm at TOF radius.

(13) The monopole energies versus radial distance for Figure 12.

(14) The total energy difference at TOF radius for the analytic and Runge-
Kutta GEANT implementations.

(15) The z difference at the TOF radius for the analytic and Runge-Kutta
GEANT implementations.

(16) The ¢ difference at the TOF radius for the analytic and Runge-Kutta

GEANT implementations.
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